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Readership

In this book, we cover engineering and environmental aspects of the drainage of rainwater 
and wastewater from areas of human development. We present basic principles and engi-
neering best practice. The principles are essentially universal but, in this book, are mainly 
illustrated by UK practice. We have also included introductions to current developments and 
recent research.

The book is primarily intended as a text for students on undergraduate and postgraduate 
courses in Civil or Environmental Engineering and researchers in related �elds. We believe 
engineering aspects are treated with suf�cient rigour and thoroughness to be of value to 
practising engineers as well as students, though the book does not take the place of an engi-
neering manual.

The basic principles of drainage include wider environmental and societal issues, and 
these are of signi�cance not only to engineers, but also to all with a serious interest in the 
urban environment, such as students, researchers and practitioners in environmental sci-
ence, technology, policy and planning, geography and health studies. These wider issues are 
covered in particular parts of the book, deliberately written for a wide readership (indicated 
in the table overleaf). The material makes up a signi�cant portion of the book, and if these 
sections are read together, they should provide a coherent and substantial insight into a fas-
cinating and important environmental topic.

The book is divided into twenty-four chapters, with numerical examples throughout, and 
problems at the end of each chapter. Comprehensive reference lists that point the way to 
further, more detailed information, support the text. Our aim has been to produce a book 
that is both comprehensive and accessible, and to share our conviction with all our readers 
that urban drainage is a subject of extraordinary variety and interest.

Chapter Coverage of wider issues

1 All
2 2.5, 2.6, 2.7
11 11.1
12 12.1, 12.2, 12.3
16 16.1, 16.2
17 17.1, 17.2
18 18.1, 18.2
19 19.1, 19.2, 19.3
21 21.1, 21.2, 21.4, 21.5
23 All
24 All
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Notation

a constant
a50 effective surface area for in�ltration
A  catchment area
 cross-sectional area
 plan area
Ab area of base
AD  impermeable area from which runoff 

received
Agr sediment mobility parameter
Ai impervious area
Ao area of ori�ce
Ap gully pot cross-sectional area
API5  FSR 5-day antecedent precipitation 

index
ARF FSR rainfall areal reduction factor
b  width of weir
 sediment removal constant
 constant
bp width of Preissman slot
br sediment removal constant (runoff)
bs sediment removal constant (sweeping)
B �ow width
Bc outside diameter of pipe
Bd  downstream chamber width (high side 

weir) 
 width of trench at top of pipe
Bu  upstream chamber width (high side 

weir)
c  concentration 
 channel criterion 
 design number of appliances 
 wave speed
c0 dissolved oxygen concentration
c0s  saturation dissolved oxygen concentration
cv volumetric sediment concentration
cw weir height
C  runoff coef�cient 
 consequence of an occurrence
Cd coef�cient of discharge
Cv volumetric runoff coef�cient
CR dimensionless routing coef�cient

C1-C4 empirical coef�cients
d depth of �ow 
 depression storage
d’ sediment particle size
dc critical depth
dm hydraulic mean depth
dn normal depth
du upstream depth
d1 depth upstream of hydraulic jump
d2 depth downstream of hydraulic jump
d50  sediment particle size larger than 50% 

of all particles
D  internal pipe diameter
 rainfall duration
 wave diffusion coef�cient
 longitudinal dispersion coef�cient
D o ori�ce diameter
D gr sediment dimensionless grain size
D P gully pot diameter
DWF dry weather �ow
e  voids ratio
 sediment accumulation rate in gully
E  speci�c energy
 gully hydraulic capture ef�ciency
 industrial ef�uent �ow-rate
EBOD  Effective BOD 5

f soil in�ltration rate 
 potency factor
fc soil in�ltration capacity
fo soil initial in�ltration rate
fs number of sweeps per week
f t soil in�ltration rate at time t
Fm bedding factor
Fr Froude number
Fs speci�c force
Fse factor of safety
g acceleration due to gravity
G water consumption per person
G’  wastewater generated per person
h head
ha acceleration head
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hf head loss due to friction
hL total head loss
hlocal local head loss
hmax depth of water 
 gully pot trap depth
H  total head 
 diff erence in water level 
  height of water surface above weir 

crest 
 depth of cover to crown of pipe
Hc  height of culvert (internal vertical 

dimension)
H min  minimum difference in water level for 

non-drowned ori�ce
i rainfall intensity
ie effective rainfall intensity
in net rainfall intensity
I   in�ow rate 
 pipe in�ltration rate 
 rainfall depth
IF effective impervious area factor
IMKP   maximum rainfall density over 5 

minutes
j  time
J  housing density 
 criterion of satisfactory service 
 empirical coef�cient
k  constant
kb  effective roughness value of sediment 

dunes
kDU  dimensionless frequency factor
kL local head loss constant
ks pipe roughness
kT constant at T °C
kl depression storage constant
k2 Horton’s decay constant
k3  unit hydrograph exponential decay 

constant
k4 pollutant washoff constant
k5 amended pollutant washoff constant
k20 constant at 20°C
K  routing constant 
  constant in CSO design (Figure 12.14) 
 Rankine’s coef�cient 
 empirical coef�cient
KLA volumetric reaeration coef�cient
KPBOD BOD5 potency factor
KPn pollutant n potency factor
L length 
 load-rate 
 gully spacing
L E equivalent pipe length for local losses
L I initial gully spacing
L w weir length

m  Weibull’s event rank number
 reservoir out�ow exponent
M mass 
 empirical coef�cient
M s mass of pollutant on surface
MT-D   FSR rainfall depth of duration D with 

a return period T
n  number
 Mann ing’s roughness coef�cient 
 porosity
nDU number of discharge units
N  total number
NAPI  new antecedent precipitation index
O out�ow rate
p  pressure 
 probability of appliance discharge 
 BOD test sample dilution 
 projection ratio
P  wetted perimeter 
 perimeter of in�ltration device 
 population 
 power 
 probability 
 height of weir crest above channel
Pd  downstream weir height (high side 

weir)
PF peak factor
PF porosity factor
PI precipitation index
Ps surcharge pressure
Pu upstream weir height (high side weir)
PIMP FSR percentage imperviousness
PR WP percentage runoff
q �ow per unit width 
 appliance �ow-rate
Q �ow-rate
Q av average �ow-rate
Q b gully bypass �ow-rate
Q c gully capacity
Q d continuation �ow-rate (high side weir)
Q f pipe-full �ow-rate
Q max maximum �ow
Q min minimum �ow
Q o wastewater base�ow
Q p peak �ow-rate
Q r runoff �ow-rate
Q u in�ow (high side weir)
Q  gully approach �ow
QL  limiting gully approach �ow
r  probability that an event will equal or 
  exceed the design storm at least once in 

