The Mechanical Engineering Handbook Series

Series Editor
Frank Kreith
Consulting Engineer

Published Titles
Handbook of Heating, Ventilation, and Air Conditioning
Jan F. Kreider
Computational Intelligence in Manufacturing Handbook
Jun Wang and Andrew Kusiak
The CRC Handbook of Mechanical Engineering
Frank Kreith
The CRC Handbook of Thermal Engineering
Frank Kreith
The Handbook of Fluid Dynamics
Richard W. Johnson
Hazardous and Radioactive Waste Treatment Technologies Handbook
Chang Ho Oh
The MEMS Handbook
Mohamed Gad-el-Hak

Forthcoming Titles
Biomedical Technology and Devices Handbook
James Moore and George Zouridakis
Fuel Cell Technology Handbook
Gregor Hoogers
Air Pollution Control Technology Handbook
Karl B. Schnelle and Charles A. Brown
Handbook of Mechanical Engineering, Second Edition
Frank Kreith and Massimo Capobianchi
Handbook of Non-Destructive Testing and Evaluation Engineering
James Tulenko and David Hintenlang
Inverse Engineering Handbook
Keith A. Woodbury
Cover Photographs

Foreground: The first walking microrobot with a Swedish wasp relishing a ride on its back. The out-of-plane rotation of the eight legs is obtained by thermal shrinkage of polyimide in V-grooves (PVG). Leg movements are effected by sending heating pulses via integrated heaters causing the polyimide joints to expand. The size of the silicon legs is $1000 \times 600 \times 30 \ \mu m$, and the overall chip size of the robot is $15 \times 5 \times 0.5 \ mm$. The walking speed is $6 \ mm/s$ and the robot can carry 50 times its own weight. (Photograph by Per Westergård, Vetenskapsjournalisterna, Sweden, courtesy of Thorbjörn Ebefors, Royal Institute of Technology, Sweden.)

Background: A 12-layer microchain fabricated in nickel using the Electrochemical Fabrication (EFAB) technology. Overall height of the chain is approximately $100 \ \mu m$ and the width of a chain link is about $290 \ \mu m$. All horizontal links are free to move, while the vertical links are attached to the substrate. By simply including a sacrificial layer beneath the links, the entire chain can be released from the substrate. The microchain is fabricated in a pre-assembled state, without the need for actual assembly. A humble, picnic-loving ant would tower over the microchain shown here. (The two scanning electron micrographs courtesy of Adam L. Cohen, MEMGen Corporation, Torrance, California.)
In a little time I felt something alive moving on my left leg, which advancing gently forward over my breast, came almost up to my chin; when bending my eyes downward as much as I could, I perceived it to be a human creature not six inches high, with a bow and arrow in his hands, and a quiver at his back. I had the fortune to break the strings, and wrench out the pegs that fastened my left arm to the ground; for, by lifting it up to my face, I discovered the methods they had taken to bind me, and at the same time with a violent pull, which gave me excessive pain, I a little loosened the strings that tied down my hair on the left side, so that I was just able to turn my head about two inches. These people are most excellent mathematicians, and arrived to a great perfection in mechanics by the countenance and encouragement of the emperor, who is a renowned patron of learning. This prince has several machines fixed on wheels, for the carriage of trees and other great weights.

(From Gulliver’s Travels—A Voyage to Lilliput, by Jonathan Swift, 1726.)

The length-scale of man, at slightly more than 10^0 m, amazingly fits right in the middle of the smallest subatomic particle, which is approximately 10^{-26} m, and the extent of the observable universe, which is of the order of 10^{26} m. Toolmaking has always differentiated our species from all others on Earth. Aerodynamically correct wooden spears were carved by archaic Homo sapiens close to 400,000 years ago. Man builds things consistent with his size, typically in the range of two orders of magnitude larger or smaller than himself. But humans have always strived to explore, build and control the extremes of length and time scales. In the Voyages to Lilliput and Brobdingnag of Gulliver’s Travels, Jonathan Swift speculates on the remarkable possibilities that diminution or magnification of physical dimensions provides. The Great Pyramid of Khufu was originally 147 m high when completed around 2600 B.C., while the Empire State Building, constructed in 1931, is 449 m tall. At the other end of the spectrum of manmade artifacts, a dime is slightly less than 2 cm in diameter. Watchmakers have practiced the art of miniaturization since the 13th century. The invention of the microscope in the 17th century opened the way for direct observation of microbes and plant and animal cells. Smaller things were manmade in the latter half of the 20th century. The transistor in today’s integrated circuits has a size of 0.18 µm in production and approaches 10 nm in research laboratories.

Microelectromechanical systems (MEMS) refer to devices that have a characteristic length of less than 1 mm but more than 1 µm, that combine electrical and mechanical components and that are fabricated using integrated circuit batch-processing technologies. Current manufacturing techniques for MEMS include surface silicon micromachining; bulk silicon micromachining; lithography, electrodeposition and plastic molding; and electrodisharge machining. The multidisciplinary field has witnessed explosive growth during the last decade, and the technology is progressing at a rate that far exceeds that of our understanding of the physics involved. Electrostatic, magnetic, electromagnetic, pneumatic and thermal actuators, motors, valves, gears, cantilevers, diaphragms and tweezers of less than 100-µm size have been fabricated. These have been used as sensors for pressure, temperature, mass flow, velocity, sound and
chemical composition; as actuators for linear and angular motions; and as simple components for complex systems such as robots, micro heat engines and micro heat pumps. Worldwide market projections for MEMS devices tend to be optimistic, reaching $30 billion by the year 2004.