N years 
  number of appliances discharging 

simultaneously 
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  FSR ratio of 60 min to 2 day 5 year 
return period rainfall

rb  oxygen consumption rate in the 
bio�lm

rs  oxygen consumption rate in the 
sediment

rsd settlement de�ection ratio
rw  oxygen consumption rate in the bulk 

water
R  hydraulic radius 
 ratio of drained area to in�ltration area
 total risk
Re Reynolds number
Res urban drainage resilience index
RMED   FEH median of annual rainfall 

maxima
s ground slope
S  storage volume 
 soil moisture storage depth
Sc critical slope
Sd sediment dry density
Sf hydraulic gradient or friction slope
SG speci�c gravity
So pipe, or channel bed, slope
SAAR FSR standard average annual rainfall
SMD FSR soil moisture de�cit
SOIL  FSR soil index
SPR standard percentage runoff
t time 
 pipe wall thickness
t’  duration of appliance discharge
tc time of concentration
te time of entry
t f time of �ow
tF mean duration of �ooding
Tp time for hydrograph to reach peak value
tp time to peak
T  rainfall event return period 
 wastewater temperature 
 pump cycle (time between starts)
T’  mean interval between appliance use
Ta approach time
Tc time between gully pot cleans
u unit hydrograph ordinate
U*  shear velocity
UCWI  FSR urban catchment wetness index
v mean velocity
vc critical velocity
vf pipe-full �ow velocity
VF total �ood volume
vGS gross solid velocity
vL limiting velocity without deposition
vmax maximum �ow velocity
vmin minimum �ow velocity

vt  threshold velocity required to initiate 
movement

V volume
Vf volume of �rst �ush
VI in�ow volume
Vo  out�ow volume 
 base�ow volume in approach time
Vt basic treatment volume
w  channel bottom width 
 pollutant-speci�c exponent
W  width of drainage area 
 pollutant washoff rate
Wb sediment bed width
Wc soil load per unit length of pipe
Wcsu  concentrated surcharge load per unit 

length of pipe
We  effective sediment bed width 
 external load per unit length of pipe
Ws settling velocity
Wt  crushing strength per unit length of 

pipe
Ww liquid load per unit length of pipe
x longitudinal distance 
 return factor
X chemical compound
y depth
Y chemical element
Yd  downstream water depth (high side 

weir)
Yu upstream water depth (high side weir)
z potential head 
 side slope
Z re�ectivity
Z index of hydrogen sulphide generation
Z’  modi�ed Z formula index
Z1, Z 2  pollutant speci�c constant 
 FSR growth factor 
z  depth to centroid of �ow cross-section
�   channel side slope angle to horizontal 
 number of reservoirs 
 turbulence correction factor 
 empirical coef�cient
�  empirical coef�cient
�  empirical coef�cient
�   empirical coef�cient 
 gully pot sediment retention ef�ciency
��  gully pot cleaning ef�ciency
�  sediment washoff rate
�   sediment transport parameter 
 pump ef�ciency
�   transition coef�cient for particle 

Reynold’s number 
  angle subtended by water surface at  

centre of pipe 
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  Arrhenius temperature correction factor
�  vertical slope angle
�  sediment supply rate
�  friction factor
� b  friction factor corresponding to the sed-

iment bed
� c  friction factor corresponding to the 

pipe and sediment bed
� g  friction factor corresponding to the 

grain shear factor
�  coef�cient of friction
� ’ coef�cient of sliding friction

�  kinematic viscosity
�  density
� b critical bed shear stress
� o boundary shear stress
�   unit weight 
 temperature correction factor
�  surface sediment load
� u  ultimate (equilibrium) surface sediment 

load
�  counter
�   shape correction factor for part-full 

pipe

Units are not speci�cally included in this notation list, but have been included in the text.
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Abbreviations

AA Annual allowance
AMP Asset management planning
AOD  Above ordnance datum
ARF Areal reduction factor
ASCE American Society of Civil Engineers
ASR Aquifer storage recovery
ATU Al lylthiourea
AWWA  American Waterworks Association
BAU Business as usual
BeST Bene�ts of SuDS Tool
BHRA  British Hydrodynamics Research 

Association
BMP Best management practice
BOD Biochemical oxygen demand
BRE Building Research Establishment
BS British Standard
CA Cellular automata
CAD Computer aided drawing/design
CAPEX Capital expenditure
CARP  Comparative acceptable river pollu-

tion procedure
CBOD  Carbonaceous biochemical oxygen 

demand
CCD Charge coupling device
CCF Climate change factor
CCTV Closed-circuit television
CCW Consumer Council for Water
CDM   Construction (Design and 

Management) Regulations
CEC Council of European Communities
CEN  European Committee for 

Standardisation
CESMM4  Civil engineering standard method of 

measurement, fourth edition
CFD  Computational �uid dynamics
CIWEM   Chartered Institution of Water and 

Environmental Management
CIH  Cri tical input hyetograph
CIRIA   Construction Industry Research and 

Information Association
COD Chemical oxygen demand

CSO Combined sewer over�ow
DCLG  Department for Communities and 

Local Government
DD Dir ectional drilling
DDF Depth-duration-frequency
DDT  Dichlorodiphenyltrichloroethane
DEFRA  Department for environment, food 

and rural affairs
DEM  Digital elevation model
DG5 OFWAT performance indicator
DO Dissolved oxygen
DoE Department of the Environment
DOT  Department of Transport
DN  Nomi nal diameter
DSD Drop size distribution
DTM  Digital terrain model
DU Discharge unit
EA Environment Agency
EC Escherichia coli
ECOsan Ecological sanitation
EEA European Environment Agency
EEC European Economic Community
EFRA Exceedance �ood risk assessment
EGL Energy grade line
EMC Event mean concentration
EM-DAT  Emergency Event Database
EN European Standard
EPA  Environmental Protection Agency (US)
EPS Ensemble prediction systems
EQO Environmental quality objectives
EQS Environmental quality standards
EWPCA  European Water Pollution Control 