This handbook covers several aspects of microelectromechanical systems or, more broadly, the art and science of electromechanical miniaturization. MEMS design, fabrication and application as well as the physical modeling of their materials, transport phenomena and operations are all discussed. Chapters on the electrical, structural, fluidic, transport and control aspects of MEMS are included. Other chapters cover existing and potential applications of microdevices in a variety of fields including instrumentation and distributed control. The book is divided into four parts: Part I provides background and physical considerations, Part II discusses the design and fabrication of microdevices, Part III reviews a few of the applications of microsensors and microactuators, and Part IV ponders the future of the field. There are 36 chapters written by the world's foremost authorities on this multidisciplinary subject. The contributing authors come from the U.S., China (Hong Kong), Israel, Korea, Sweden and Taiwan and are affiliated with academia, government and industry. Without compromising rigorousness, the text is designed for maximum readability by a broad audience having an engineering or science background. As expected when several authors are involved, and despite the editor's best effort, the different chapters vary in length, depth, breadth and writing style.

The Handbook of MEMS should be useful as a reference book to scientists and engineers already experienced in the field or as a primer to researchers and graduate students just getting started in the art and science of electromechanical miniaturization. The editor-in-chief is very grateful to all the contributing authors for their dedication to this endeavor and selfless, generous giving of their time with no material reward other than the knowledge that their hard work may one day make the difference in someone else's life. Ms. Cindy Renee Carelli has been our acquisition editor and lifeline to CRC Press. Cindy's talent, enthusiasm and indefatigability were highly contagious and percolated throughout the entire endeavor.

Mohamed Gad-el-Hak
Notre Dame, Indiana
1 January 2001
Mohamed Gad-el-Hak received his B.Sc. (*summa cum laude*) in mechanical engineering from Ain Shams University in 1966 and his Ph.D. in fluid mechanics from the Johns Hopkins University in 1973. Dr. Gad-el-Hak has since taught and conducted research at the University of Southern California, University of Virginia, Institut National Polytechnique de Grenoble, Université de Poitiers and Friedrich-Alexander-Universität Erlangen-Nürnberg and has lectured extensively at seminars in the U.S. and overseas. Dr. Gad-el-Hak is currently Professor of Aerospace and Mechanical Engineering at the University of Notre Dame. Prior to that, he was a Senior Research Scientist and Program Manager at Flow Research Company in Seattle, WA, where he managed a variety of aerodynamic and hydrodynamic research projects.

Dr. Gad-el-Hak is world renowned for advancing several novel diagnostic tools for turbulent flows, including the laser-induced fluorescence (LIF) technique for flow visualization; for discovering the efficient mechanism via which a turbulent region rapidly grows by destabilizing a surrounding laminar flow; for introducing the concept of targeted control to achieve drag reduction, lift enhancement and mixing augmentation in boundary-layer flows; and for developing a novel viscous pump suited for microelectromechanical systems (MEMS) applications. Gad-el-Hak’s work on Reynolds number effects in turbulent boundary layers, published in 1994, marked a significant paradigm shift in the subject. He holds two patents: one for a drag-reducing method for airplanes and underwater vehicles and the other for a lift-control device for delta wings. Dr. Gad-el-Hak has published over 340 articles, authored/edited eight books and conference proceedings, and presented 195 invited lectures. He is the author of the book *Flow Control: Passive, Active, and Reactive Flow Management*, and editor of the books *Frontiers in Experimental Fluid Mechanics*, *Advances in Fluid Mechanics Measurements*, and *Flow Control: Fundamentals and Practices*.

Dr. Gad-el-Hak is a fellow and life member of the American Physical Society, a fellow of the American Society of Mechanical Engineers, an associate fellow of the American Institute of Aeronautics and Astronautics, a member of the American Academy of Mechanics, a research fellow of the American Biographical Institute and a member of the European Mechanics Society. From 1988 to 1991, Dr. Gad-el-Hak served as Associate Editor for AIAA Journal. He is currently serving as Associate Editor for *Applied Mechanics Reviews* as well as Contributing Editor for Springer-Verlag’s *Lecture Notes in Engineering* and *Lecture Notes in Physics*, for McGraw-Hill’s *Year Book of Science and Technology*, and for CRC Press’ *Mechanical Engineering Series*.

Dr. Gad-el-Hak serves as consultant to the governments of Egypt, France, Germany, Sweden and the U.S., the United Nations, and numerous industrial organizations. During the 1991/1992 academic year, he was a visiting professor at Institut de Mécanique de Grenoble, France. During the summers of 1993, 1994 and 1997, Dr. Gad-el-Hak was, respectively, a distinguished faculty fellow at Naval Undersea Warfare Center, Newport, RI; a visiting exceptional professor at Université de Poitiers, France; and a Gastwissenschaftler (guest scientist) at Forschungszentrum Rossendorf, Dresden, Germany. In 1998, Professor Gad-el-Hak was named the Fourteenth ASME Freeman Scholar. In 1999, Gad-el-Hak was awarded the prestigious Alexander von Humboldt Prize—Germany’s highest research award for senior U.S. scientists and scholars in all disciplines.
Contributors

Professor Ronald J. Adrian
Department of Theoretical and
Applied Mechanics
University of Illinois at
Urbana–Champaign
Urbana, Illinois
E-mail: r-adrian@uiuc.edu

Professor Ramesh K.
Agarwal
National Institute for Aviation
Research
Wichita State University
Wichita, Kansas
E-mail: agarwal@niar.twsu.edu

Dr. Glenn M. Beheim
NASA Glenn Research Center
Cleveland, Ohio
E-mail: Glenn.M.Beheim@grc.nasa.gov

Professor Paul L.
Bergstrom
Department of Electrical and
Computer Engineering
Michigan Technological University
Houghton, Michigan
E-mail: paulb@mtu.edu

Professor Gary H. Bernstein
Department of Electrical
Engineering
University of Notre Dame
Notre Dame, Indiana
E-mail: bernstein.1@nd.edu

Professor Ali Beskok
Department of Mechanical
Engineering
Texas A&M University
College Station, Texas
E-mail: ABeskok@mengr.tamu.edu

Professor Thomas R.
Bewley
Department of Mechanical and
Aerospace Engineering
University of California, San Diego
La Jolla, California
E-mail: bewley@ucsd.edu

Professor Kenneth S.
Breuer
Division of Engineering
Brown University
Providence, Rhode Island
E-mail: Kenneth_Breuer@brown.edu

Professor Hsueh-Chia
Chang
Department of Chemical
Engineering
University of Notre Dame
Notre Dame, Indiana
E-mail: hchang@nd.edu

Dr. Liang-Yu Chen
NASA Glenn Research Center
Cleveland, Ohio
E-mail: Liangyu.Chen@grc.nasa.gov

Mr. Adam L. Cohen
MEMGen Corporation
Torrance, California
E-mail: acohen@memgen.com

Dr. Thorbjörn Ebefors
Department of Signals, Sensors and
Systems
Royal Institute of Technology
Stockholm, Sweden
E-mail: thorbjorn.ebefors@s3.kth.se

Professor Mohamed Gad-el-Hak
Department of Aerospace and
Mechanical Engineering
University of Notre Dame
Notre Dame, Indiana
E-mail: gadelhak@nd.edu

Professor Yogesh Gianchandani
Department of Electrical and
Computer Engineering
University of Wisconsin–Madison
Madison, Wisconsin
E-mail: yogesh@engr.wisc.edu

Professor Holly V.
Goodson
Department of Chemistry and
Biochemistry
University of Notre Dame
Notre Dame, Indiana
E-mail: hgoodson@nd.edu

Professor Bill Goodwine
Department of Aerospace and
Mechanical Engineering
University of Notre Dame
Notre Dame, Indiana
E-mail: jgoodwin@nd.edu

Dr. Todd Christenson
Photonics and Microfabrication
Sandia National Laboratories
Albuquerque, New Mexico
E-mail: trchris@sandia.gov
Contents

Preface
Editor-in-Chief
Contributors

I Background and Fundamentals

1 Introduction Mohamed Gad-el-Hak

2 Scaling of Micromechanical Devices William Trimmer and Robert H. Stroud

3 Mechanical Properties of MEMS Materials William N. Sharpe, Jr.

4 Flow Physics Mohamed Gad-el-Hak

5 Integrated Simulation for MEMS: Coupling Flow-Structure-Thermal-Electrical Domains Robert M. Kirby, George Em Karniadakis, Oleg Mikulchenko and Kartikeya Mayaram

6 Liquid Flows in Microchannels Kendra V. Sharp, Ronald J. Adrian, Juan G. Santiago and Joshua I. Molho

7 Burnett Simulations of Flows in Microdevices Ramesh K. Agarwal and Keon-Young Yun

8 Molecular-Based Microfluidic Simulation Models Ali Beskok

9 Lubrication in MEMS Kenneth S. Breuer
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Physics of Thin Liquid Films</td>
<td>Alexander Oron</td>
</tr>
<tr>
<td>11</td>
<td>Bubble/Drop Transport in Microchannels</td>
<td>Hsueh-Chia Chang</td>
</tr>
<tr>
<td>12</td>
<td>Fundamentals of Control Theory</td>
<td>Bill Goodwine</td>
</tr>
<tr>
<td>13</td>
<td>Model-Based Flow Control for Distributed Architectures</td>
<td>Thomas R. Bewley</td>
</tr>
<tr>
<td>14</td>
<td>Soft Computing in Control</td>
<td>Mihir Sen and Bill Goodwine</td>
</tr>
<tr>
<td>II Design and Fabrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Materials for Microelectromechanical Systems</td>
<td>Christian A. Zorman and Mehran Mehregany</td>
</tr>
<tr>
<td>16</td>
<td>MEMS Fabrication</td>
<td>Marc J. Madou</td>
</tr>
<tr>
<td>17</td>
<td>LIGA and Other Replication Techniques</td>
<td>Marc J. Madou</td>
</tr>
<tr>
<td>18</td>
<td>X-Ray-Based Fabrication</td>
<td>Todd Christenson</td>
</tr>
<tr>
<td>19</td>
<td>Electrochemical Fabrication (EFAB™)</td>
<td>Adam L. Cohen</td>
</tr>
<tr>
<td>20</td>
<td>Fabrication and Characterization of Single-Crystal Silicon Carbide MEMS</td>
<td>Robert S. Okojie</td>
</tr>
<tr>
<td>21</td>
<td>Deep Reactive Ion Etching for Bulk Micromachining of Silicon Carbide</td>
<td>Glenn M. Beheim</td>
</tr>
<tr>
<td>22</td>
<td>Microfabricated Chemical Sensors for Aerospace Applications</td>
<td>Gary W. Hunter, Chung-Chiun Liu and Darby B. Makel</td>
</tr>
<tr>
<td>23</td>
<td>Packaging of Harsh-Environment MEMS Devices</td>
<td>Liang-Yu Chen and Jih-Fen Lei</td>
</tr>
</tbody>
</table>
III Applications of MEMS

24 Inertial Sensors *Paul L. Bergstrom and Gary G. Li*

25 Micromachined Pressure Sensors *Jae-Sung Park, Chester Wilson and Yogesh B. Gianchandani*

26 Sensors and Actuators for Turbulent Flows *Lennart Löfdahl and Mohamed Gad-el-Hak*

27 Surface-Micromachined Mechanisms *Andrew D. Oliver and David W. Plummer*

28 Microrobotics *Thorbjörn Ebefors and Göran Stemme*

29 Microscale Vacuum Pumps *E. Phillip Muntz and Stephen E. Vargo*

30 Microdroplet Generators *Fan-Gang Tseng*

31 Micro Heat Pipes and Micro Heat Spreaders *G.P. “Bud” Peterson*

32 Microchannel Heat Sinks *Yitshak Zohar*

33 Flow Control *Mohamed Gad-el-Hak*

IV The Future

34 Reactive Control for Skin-Friction Reduction *Haecheon Choi*

35 Towards MEMS Autonomous Control of Free-Shear Flows *Ahmed Naguib*

36 Fabrication Technologies for Nanoelectromechanical Systems *Gary H. Bernstein, Holly V. Goodson and Gregory L. Snider*
The farther backward you can look,
the farther forward you are likely to see.
(Sir Winston Leonard Spencer Churchill, 1874–1965)

Janus, Roman god of
gates, doorways and all
beginnings, gazing both
forward and backward.