Association
EWS Early warning systems
EU European Union
FC Faecal coliform
FEH Flood Estimation Handbook
FEH99  Flood estimation handbook model 

(1999 version)
FEH13  Flood estimation handbook model 

(2013 version)
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FFC Flood Forecasting Centre
FFG Flash �ood guidance
FGS Flood guidance statement
FIO Faecal indicator organism
FOG Fats, oils and grease
FORGEX  FEH focused rainfall growth curve 

extension method
FS Faecal streptococci
FSR Flood Studies Report
FWR Foundation for Water Research
GHG Greenhouse gas
GIS Geographical information system
GL Ground level
GLUE  Generalised likelihood uncertainty 

estimation
GMT  Greenwich Mean Time
GRA Global resilience analysis
GRP Glass reinforced plastic
HF Hig h frequency
HDPE Hig h density polyethylene
HGL  Hyd raulic grade line
HMSO  Her M ajesty’s Stationery Of�ce
HR Hyd raulics Research
HRS Hyd raulics Research Station
HSE Health and Safety Executive
IAHR   International Association of Hydraulic 

Engineering and Research
IAWPRC  International Association on Water 

Pollution Research and Control
IAWQ   International Association on Water 

Quality
ICBM  Integrated component-based model
ICE Institution of Civil Engineers
ICP Inductively coupled plasma
IDF Intensity - duration - frequency
IE Intestinal enterococci
IL  Invert level
IPCC  Intergovernmental Panel on Climate 

Change
IoH  Institute of Hydrology
IUD Integrated urban drainage
IUDM  Integrated urban drainage model
IUWCM  Integrated urban water cycle model
IUWSM Integrated urban water system model
IWA  International Water Association
IWEM   Institution of Water and 

Environmental Management
LC50  Lethal concentration to 50% of sam-

ple organisms
LiDAR  Light detection and ranging
LOD  Lim it of deposition
LSTD Lim iting solids transport distance
MAC  Max imum allowable concentration

MAFF  Min istry of Agriculture, Fisheries 
and Food

MC  Mon te Carlo
MDG  Mil lennium development goal
MDPE Medium density polyethylene
MH  Manhole
MPC Mod el-based Predictive Control
MPN  Most probable number
NBOD   Nit rogenous biochemical oxygen 

demand
NERC  Natural Environment Research 

Council
NGO  Non-governmental organisation
NOAA   Nat ional Ocean and Atmospheric 

Administration
NOD  Nit rogenous oxygen demand
NRA  Nat ional Rivers Authority
NWC  Nat ional Water Council
NWP Numerical weather predictions
NWS Nat ional Weather Service (US)
Ofwat   Water Services Regulation 

Authority
OD Outside diameter
OGC Open geospatial consortium
Open MI   Open Modelling Interface and 

Environment
OPEX Operational expenditure
OPP Orangi pilot project
OS Ordnance Survey
PAH Polyaromatic hydrocarbons
PCB Polychlorinated biphenyl
PE Polyethylene
PFA Pulverised fuel ash
PID proportional-integral-derivative
PLC Programmable logic controller
POST  Parliamentary Of�ce of Science 

and Technology
PPE Personal protective equipment
PVC-U Unplasticised polyvinylchloride
PU Polyurethane
QUALSOC  Quality impacts of storm over-

�ows: consent procedure
RBF Radial basis functions
RCP  Representative concentration 

pathway
ReFH  Revitalised �ood hydrograph 

model
RRL Road Research Laboratory
RTC Real-time control
RTU Remote terminal units
RWH  Rainwater harvesting
SAR Synthetic aperture radar
SAAR Standard annual average rainfall
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SCADA  Supervisory Control and Data 
Acquisition

SCM Stormwater control measure
SDD Scottish Development Department
SDI Sustainable Development Indicators
SDG Sustainable Development Goal
SEPA  Scottish Environmental Protection 

Agency
SOD Sediment oxygen demand
SG Speci�c gravity
SM Sewerage Management Plan
SRM Sewerage Rehabilitation Manual
SRM  Sewerage risk management [note now 

two de�nitions of SRM]
SS Suspended solids
SRES Special report on emissions scenarios
STC Standing Technical Committee
STEPS Short-term ensemble prediction system
SUDS Sustainable (urban) drainage systems
SuDS Sustainable drainage system
SWMP Surface water management plan
SWMM  Stormwater management model
SWO Stormwater outfall
TBC Toxicity-based consents
TISCIT  Totally Integrated Sonar and CCTV 

Inspection Technique
TKN  Total Kjeldahl nitrogen
TNO   The Netherlands Organisation for 

applied scienti�c research
TOC Total organic carbon
TOTEX  Total expenditure
TRRL Transport & Road Research Laboratory
TWL  Top water level

TWL  Top water level
UCWI Urban catchment wetness index
UHF Ult ra high frequency
UK United Kingdom
UKCIP UK climate impacts programme
UKWIR   United Kingdom Water Industry 

Research
ULFT Ult ra low �ush toilet
UPM Urban pollution management
UWOT  Urban water optioneering tool
UWWTD   Urban Wastewater Treatment 

Directive
VHF Very high frequency
VIP Ventilated improved pit latrine
VSAT Very small aperture terminal
WAA  Water Authorities Association
WaSSP Wallingford Storm Sewer Package
WaPUG Wastewater Planning User Group
WC Water closet (toilet)
WEF Water Environment Federation (US)
WFD Water Framework Directive
WMO   Wor ld Meteorological Organisation 

(include?)
WMO  World Meteorological Organisation
WP Wallin gford Procedure
WPCF  Water Pollution Control Federation 

(US)
WSA Water Services Association
WSUD Water sensitive urban design
WTP Wastewater treatment plant
WO Welsh Of�ce
WRAP Winter rain acceptance potential
WRc Water Research Centre
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Chapter 1

Introduction

In this chapter, which forms an introduction and scene-setter for the whole book, we intro-
duce exactly what urban drainage is (Section 1.1) and its relationship with urbanisation 
(1.2). The next three sections (1.3 through 1.5) introduce in turn the particular need for this 
infrastructure system, the history of its implementation, and then some diverse geographi-
cal examples. The various types of urban drainage system are introduced in Section 1.6 and 
placed in the wider context of urban water systems in Section 1.7. The chapter concludes 
with a discussion of the changing context and drivers affecting the development of urban 
drainage (1.8).