As for the future, your task is not to foresee, but to enable it.
(Antoine-Marie-Roger de Saint-Exupéry, 1900–1944,
in Citadelle [The Wisdom of the Sands])
I

Background and Fundamentals

1 Introduction Mohamed Gad-el-Hak

2 Scaling of Micromechanical Devices William Trimmer, Robert H. Stroud
 Introduction • The Log Plot • Scaling of Mechanical Systems

3 Mechanical Properties of MEMS Materials William N. Sharpe, Jr.
 Introduction • Mechanical Property Definitions • Test Methods • Mechanical Properties • Initial Design Values

4 Flow Physics Mohamed Gad-el-Hak
 Introduction • Flow Physics • Fluid Modeling • Continuum Model • Compressibility • Boundary Conditions • Molecular-Based Models • Liquid Flows • Surface Phenomena • Parting Remarks

5 Integrated Simulation for MEMS: Coupling Flow-Structure-Thermal-Electrical Domains Robert M. Kirby, George Em Karniadakis, Oleg Mikulchenko, Kartikeya Mayaram
 Abstract • Introduction • Coupled Circuit-Device Simulation • Overview of Simulators • Circuit-Microfluidic Device Simulation • Demonstrations of the Integrated Simulation Approach • Summary and Discussion

6 Liquid Flows in Microchannels Kendra V. Sharp, Ronald J. Adrian, Juan G. Santiago, Joshua I. Molho
 Introduction • Experimental Studies of Flow Through Microchannels • Electrokinetics Background • Summary and Conclusions

7 Burnett Simulations of Flows in Microdevices Ramesh K. Agarwal, Keon-Young Yun
 Abstract • Introduction • History of Burnett Equations • Governing Equations • Wall-Boundary Conditions • Linearized Stability Analysis of Burnett Equations • Numerical Method • Numerical Simulations • Conclusions

8 Molecular-Based Microfluidic Simulation Models Ali Beskok
 Abstract • Introduction • Gas Flows • Liquid and Dense Gas Flows • Summary and Conclusions
9 Lubrication in MEMS *Kenneth S. Breuer*
Introduction • Fundamental Scaling Issues • Governing Equations for Lubrication • Couette-Flow Damping • Squeeze-Film Damping • Lubrication in Rotating Devices • Constraints on MEMS Bearing Geometries • Thrust Bearings • Journal Bearings • Fabrication Issues • Tribology and Wear • Conclusions

10 Physics of Thin Liquid Films *Alexander Oron*
Introduction • The Evolution Equation for a Liquid Film on a Solid Surface • Isothermal Films • Thermal Effects • Change of Phase: Evaporation and Condensation • Closing Remarks

11 Bubble/Drop Transport in Microchannels *Hsueh-Chia Chang*
Introduction • Fundamentals • The Bretherton Problem for Pressure-Driven Bubble/Drop Transport • Bubble Transport by Electrokinetic Flow • Future Directions

12 Fundamentals of Control Theory *Bill Goodwine*
Introduction • Classical Linear Control • "Modern" Control • Nonlinear Control • Parting Remarks

13 Model-Based Flow Control for Distributed Architectures *Thomas R. Bewley*

14 Soft Computing in Control *Mihir Sen, Bill Goodwine*
Introduction • Artificial Neural Networks • Genetic Algorithms • Fuzzy Logic and Fuzzy Control • Conclusions
How many times when you are working on something frustratingly tiny, like your wife’s wrist watch, have you said to yourself, “If I could only train an ant to do this!” What I would like to suggest is the possibility of training an ant to train a mite to do this. What are the possibilities of small but movable machines? They may or may not be useful, but they surely would be fun to make.

(From the talk “There’s Plenty of Room at the Bottom,” delivered by Richard P. Feynman at the annual meeting of the American Physical Society, Pasadena, CA, December 29, 1959.)

Tool making has always differentiated our species from all others on Earth. Aerodynamically correct wooden spears were carved by archaic Homo sapiens close to 400,000 years ago. Man builds things consistent with his size, typically in the range of two orders of magnitude larger or smaller than himself, as indicated in Figure 1.1. Though the extremes of the length scale are outside the range of this figure, man, at slightly more than 100 m, amazingly fits right in the middle of the smallest subatomic particle, which is approximately 10$^{-26}$ m, and the extent of the observable universe, which is of the order of 1026 m (15 billion light years)—neither geocentric nor heliocentric but rather an egocentric universe! But humans have always striven to explore, build and control the extremes of length and time scales. In the voyages to Lilliput and Brobdingnag of Gulliver’s Travels, Jonathan Swift (1726) speculates on the remarkable possibilities which diminution or magnification of physical dimensions provides.1 The Great Pyramid of Khufu was originally 147 m high when completed around 2600 B.C., while the Empire State Building constructed in 1931 is currently—after the addition of a television antenna mast in 1950—449 m high. At the other end of the spectrum of man-made artifacts, a dime is slightly less than 2 cm in diameter.

Watchmakers have practiced the art of miniaturization since the 13th century. The invention of the microscope in the 17th century opened the way for direct observation of microbes and plant and animal cells. Smaller things were man-made in the latter half of the 20th century. The transistor—invented in 1947—in today’s integrated circuits has a size2 of 0.18 µm (180 nm) in production and approaches 10 nm in research laboratories using electron beams. But what about the miniaturization of mechanical parts—machines—envisioned by Feynman (1961) in his legendary speech quoted above?

1Gulliver’s Travels was originally designed to form part of a satire on the abuse of human learning. At the heart of the story is a radical critique of human nature in which subtle ironic techniques work to part the reader from any comfortable preconceptions and challenge him to rethink from first principles his notions of man.