1.1 WHAT IS URBAN DRAINAGE?

Drainage systems are needed in developed urban areas because of the interaction between 
human activity and the natural water cycle. This interaction has two main forms: the 
abstraction of water from the natural cycle to provide a water supply for human life, and 
the covering of land with impermeable surfaces that divert rainwater away from the local 
natural system of drainage. These two types of interaction give rise to two types of water 
that require drainage.

The �rst type, wastewater, is water that has been supplied to support life, maintain a stan-
dard of living, and satisfy the needs of industry. After use, if not drained properly, it could 
cause pollution and create health risks. Wastewater contains dissolved material, �ne solids, 
and larger solids, originating from WCs, from washing of various sorts, from industry, and 
from other water uses.

The second type of water requiring drainage, stormwater, is rainwater (or water resulting 
from any form of precipitation) that has fallen on a built-up area. If stormwater were not 
drained properly, it would cause inconvenience, damage, �ooding, and further health risks. 
It contains some pollutants, originating from rain, the air, or the catchment surface.

Urban drainage systems handle these two types of water with the aim of managing the 
impact on human life and the environment. Thus, urban drainage has two major interfaces: 
with the public and with the environment ( Figure 1.1). The public is usually on the transmit-
ting rather than receiving end of services from urban drainage (“�ush and forget”), and this 
may partly explain the lack of public awareness and appreciation of a vital urban service.

In many urban areas, drainage is based on a completely arti�cial system of sewers: pipes 
and structures that collect and dispose of this water. In contrast, isolated or low-income 
communities normally have no main drainage. Wastewater is treated locally (or not at all), 
and stormwater is drained naturally into the ground. These sorts of arrangements have 
generally existed when the extent of urbanisation has been limited. However, as discussed 
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later in the book, current practice encourages the use of more natural and non-pipe-based 
drainage arrangements wherever possible.

Urban drainage presents a classic set of modern environmental challenges: the need for 
cost-effective and socially acceptable technical improvements in existing systems, the need 
for assessment of the impact of those systems, and the need to search for sustainable and 
resilient solutions. As in all other areas of environmental concern, these challenges cannot 
be considered to be the responsibility of one profession alone. Policy-makers, engineers, 
planners, builders, environment specialists, together with all citizens, have a role. And these 
roles must be played in partnership. Engineers must understand the wider issues, while those 
who seek to in�uence policy must have some understanding of the technical problems. This 
is the reasoning behind the format of this book, as explained in the Preface. It is intended 
as a source of information for all those with a serious interest in the urban environment.

1.2 EFFECTS OF URBANISATION

Let us consider further the effects of human development on the passage of rainwater. Urban 
drainage replaces one part of the natural water cycle and, as with any arti�cial system that 
takes the place of a natural one, it is important that the full effects are understood.

In nature, when rainwater falls on a natural surface, some water returns to the atmosphere 
through evaporation, or transpiration by plants; some in�ltrates the surface and becomes 
groundwater; and some runs off the surface (Figure 1.2a). The relative proportions depend 
on the nature of the surface, and vary with time during the storm. (Surface runoff tends to 
increase as the ground becomes saturated.) Both groundwater and surface runoff are likely 
to �nd their way to a river, but surface runoff arrives much faster. The groundwater will 
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Figure 1.1  Interfaces with the public and the environment.
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Figure 1.2  Effect of urbanisation on rate of rainfall.
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become a contribution to the river’s general base�ow rather than being part of the increase 
in �ow due to any particular rainfall.

Development of an urban area, involving covering the ground with arti�cial surfaces, has 
a signi�cant effect on these processes. The arti�cial surfaces increase the amount of surface 
runoff in relation to in�ltration, and therefore increase the total volume of water reaching 
the river during or soon after the rain (Figure 1.2b). Surface runoff travels quicker over hard 
surfaces and through sewers than it does over natural surfaces and along natural streams. 
This means that the �ow will both arrive and die away faster; therefore, the peak �ow 
will be greater (see Figure 1.3). (In addition, reduced in�ltration means poorer recharge of 
groundwater reserves.)

This obviously increases the danger of sudden �ooding of the river. It also has strong 
implications for water quality. The rapid runoff of stormwater is likely to cause pollutants 
and sediments to be washed off the surface or scoured by the river. In an arti�cial environ-
ment, there are likely to be more pollutants on the catchment surface and in the air than 
there would be in a natural environment. Also, drainage systems in which there is mixing 
of wastewater and stormwater may allow pollutants from the wastewater to enter the river.

The existence of wastewater in signi�cant quantities is itself a consequence of urbanisa-
tion. Much of this water has not been made particularly “dirty” by its use. Just as it is a 
standard convenience in a developed country to turn on a tap to �ll a basin, it is a standard 
convenience to pull the plug to let the water “disappear.” Water is also used as the principal 
medium for disposal of bodily waste, and varying amounts of bathroom litter, via WCs.

In a developed system, much of the material that is added to the water while it is being 
turned into wastewater is removed at a wastewater treatment plant prior to its return to 
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Figure 1.3  Effect of urbanisation on peak rate of runoff.
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the urban water cycle. Nature itself would be capable of treating some types of material, 
bodily waste for example, but not in the quantities created by urbanisation. The propor-
tion of material that needs to be removed will depend in part on the capacity of the river to 
assimilate what remains.

So the general effects of urbanisation on drainage, or the effects of replacing natural 
drainage by urban drainage, are to produce higher and more sudden peaks in river �ow, to 
introduce pollutants, and to create the need for arti�cial wastewater treatment. While to 
some extent impersonating nature, urban drainage may also impose heavily upon it.

1.3 URBAN DRAINAGE PRIORITIES

1.3.1 Public health

In human terms, the most valuable bene�t of an effective urban drainage system is the main-
tenance of public health. This particular objective is often overlooked in modern practice 
and yet is of extreme importance, particularly in protection against the spread of diseases.

Despite the fact that some vague association between disease and water had been known 
for centuries, it was in 1855 that a precise link was demonstrated. This came about as a 
result of the classic studies of John Snow in London concerning the cholera epidemic sweep-
ing the city at the time. That diseases such as cholera are almost unknown in the industri-
alised world today is in major part due to the provision of centralised urban drainage (along 
with the provision of a microbiologically safe, potable supply of water).