2The smallest feature on a microchip is defined by its smallest linewidth, which in turn is related to the wavelength of light employed in the basic lithographic process used to create the chip.
FIGURE 1.1 Scale of things, in meters. Lower scale continues in the upper bar from left to right. One meter is $10^6 \mu m$, 10^9 nm or 10^{10} Å.
Manufacturing processes that can create extremely small machines have been developed in recent years [Angell et al., 1983; Gabriel et al., 1988; 1992; O’Connor, 1992; Gravesen et al., 1993; Bryzek et al., 1994; Gabriel, 1995; Ashley, 1996; Ho and Tai, 1996; 1998; Hogan, 1996; Ouelette, 1996; Paula, 1996; Robinson et al., 1996a; 1996b; Madou, 1997; Tien, 1997; Amato, 1998; Busch-Vishniac, 1998; Kovacs, 1998; Knight, 1999; Epstein, 2000; Goldin et al., 2000; O’Connor and Hutchinson, 2000; Chalmers, 2001; Tang and Lee, 2001]. Electrostatic, magnetic, electromagnetic, pneumatic and thermal actuators, motors, valves, gears, cantilevers, diaphragms and tweezers less than 100 µm in size have been fabricated. These have been used as sensors for pressure, temperature, mass flow, velocity, sound and chemical composition; as actuators for linear and angular motions; and as simple components for complex systems such as robots, micro-heat-engines and micro-heat-pumps [Lipkin, 1993; Garcia and Sniegowski, 1993; 1995; Sniegowski and Garcia, 1996; Epstein and Senturia, 1997; Epstein et al., 1997].

Microelectromechanical systems (MEMS) refer to devices that have a characteristic length of less than 1 mm but more than 1 µm, that combine electrical and mechanical components and that are fabricated using integrated circuit batch-processing technologies. The books by Madou (1997) and Kovacs (1998) provide excellent sources for microfabrication technology. Current manufacturing techniques for MEMS include surface silicon micromachining; bulk silicon micromachining; lithography, electrodeposition and plastic molding (or, in its original German, lithographie galvanof ormung abformung, LIGA); and electrodischarge machining (EDM). As indicated in Figure 1.1, MEMS are more than four orders of magnitude larger than the diameter of the hydrogen atom, but about four orders of magnitude smaller than the traditional man-made artifacts. Microdevices can have characteristic lengths smaller than the diameter of a human hair. Nanodevices (some say NEMS) further push the envelope of electromechanical miniaturization [Roco, 2001].

The famed physicist Richard P. Feynman delivered a mere two, but profound, lectures on electromechanical miniaturization: “There’s Plenty of Room at the Bottom,” quoted above, and “Infinitesimal Machinery,” presented at the Jet Propulsion Laboratory on February 23, 1983. He could not see a lot of use for micromachines, lamenting in 1959: “[Small but movable machines] may or may not be useful, but they surely would be fun to make,” and, 24 years later, “There is no use for these machines, so I still don’t understand why I’m fascinated by the question of making small machines with movable and controllable parts.” Despite Feynman’s demurring regarding the usefulness of small machines, MEMS are finding increased applications in a variety of industrial and medical fields, with a potential worldwide market in the billions of dollars ($30 billion by 2004). Accelerometers for automobile airbags, keyless entry systems, dense arrays of micromirrors for high-definition optical displays, scanning electron microscope tips to image single atoms, micro-heat-exchangers for cooling of electronic circuits, reactors for separating biological cells, blood analyzers and pressure sensors for catheter tips are but a few in current use. Microducts are used in infrared detectors, diode lasers, miniature gas chromatographs and high-frequency fluidic control systems. Micropumps are used for ink-jet printing, environmental testing and electronic cooling. Potential medical applications for small pumps include controlled delivery and monitoring of minute amounts of medication, manufacturing of nanoliters of chemicals and development of an artificial pancreas.

This multidisciplinary field has witnessed explosive growth during the last decade. Several new journals are dedicated to the science and technology of MEMS—for example, Journal of Microelectromechanical Systems, Journal of Micromechanics and Microengineering and Microscale Thermophysical Engineering. Numerous professional meetings are devoted to micromachines—for example, Solid-State Sensor and Actuator Workshop, International Conference on Solid-State Sensors and Actuators (Transducers), Micro Electro Mechanical Systems Workshop, Micro Total Analysis Systems, Eurosensors, etc.

This handbook covers several aspects of microelectromechanical systems, or more broadly the art and science of electromechanical miniaturization. MEMS design, fabrication and application as well as the physical modeling of their materials, transport phenomena and operations are discussed. Chapters on

the electrical, structural, fluidic, transport and control aspects of MEMS are included. Other chapters cover existing and potential applications of microdevices in a variety of fields including instrumentation and distributed control. Physical understanding of the different phenomena unique to micromachines is emphasized throughout this book. The handbook is divided into four parts: Part I provides background and physical considerations, Part II discusses the design and fabrication of microdevices, Part III reviews a few of the applications of microsensors and microactuators, and Part IV ponders the future of the field. The 36 chapters are written by the world’s foremost authorities on this multidisciplinary subject. The contributing authors come from academia, government and industry. Without compromising rigorosity, the text is designed for maximum readability by a broad audience having an engineering or science background. The nature of the book—being a handbook and not an encyclopedia—and its size limitation dictate the exclusion of several important topics in the MEMS area of research and development.

Our objective is to provide a current overview of the fledgling discipline and its future developments for the benefit of working professionals and researchers. The handbook will be a useful guide and reference to the explosive literature on MEMS and should provide the definitive word for the fundamentals and applications of microfabrication and microdevices. Glancing at the table of contents, the reader may rightly sense an overemphasis on the physics of microdevices. This is consistent with the strong conviction of the editor-in-chief that the MEMS technology is moving too fast relative to our understanding of the unconventional physics involved. This technology can certainly benefit from a solid foundation of the underlying fundamentals. If the physics is better understood, better, less expensive and more efficient microdevices can be designed, built and operated for a variety of existing and yet-to-be-dreamed applications. Consistent with this philosophy, chapters on control theory, distributed control and soft computing are included as the backbone of the futuristic idea of using colossal numbers of microsensors and microactuators in reactive control strategies aimed at taming turbulent flows to achieve substantial energy savings and performance improvements of vehicles and other man-made devices.