Urban drainage has a number of major roles in maintaining public health and safety. 
Human excreta (particularly faeces) are the principal vector for the transmission of many 
communicable diseases. Urban drainage has a direct role in effectively removing excreta 
from the immediate vicinity of habitation. However, there are further potential problems 
in large river basins in which the downstream discharges of one settlement may become the 
upstream abstraction of another. In the United Kingdom (UK), some 30% of water supplies 
are so affected. This clearly indicates the vital importance of disinfection of water supplies 
as a public health measure.

Also, of particular importance in tropical countries, standing water after rainfall can 
be largely avoided by effective drainage. This reduces the mosquito habitat and hence the 
spread of malaria and other diseases.

While many of these problems have apparently been solved, it is essential that in industri-
alised countries, as we look for ever more innovative sanitation techniques, we do not lose 
ground in controlling serious diseases. Sadly, while we may know much about waterborne 
and water-related diseases, some rank among the largest killers in societies where poverty 
and malnutrition are widespread. Millions of people around the world still lack any hygienic 
and acceptable method of excreta disposal. The global issues associated with urban drain-
age in low-income communities are returned to in more detail in Chapter 23.

1.3.2 Minimising adverse impacts

It has already been stated that the basic function of urban drainage is to collect and convey 
wastewater and stormwater. In the UK and other developed countries, this has generally 
been taken to cover all wastewater, and all it contains (subject to legislation about hazard-
ous chemicals and industrial ef�uents). For stormwater, the aim has been to remove rainwa-
ter (for storms up to a particular severity) with the minimum of inconvenience to activities 
on the surface.
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Most people would see the ef�cient removal of stormwater as part of “progress.” In a 
developing country, they might imagine a heavy rainstorm slowing down the movement 
of people and goods in a sea of mud, whereas in a city in a developed country they would 
probably consider that it should take more than mere rainfall to stop transport systems and 
businesses from running smoothly. Nowadays, however, as with other aspects of the envi-
ronment, the nature of progress in relation to urban drainage, its consequences, desirability, 
and limits, are being closely and frequently reassessed.

The traditional aim in providing storm drainage has been to remove water from surfaces, 
especially roads, as quickly as possible. It is then disposed of, usually via a pipe system, to 
the nearest watercourse. This, as we have discovered in Section 1.2, can cause damage to the 
environment and increase the risk of �ooding elsewhere. So, drainage systems should pro-
tect people and property from stormwater, and should also limit the impact of the drained 
�ow on the receiving water. For this reason, and to achieve other environmental and social 
bene�ts, interest in more natural methods of disposing of stormwater is increasing. These 
include in�ltration, storage, and vegetated systems (discussed in full in Chapter 21), and the 
general intention is to attempt to reverse the trend illustrated in Figure 1.3: to decrease the 
peak �ow of runoff and increase the time it takes to reach the watercourse.

Another way in which attempts are being made to reverse the effects of urbanisation on 
drainage described in Section 1.2 is to reduce the non-biodegradable content in wastewater. 
Public campaigns have been mounted to persuade people not to treat the WC as a rubbish bin.

These tendencies towards reducing the dependence on “hard” engineering solutions to 
solve the problems created by urbanisation, and the philosophy that goes with them, are 
associated with the word sustainability and are further considered in Chapter 24.

The imperative of climate change affects urban drainage directly and indirectly. Clearly 
our approaches to urban drainage must adapt to climate change because of the predicted 
changes in rainfall patterns. We consider this in Chapter 4. Also, drainage engineers must 
play their part in minimising carbon emissions (see Chapter 14 for further discussion).

1.4 HISTORY

1.4.1 Ancient civilisations

There is plenty of archaeological evidence that ancient civilisations demonstrated no less 
skill in drainage provision than in other aspects of urban infrastructure. Here we look 
brie�y at some interesting examples of success in creating effective drainage systems, with-
out modern scienti�c knowledge.

The Minoans on Crete (between about 3000 and 1000 �� ) had some well-developed 
drainage systems, for stormwater and wastewater. At the palace of Knossos there is evidence 
of separate stone conduits for stormwater and for wastewater, and even an early type of 
�ushed toilet (De Feo et�al., 2014).

At a similar time, in parts of what is now Afghanistan, Pakistan, and north-west India, 
the civilisation of the Indus Valley excelled in urban planning and infrastructure, including 
provision of drainage. Typically, drainage channels were built into the centres of streets, and 
these carried both stormwater and wastewater. Wastewater did not �ow directly into the 
channel. From each house it �owed �rst via a pipe to a small pit where solids settled out; at 
a certain depth liquids over�owed into the channel. In some cases the channels were covered 
with stones or bricks (Burian and Edwards, 2002).

Many towns and cities in ancient Greece (around 500–100 �� ) had covered drainage chan-
nels built into the streets. An interesting detail of drainage in ancient Greece is that most 
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Greek theatres, being large, impermeable, outdoor spaces, had well-thought-out arrange-
ments for draining stormwater. Existing parts of the theatre’s structure, including stairs and 
corridors, led the runoff towards the lower part of the theatre, the circular “orchestra” or 
main performing space. A duct, semi-circular in plan, sometimes covered, at the edge of the 
orchestra, collected the runoff and carried it away to an outfall (De Feo et�al., 2014).

The Romans (particularly during the period from 500 ��  to 300 AD) are well known for 
their public health engineering feats, particularly the impressive aqueducts bringing water 
into their cities; but they also excelled in systems to take water away. And as well as removal 
of water, they placed importance on systems for reuse of rainwater. Urban drainage was 
achieved by sophisticated systems of open channels and buried sewers (“cloacae”). In Rome 
these provided drainage for a population of up to 1 million, including 900 public baths. 
The largest and most well-known of the cloacae is the Cloaca Maxima, which drained the 
lowest-lying parts of Rome, including the Forum, to the River Tiber. Part of its function was 
to provide land drainage for marshy areas, and in doing so reduced the presence of mosqui-
toes and therefore the risk of malaria. Construction of the Cloaca Maxima started in the 
sixth century �� , and it is still in use today.