I shall leave you now for the many wonders of the small world you are about to encounter when navigating through the various chapters that follow. May your voyage to Lilliput be as exhilarating, enchanting and enlightening as *Lemuel Gulliver’s Travels into Several Remote Nations of the World*. Hekinah degul! Jonathan Swift may not have been a good biologist and his scaling laws were not as good as those of William Trimmer (see Chapter 2 of this book), but Swift most certainly was a magnificent storyteller. *Hnuy illa nyha majah Yahoo!*

References

References

1 Chapter 1 Introduction

Modelling of a Comb-Drive-Based Microengine for Mechanism Drive Applications,” in Proc. Seventh Int. Conf. on Solid-State Sensors and Actuators (Transducers ’93), pp. 763–766, 7–10 June, Yokohama, Japan.

Chapter 2 Scaling of Micromechanical Devices

3 Chapter 3 Mechanical Properties of MEMS Materials

Tabata, O., Kawahata, K., Sugiyama, S., and Igarashi, I.

4 Chapter 4 Flow Physics

Microdevices—The Freeman Scholar Lecture,” J. Fluids Eng. 121, pp. 5-33.

5 Chapter 5 Integrated Simulation for MEMS

University of California, Berkeley.

Technology Modeling Associates (1997), MEDICI User’s

Chapter 6 Liquid Flows in Microchannels

Reynolds, O. (1883) “An Experimental Investigation of the

23–26, Las Vegas, NV.

unpublished report, Wichita State University, Wichita, KS.

Chapter 8 Molecular-Based Microfluidic Simulation Models

Chapter 9 Lubrication in MEMS

Chapter 10 Physics of Thin Liquid Films

Society, Washington, D.C.

Chapter 11 Bubble/Drop Transport in Microchannels

Chapter 12 Fundamentals of Control Theory

Franklin, G.F., Powell, D.J., and Emami-Naeini, A. (1994) Feedback Control of Dynamic Systems, Addison-Wesley,

For Further Information

Most of the material covered in the chapter is thoroughly covered in textbooks. For the section on classical control, the undergraduate texts by Dorf (1992), Franklin et al. (1994), Kuo (1995), Ogata (1997) and Raven (1995) provide a complete mathematical treatment of root locus design, PID control, lead-lag compensation and basic state-space methods. Textbooks for linear, robust control include Doyle et al. (1992) and Zhou (1996).

The standard textbooks for geometric nonlinear control are Isidori (1996) and Nijmeijer and van der Schaft (1990). Additional material concerning the mathematical basis for differential geometry is found in Abraham et al. (1988) and Boothby (1986). Sastry (2000) provides an overview of differential geometric techniques but also considers Lyapunov-based methods and nonlinear dynamical systems in general.

Khalil (1996) focuses primarily on Lyapunov methods and
includes a chapter on differential geometric techniques.
13 Chapter 13 Model-Based Flow Control for Distributed Architectures

14 Chapter 14 Soft Computing in Control

Englewood Cliffs, NJ.

For Further Information

For neural networks, the monographs by Schalkoff (1997) and Haykin (1999) are very good for beginners.

to specific areas. For genetic algorithms, the books by Goldberg (1989), Michalewicz (1992) and Mitchell (1997) are recommended for beginners. There are many excellent fuzzy control texts; however, the authors found Kosko (1997) and Passino and Yurkovich (1998) particularly clear and useful. Texts with indepth and complete developments of fuzzy logic include Klir and Yuan (1995) and Jang et al. (1997).
Section II Design and Fabrication

Dehe, A., Peerlings, J., Pfeiffer, J., Riemenschneider, R.,

For Further Information

A comprehensive review of polysilicon as a material for microelectronics and MEMS is presented in

Polycrystalline Silicon for Integrated Circuits and Displays, 2nd ed., by Ted Kamins. The Materials Research Society holds an annual symposium on the materials science of MEMS at the Fall meetings. The proceedings from these symposia have been published as volumes 546B, 605B and 657B of the Materials Research Society Symposium Proceedings. Several regularly published journals contain contributed and review papers concerning materials aspects of MEMS, including: (1) The Journal of Microelectromechanical Systems, (2) Journal of Micromachining and Microengineering, (3) Sensors and Actuators and (4) Sensors and Actuators. These journals are carried by most engineering and science libraries and may be accessible.
online.
Chapter 15 Materials for Microelectromechanical Systems

Gyroscope Using a Thick Polysilicon Layer,” in Proc. 12th Int. Conf. on Microelectromechanical Systems, January 17-21, Orlando, FL, pp. 57-60.

Schmidt, M.A., Howe, R.T., Senturia, S.D., and Haritonidis,

For Further Information

A comprehensive review of polysilicon as a material for microelectronics and MEMS is presented in

Polycrystalline Silicon for Integrated Circuits and Displays, 2nd ed., by Ted Kamins. The Materials Research Society holds an annual symposium on the materials science of MEMS at the Fall meetings. The proceedings from these symposia have been published as volumes 546B, 605B and 657B of the Materials Research Society Symposium Proceedings. Several regularly published journals contain contributed and review papers concerning materials aspects of MEMS, including: (1) The Journal of Microelectromechanical Systems, (2) Journal of Micromachining and Microengineering, (3) Sensors and Actuators and (4) Sensors and Materials. These journals are carried by most
engineering and science libraries and may be accessible online.
16 Chapter 16 MEMS Fabrication

FIGURE 16.112 SEM micrograph of the stepping slider (top) and scanned image (bottom). (From Akiyama, T., J. Microelectromech. Syst., 2, 106-110, 1993. With permission.)

© 2002 by CRC Press LLC

Akiyama, T., “Controlled Stepwise Motion in Polysilicon Microstructures,” J. Microelectromech. Syst., 2, 106-110,

Ammar, E. S. and T. J. Rodgers, “UMOS Transistors on (110)

Block, B., Zero-Base the Technological Approach, private communication.