1.4.2 Ancient to modern

After the Romans, urban drainage practices did not develop signi�cantly for many centu-
ries. In medieval Europe, drainage did not go far beyond the use of ditches that followed 
natural land drainage patterns. The English word sewer is derived from an Old French 
word, esseveur, meaning “to drain off,” related to the Latin ex- (out) and aqua (water). The 
Oxford English Dictionary gives the earliest meaning as “an arti�cial water-course for 
draining marshy land and carrying off surface runoff into a river or sea.”

It was not until the rapid growth of cities in the eighteenth and nineteenth centuries that 
things had to change. This was typically in response to serious problems with public health, 
leading to an urgent search for solutions and to developments in urban drainage practice. 
We consider the example of London.

1.4.3 London

In London, before the eighteenth century, sewers had the meaning given above and their 
alignment was loosely based on the natural network of streams and ditches that preceded 
them. In a quite unconnected arrangement, bodily waste was generally disposed of into 
cesspits (under the residence �oor), which were periodically emptied. Flush toilets (discharg-
ing to cesspits) became quite common around 1770–1780, but it remained illegal until 1815 
to connect the over�ow from cesspits to the sewers. This was a time of rapid population 
growth and, by 1817, when the population of London exceeded one million, the only solu-
tion to the problem of under-capacity was to allow cesspit over�ow to be connected to the 
sewers. Even then, the cesspits continued to be a serious health problem in poor areas, and, 
in 1847, 200,000 of them were eliminated completely by requiring houses to be connected 
directly to the sewers.

This moved the problem elsewhere – namely, the River Thames. By the 1850s, the river 
was �lthy and stinking (Box 1.1) and directly implicated in the spread of deadly cholera.

There were cholera epidemics in 1848–1849, 1854, and 1867, killing tens of thousands 
of Londoners. The Victorian sanitary reformer Edwin Chadwick passionately argued for a 
dual system of drainage, one for human waste and one for rainwater: “the rain to the river 
and the sewage to the soil.” He also argued for small-bore, inexpensive, self-cleansing sewer 
pipes in preference to the large brick-lined tunnels of the day. However, the complexity and 
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cost of engineering two separate systems prevented his ideas from being put into practice. 
The solution was eventually found in a plan by Joseph Bazalgette to construct a number of 
“combined” interceptor sewers on the north and the south of the river to carry the contents 
of the sewers to the east of London. The scheme, an engineering marvel (Figure 1.4), was 
mostly constructed by 1875, and much of it is still in use today (Halliday, 2001).

Again, though, the problem had simply been moved elsewhere. This time, it was the 
Thames estuary, which received huge discharges of wastewater. Storage was provided to 
allow release on the ebb tide only, but there was no treatment. Downstream of the out-
falls, the estuary and its banks were disgustingly polluted. By 1890, some separation of 
solids was carried out at works on the north and south banks, with the sludge dumped at 
sea. Biological treatment was introduced in the 1920s, and further improvements followed. 

Figure 1.4  Construction of Bazalgette’s sewers in London. (From The Illustrated London News, 27 August 
1859, reproduced with permission of The Illustrated London News Picture Library.)

BOX 1.1  MIC HAEL FARADAY’S ABRIDGED 
LETTER TO THE TIMES  OF 7 JULY, 1855

I traversed this day by steamboat the space between London and Hungerford Bridges [on the 
River Thames], between half-past one and two o’clock. The appearance and smell of water forced 
themselves on my attention. The whole of the river was an opaque pale brown �uid. The smell 
was very bad, and common to the whole of the water. The whole river was for the time a real 
sewer.

If there be suf�cient authority to remove a putrescent pond from the neighbourhood of a 
few simple dwellings, surely the river which �ows for so many miles through London ought not 
be allowed to become a fermenting sewer. If we neglect this subject, we cannot expect to do 
so with impunity; nor ought we to be surprised if, ere many years are over, a season give us sad 
proof of the folly of our carelessness.
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However, it was not until the 1970s that the quality of the Thames was such that salmon 
were commonplace and porpoises could be seen under Blackfriars Bridge.

1.5 GEOGRAPHY

The main factors that determine the extent and nature of urban drainage provision in a 
particular region are wealth; the climate and other natural characteristics; the intensity of 
urbanisation; and history, legislation, and politics. The greatest differences are the result of 
differences in wealth. Most of this book concentrates on urban drainage practices in coun-
tries that can afford fully engineered systems. The differences in countries that cannot will 
be apparent from Chapter 23 where we take a more global view.

Countries in which rainfall tends to be occasional and heavy have naturally adopted 
different practices from those in which it is frequent and generally light. For example, it is 
common in Australia to provide “minor” (underground, piped) systems to cope with low 
quantities of stormwater, together with “major” (overground) systems for larger quantities. 
We return to this concept in Chapter 11. Other natural characteristics have a signi�cant 
effect. Sewers in the Netherlands, for example, must often be laid in �at, low-lying areas 
and, therefore, must be designed to run frequently in a pressurised condition.

Intensity of urbanisation and history of development have a strong in�uence on the per-
centage of the population connected to a main sewer system. Table 1.1 gives percentages in 
a number of European countries.

Historical and political factors determine the age of the system (which is likely to have 
been constructed during a period of signi�cant development and industrialisation), charac-
teristics of operation such as whether or not the water/wastewater industry is publicly or 
privately �nanced, and strictness of statutory requirements for pollution control and the 
manner in which they are enforced. Countries in the European Union (EU) are subject to 
common requirements, described throughout this book.

Boxes 1.2 through 1.4 present a selection of examples to give an idea of the wide range of 
different urban drainage issues throughout the world.

1.6 TYPES OF SYSTEM

Piped systems consist of drains carrying �ow from individual properties, and sewers carry-
ing �ow from groups of properties or larger areas. The word sewerage refers to the whole 

Table 1.1  Percentage of population connected to main sewers in 
selected European countries, 2009 �gures

Country
Percentage (%) population connected to 

sewer

Greece 88
Netherlands 98
Norway 82
Poland 64
Romania 42
United Kingdom 96

Source: European Environment Agency 2013. Urban Waste Water Treatment. 
www.eea.europa.eu/data-and-maps/indicators/urban-waste-water-
treatment/urban-waste-water-treatment-assessment-3
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BOX 1.2  ORA NGI PILOT PROJECT, PAKISTAN

Orangi, a “katchi abadi,” or squatter community, in Karachi, has a population of over one mil-
lion. Until the 1980s there were no sewers: people had to empty bucket latrines into the narrow 
alleys. In a special self-help programme, quite different from government-sponsored improve-
ment schemes, the community built its own sewers, with no outside contractors. A small septic 
tank was placed between the toilet and the sewer to reduce the entry of solids into the pipe. 
The system had a simpli�ed design and was built up alley-by-alley, as the people made a commit-
ment to the improvements. This was a great success for community action and created major 
improvements in the immediate environment. In Orangi about 100,000 households developed 
their own sanitation systems, and in 11 other towns in Pakistan at least 40,000 households are 
known to have used the same approach (Hasan, 2006).

Growing from the work on sewers, the Orangi Pilot Project (OPP) has gone on to coordinate 
activity in a number of areas including housing, education, water supply, social development, 
and enterprise support (OPP-RTI, 2012). The OPP “has supported one of the world’s largest 
programmes for improved provision for sanitation in low income areas – in Orangi and in many 
other cities and small urban centres – as well as supporting improvements in other forms of 
infrastructure and in services” (UN-Habitat, 2006, p67). “The growing in�uence of OPP can be 
seen not only in neighbourhood solutions but in developing city-wide policies and priorities” 
(UN-Habitat, 2003, p237).

BOX 1.3  BELO HORIZONTE, BRAZIL

Belo Horizonte, capital of the state of Minas Gerais, was the �rst modern “planned” city in 
Brazil. Streets are set out on a broadly spaced grid with ample green spaces. There is a high stan-
dard of drinking water provision with connections to virtually all residents. But although sewer-
age systems reach 92% of the population, there are serious issues with pollution and �ooding of 
watercourses. This is partly because some of the main interceptor sewers needed to connect 
the sewerage system to the wastewater treatment plants have never been constructed. There 
has also been excessive development on �ood-prone areas, and there is a serious problem with 
illicit interconnections between the wastewater and stormwater systems.

In the 1970s and 1980s, during rapid population growth, the emphasis was on heavily engi-
neered river and drainage works. More recently water management processes have been 
democratised, with community participation in planning, in development of infrastructure, and 
even in budgeting. Starting in 2006, Belo Horizonte was also a demonstration city for the 
SWITCH project, an EU-funded initiative for the practical application of research on sustainable 
urban water management (Knauer et�al., 2011). The main areas of activity have been rainwater 
harvesting, providing in�ltration and detention facilities, and developing wetlands. Sites have 
been developed to demonstrate the effectiveness of the approaches and to engage stakeholders 
(including the local community, local of�cials, and engineers). Many of the sites have deliberately 
been located at schools to maximise the learning impact. Belo Horizonte is judged to be achiev-
ing genuine transition to integrated urban water management, which is bringing many bene�ts.
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BOX 1.4  WAS TEWATER HEAT RECOVERY IN VANCOUVER, CANADA

Olympic Village, Vancouver, is a mostly residential neighbourhood originally built as accommo-
dation for athletes at the 2010 winter games. Approximately 70% of its heat energy needs are 
satis�ed by heat recovered from wastewater. Heat that would otherwise be wasted is extracted 
from sewer �ows using heat exchangers and transferred to a hot water distribution system 
(Baber, 2010). There is no contact between the wastewater itself and the external hot water 
system (Figure 1.5).

“It’s very similar to geothermal energy,” Chris Baber, project manager for the city of 
Vancouver’s Neighbourhood Energy Utility, said of the sewer-heat system. Much as geothermal 
systems use heat exchangers to extract heat from the soil, the sewer-heat system uses exchang-
ers to extract the otherwise waste heat from the city’s sewers. The heat can then be used to 
warm up buildings and provide hot water.

At present the system provides hot water to buildings with a total �oor area of nearly 
400�000 m2. The City of Vancouver plans to increase this to over 700 000 m2 as part of its aim 
of achieving 100% renewable energy for Vancouver before 2050 (City of Vancouver, 2015).

Figure 1.5  Sewer-heat recovery system in Vancouver. (Courtesy of the City of Vancouver.)
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centralised infrastructure system: pipes, manholes, structures, pumping stations, and so 
on. There are basically two types of conventional sewerage: a combined system in which 
wastewater and stormwater �ow together in the same pipe, and a separate system in which 
wastewater and stormwater are kept in separate pipes.

Non-pipe systems (called SuDS or sustainable drainage systems in the UK) manage 
stormwater �ows closer to the source at which they are generated (decentralised), using 
the in�ltration and storage properties of semi-natural features. Some schemes for reduc-
ing dependence on main drainage also involve more localised collection and treatment of 
wastewater. However, movements in this direction, while of great signi�cance, are still only 
in their relatively early stages (as described in Chapter 24).

1.6.1 Combined systems

In the UK, most of the older sewerage is combined, and this accounts for about 70% by total 
length. Many other countries have a signi�cant proportion of combined sewers: in France 
and Germany, for example, the �gure is also around 70%, and in Denmark it is 45%.

A sewer network is a complex branching system, and Figure 1.6 presents a simpli�cation 
of a typical arrangement, showing a very small proportion of the branches. The �gure is 
a plan of a town located beside a natural water system of some sort: a river or estuary, for 
example. The combined sewers carry both wastewater and stormwater together in the same 
pipe, and the ultimate destination is the wastewater treatment plant (WTP), located, in this 
case, a short distance out of the town.

In dry weather, the system carries wastewater �ow. During rainfall, the �ow in the sewers 
increases as a result of the addition of stormwater. Even in quite light rainfall, the stormwa-
ter �ows will predominate, and in heavy falls the stormwater could be 50 or even 100 times 
the average wastewater �ow.

It is simply not economically feasible to provide capacity for this �ow along the full length 
of the sewers – which would, by implication, carry only a tiny proportion of the capacity 
most of the time. At the WTP, it would also be unfeasible to provide this capacity in the 
treatment processes. The solution was to provide structures in the sewer system that, during 
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Watercourse
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Figure 1.6  Combined system. (Schematic plan.)
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medium or heavy rainfall, divert �ows above a certain level out of the sewer system and 
into a natural watercourse. These structures are called combined sewer over�ows (CSOs). A 
typically located CSO is included in Figure 1.6.

The key drawback of combined sewer over�ows and by extension combined sewers in 
general is that large volumes of minimally treated wastewater are discharged during rainfall 
to the environment when they operate. To put it simply, CSOs cause pollution. Chapter 12 
considers the design and operation of combined sewers and CSOs in more detail.