© 2002 by CRC Press LLC

Buser, R. A. and N. F. de Rooij, “Monolithishes

Bushan, B., “Nanotribology and Nanomechanics of MEMS
Devices,” Proceedings IEEE, Ninth Annual International
Workshop on Micro Electro Mechanical Systems, San Diego,
CA, 1996, pp. 91-98.

Bushan, B., Ed. Handbook of Micro/Nanotribology, CRC

Buttgenbach, S., Mikromechanik, Teubner Studienbucher,

Isolated Structures in Single Crystal Silicon,” 7th
International Conference on Solid-State Sensors and
Actuators (Transducers ’93), Yokohama, Japan, 1993, pp.
250-253.

Callister, D. W., Materials Science and Engineering, John

Campbell, D. S., “Mechanical Properties of Thin Films,” in
Handbook of Thin Film Technology, Maissel, L. I. and R.

Canham, L. T., “Silicon Quantum Wire Array Fabrication by
Electrochemical and Chemical Dissolution of Wafers,” Appl.

Chang, S., W. Eaton, J. Fulmer, C. Gonzalez, B. Underwood,
J. Wong, and R. L. Smith, “Micro-mechanical Structures in
Amorphous Silicon,” 6th International Conference on
Solid-State Sensors and Actuators (Transducers ’91), San

Chen, L.-Y. and N. C. MacDonald, “A Selective CVD Tungsten
Process for Micromotors,” 6th International Conference on
Solid-State Sensors and Actuators (Transducers ’91), San

Sensor Applications,” Micromachining and Microfabrication
Process Technology (Proceedings of the SPIE), Austin, TX,

© 2002 by CRC Press LLC

Editorial, Thermal Character Print Head, Texas Instruments, Austin, 1977.

© 2002 by CRC Press LLC

Kermani, A., K. E. Johnsgard, and W. Fred, “Single Wafer RT

© 2002 by CRC Press LLC

© 2002 by CRC Press LLC

Lietoila, A., A. Wakita, T. W. Sigmon, and J. F. Gibbons,

© 2002 by CRC Press LLC

© 2002 by CRC Press LLC

Monk, D. J., D. S. Soane, and R. T. Howe, “LPCVD Silicon

© 2002 by CRC Press LLC

Orpana, M. and A. O. Korhonen, “Control of Residual Stress in Polysilicon Thin Films by Heavy Doping in Surface

Pfann, W. G., “Improvement of Semiconducting Devices by

© 2002 by CRC Press LLC

Slater, T., Vertical (100) Etching, personal communication, October 1995.

Microelectronics, Munich, Germany, 1966.

© 2002 by CRC Press LLC

© 2002 by CRC Press LLC

© 2002 by CRC Press LLC

Chapter 17 LIGA and Other Replication Techniques

Burbaum, C., J. Mohr, P. Bley, and W. Ehrfeld, “Fabrication

Ehrfeld, W., “LIGA at IMM,” Notes from handouts, 1994, Banff, Canada.

Guckel, H., "Deep Lithography,” Notes from handouts, 1994, Banff, Canada.

Mohr, J., W. Ehrfeld, D. Munchmeyer, and A. Stutz, “Resist

Tang, W. C.-K., “Electrostatic Comb Drive for Resonant

Feiertag, G., Ehrfeld, W., Freimuth, M., Kolle, H., Lehr,

For Further Information

International workshops devoted to high-aspect-ratio microstructure technology (HARMST) were first held in 1995 with a particular emphasis on DXRL processing and LIGA technique. The meetings are held directly following the international Transducers conference every other year. HARMST ’95 was held in Karlsruhe, Germany; HARMST ’97, in Madison, WI; HARMST ’99, in Kisarazu, Japan; HARMST ’01, in Baden-Baden, Germany. A book of abstracts is published with the workshop and selected papers from the workshop are published in the Microsystem Technologies research journal published by Springer.

Information on VLSI X-ray lithography with some DXRL subject matter is covered by the international conference on Electron, Ion and Photon Beam Technology and Nanofabrication (EIPBN), with papers published in the Journal of Vacuum Science and Technology B.

Book chapters devoted to the topic of LIGA may be found in Fundamentals of Microfabrication (M. Madou, CRC Press, 1997) and Handbook of Microlithography, Micromachining, and Microfabrication,

Many LIGA-related journal articles may be found in the IoP Journal of Micromechanics and Microengineering: Structures, Devices, and Systems.

Web sites where additional information on LIGA may be found include: http://www.fzk.de/imt/elmt.htm; http://www.imm.uni-mainz.de/; http://daytona.ca.sandia.gov/LIGA/; http://mems.engr.wisc.edu/liga.html.
Chapter 19 Electrochemical Fabrication (EFABTM)

For Further Information
The University of California/Information Sciences Institute has a Web site for EFAB at www.isi.edu/efab.

The site includes links to some SFF companies that can provide more information on SFF. Readers may also visit MEMGen Corporation’s Web site at www.memgen.com.

EFAB, Instant Masking, Instant Mask and Layerize are trademarks of MEMGen Corporation. Windows is a registered trademark of Microsoft Corporation.
Chapter 20 Fabrication and Characterization of Single-Crystal Silicon Carbide MEMS

Applications,” in Proc., 9th Int. Workshop on Micro Electro Mechanical Systems, pp. 146-149.

Chapter 21 Deep Reactive Ion Etching for Bulk Micromachining of Silicon Carbide

Wang, J.J., Lambers, E.S., Pearton, S.J., Ostling, M.,

22 Chapter 22 Microfabricated Chemical Sensors for Aerospace Applications

Hunter, G. W., Neudeck, P. G., Chen, L.-Y., Knight, D.,

For Further Information

Chapter 23 Packaging of
Harsh-Environment MEMS Devices

Pecht, M. G., Agarwal, R., McCluskey, P., Dishonh, T.,

Yu, M.-F., Lourie, O., Dyer, M. L., Moloni, K., Kelly, T.

Microstructures,” in Technical Digest, Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 18-21, Transducers Research Foundation, Cleveland, OH.

Solid-State Sensors and Actuators (Transducers '91), pp. 177-180, Institute of Electrical and Electronics Engineers, New York.

Offenberg, M., Lärmer, F., Elsner, B., Münzel, H., and

Gad-el-Hak, M. (1994) “Interactive Control of Turbulent
1753–1765.

Control: Fundamentals and Practices, M. Gad-el-Hak, A.
Pollard, and J.-P. Bonnet, Eds., Lecture Notes in Physics,

Microdevices—The Freeman Scholar Lecture,” J. Fluids Eng.
121, pp. 5–33.

Gad-el-Hak, M. (2000) Flow Control: Passive, Active, and
Reactive Flow Management, Cambridge University Press,
London.

Gad-el-Hak, M. and Bandyopadhyay, P.R. (1994) “Reynolds
Number Effect in Wall Bounded Flows,” Appl. Mech. Rev. 47,

Control: Fundamentals and Practices, Springer-Verlag,
Berlin.

Actuation Technique,” in Proc. IEEE Eleventh Int. Workshop
on MEMS (MEMS ’98), pp. 470–475, Jan. 25–29, Heidelberg,
Germany.

Fluctuations During Transition on a Flat Plate,” in Proc.
Symp. on Flow Induced Noise Due to Laminar-Turbulent
Transition Process, ASME NCA-Vol. 5, American Society of
Mechanical Engineers, New York.

Silicon Wafer-Bonding Technology for Microfabricated
Shear-Stress Sensors with Backside Contacts,” in Technical
111–115, Hilton Head, SC.

ed., Taylor & Francis, Washington, D.C.

“Demonstration of Three-Dimensional Microstructure

Jorgensen, F.E. (1971) "Directional Sensitivity of Wire and Fiber Film Probes," DISA Inf. 11, pp. 31-37.

Timoshenko, S. (1925) “Analysis of Bi-Metal Thermostats,”
J. Optical Soc. Am. 11, pp. 233–255.

Chapter 27 Surface-Micromachined Mechanisms

For Further Reading

Among the several excellent sources of information on surface-micromachining and surface-micromachined devices are the recommended books by Madou (1997) and Kovacs (1998). Many conferences—for example, IEEE Micro Electro Mechanical Systems Conferences, biannual conferences on Solid State Sensors and Actuators (Transducers)—are mainly focused on device fabrication. Actuators are also good sources for some good device and mechanism papers. SPIE and ASME also sponsor MEMS conferences or workshops.

Some of the heavily read journals in the field of MEMS include Sensors and Actuators and the Journal of
Microelectromechanical Systems (J. MEMS). Of the two, J. MEMS is the better source for surface-micro
machined mechanism papers. For information on designing and building surface micromachines, both
Cronos and Sandia provide information about their processes. The internet address for Cronos is
http://www.memsrus.com/; for Sandia, the address is http://www.mdl.sandia.gov/Micromachine/. Good
[Shigley and Mischke, 1989] and the Mechanisms and Mechanical Devices Sourcebook [Chironis and
Sclater, 1996].

available for downloading at

MSTnews (2000) Special volume dedicated to packaging and modular microsystems (No. 1/00).

Germany.

Further Information

A good introduction to MEMS-based microrobotics is presented in Microsystem Technology and Microrobotics (Fatikows and Rembold, Springer-Verlag, Berlin, 1997) and Mikroroboter und Mikromontage (in German); Fatikow, B.G. Teubner, Stuttgart-Leipzig, 2000). A good review on actuators suitable for
microrobots as well as different aspects of the definition of microrobots is found in the paper, “Review—Microactuators for Microrobots: A Critical Survey,” by Dario et al. and published in IOP Journal of Micromechanics and Microengineering (JMM), Vol. 2, pp. 141-157, 1992. Proceedings from the “Microrobotics and Micromanipulation” conference have been published annually by SPIE (the Inter national Society for Optical Engineering) since 1995. These proceedings document the latest development in the field of microrobotics each year.
29 Chapter 29 Microscale Vacuum Pumps

Dushman, S. (1949) Scientific Foundations of Vacuum
Technique, Wiley, New York.

Knudsen, M. (1910a) “Eine Revision der

Park, J.-Y., et al. (1997) “Fabrication of Electron-Beam...

Further Information

A concise up-to-date review of the mathematical background of internal rarefied gas flow is presented in the book, Rarefied Gas Dynamics, by Carlo Cercignani [Cercignani, 2000]. Vacuum terminology and important considerations for the description of vacuum system performance and pump types are presented in the excellent publication by J. M. Lafferty, Foundations of Vacuum Science and Technology [Lafferty, 1998]. A detailed presentation of work on rarefied transitional flows is documented by the proceedings of the biannual International Symposia on Rarefied Gas Dynamics (various publishers over the last 45 years, all listed in Cercignani, 2000). This reference source is generally only useful for those with the time and inclination for academic study of undigested research, although there are several review papers in each publication.

Chapter 31 Micro Heat Pipes and Micro Heat Spreaders

Peterson, G.P. (1988a) “Investigation of Miniature Heat...

32 Chapter 32 Microchannel Heat Sinks

Jiang, L., Wong, M., and Zohar, Y. (1999b) “Phase Change in

33 Chapter 33 Flow Control

Rossendorf, Dresden, Germany.

June, Tokyo, Japan.

“Transitional Boundary Layer Spot in a Fully Turbulent
Chapter 34 Reactive Control for Skin-Friction Reduction

Layer,” AIAA J. 27, p. 308.

Towards MEMS Autonomous Control of Free-Shear Flows

Broers, A.N. (1964) “Micromachining by Sputtering Through a Mask of Contamination Laid Down by an Electron Beam,” in

Cumming, D.R.S., Thoms, S., Beaumont, S.P., and Weaver,