1.6.2 Separate systems

Most sewerage systems constructed in the UK since 1945 are separate (about 30%, by total 
length). Figure 1.7 is a sketch plan of the same town as shown in Figure 1.6, but this time 
sewered using the separate system. Wastewater and stormwater are carried in separate 
pipes, usually laid side by side. Wastewater �ows vary during the day, but the pipes are 
designed to carry the maximum �ow all the way to the WTP. The stormwater is not mixed 
with wastewater and can be discharged to the watercourse at a convenient point. The �rst 
obvious advantage of the separate system is that CSOs, and the pollution associated with 
them, are avoided.

An obvious disadvantage might be cost. It is true that the pipework in separate systems is 
more expensive to construct, but constructing two pipes instead of one does not cost twice 
as much. The pipes are usually constructed together in the same excavation. The stormwater 
pipe (the larger of the two) may be about the same size as the equivalent combined sewer, 
and the wastewater pipe will be smaller. So the additional costs are due to a slightly wider 
excavation and an additional, relatively small pipe.

Separate systems do have drawbacks of their own. These relate to the fact that perfect 
separation is effectively impossible to achieve. First, it is dif�cult to ensure that polluted 
�ow is carried only in the wastewater pipe. Stormwater can be polluted for many reasons, 
including the washing-off of pollutants from the catchment surface. Second, it is very hard 
to ensure that no rainwater �nds its way into the wastewater pipe. These points are consid-
ered in more detail in Chapter 5.

Wastewater

Stormwater

WTP

Watercourse

Figure 1.7  Separate system. (Schematic plan.)
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1.6.3 Hybrid and partially separate systems

Some towns have hybrid systems, for example, “partially separate” systems, in which waste-
water is mixed with some stormwater, while the remaining stormwater is conveyed by a 
separate pipe. Many other towns have hybrid systems for more accidental reasons: for exam-
ple, because a new town drained by a separate system includes a small old part drained by 
a combined system, or because misconnections resulting from ignorance, malpractice, or 
malfunctioning dual manholes have caused unintended mixing of the two types of �ow.

1.6.4 Non-pipe systems

Non-pipe systems manage stormwater closer to its source of generation, typically on or near 
the ground surface, using a variety of devices (see Figure 1.8). This has clear advantages and 
disadvantages. Advantages include the ability to limit �ows downstream and hence contrib-
ute to �ood risk management, the ability to partially treat stormwater prior to discharge, 
and the opportunity to provide local amenity and biodiversity gains. The disadvantages 
involve the need for extra space, which is often at a premium in urban areas, and more 
practical matters concerning ownership and the maintenance of long-term performance. 
Stormwater management is considered in more detail in Chapter 21.

An initial comparison of the various systems is given in Table 1.2. We develop these ideas 
further throughout the remainder of this book.

1.7 URBAN WATER SYSTEM

In this section we look at how urban drainage �ts within the whole urban water system. 
Figure� 1.9 is a diagrammatic representation of the urban water system with a general 

Green roof bike shelter

Rills and channels

Green roof

Rain garden

Permeable paving

Naturalised swale

Detention basin

Permeable paving

Swale

Wetland
Tree pits

Figure 1.8  Non-pipe (SuDS) scheme. (Adapted from graphic on www.susdrain.org.)
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representation of the �ow paths and the interrelationship of the main elements. Solid arrows 
represent intentional �ows and dotted arrows unintentional ones. Heavy-bordered boxes indi-
cate “sources,” and dashed, heavy-bordered boxes show “sinks.” This �gure shows a separate 
sewer system, but a similar diagram can be produced for a combined system, and non-pipe 
systems can also be represented.

There are two main in�ows. The �rst is rainfall that falls onto catchment surfaces such 
as “impervious” roofs and paved areas and “pervious” vegetation and soil. It is at this point 
that the quality of the �ow is degraded as pollutants on the catchment surfaces are washed 
off. This is a highly variable input that can only be properly described in statistical terms (as 
considered in Chapter 4). The resulting runoff retains similar statistical properties to rain-
fall (Chapter 5). There is also the associated out�ow of evaporation, whereby some water 

Table 1.2 Combined sewers, separate sewers and SuDS compared

Combined sewers Separate sewers SuDSa

CSOs Required part of system Not required Not required, and SuDs 
limit stormwater 
entering sewers, so 
reducing CSO 
operation

WTPs Larger works inlets 
needed and stormwater 
storage required

Smaller works Smaller works

Pumping Higher if pumping of �ow 
to treatment is necessary

Stormwater rarely 
pumped

Rarely required

Sediment Deposition in pipes can 
lead to blockage and 
higher maintenance 
needs

More feasible to design 
for self-cleansing

Limits downstream 
discharge of sediment 
but requires on-site 
maintenance

Flooding (storm 
conditions)

If �ooding occurs, foul 
conditions will be caused

Any �ooding will be by 
stormwater only

Any �ooding will be by 
stormwater only

Pipework House drainage simple More house drains, with 
risk of misconnections 
and dif�cult to identify

Reduced pipework 
overall

Construction costs Lower than separate 
system

Some extra cost Similar to or lower 
than separate system

Maintenance costs Highest Lower than combined Different maintenance 
regime required

Space requirements Minimum underground 
space

Additional underground 
space due to two pipes

Higher above-ground 
space normally 
needed

Flow rate Attenuation in pipes and 
tanks

Attenuation in pipes 
and tanks

Attenuation at source

Flow volume No reduction No reduction Signi�cant reduction
Treatment of 
stormwater

No treatment Minimal treatment Signi�cant treatment

Long-term 
performance

Systems in operation for 
over a century

Systems in operation 
for many decades

Systems in operation 
for years

Amenity No contribution No contribution Signi�cant contribution 
if carefully designed

Biodiversity No contribution No contribution Signi�cant contribution 
if carefully designed

a A piped system for wastewater would also be required for this case.
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is removed from the system. Rainfall that does not run off will �nd its way into the ground 
and eventually the receiving water or in�ltrate into the drainage system. The component 
that runs off is conveyed by the roof and highway drainage as stormwater directly into the 
storm sewer. Discharges from the storm sewer to the environment are intermittent and are 
statistically related to the rainfall inputs.

The second in�ow is water supply. Water consumption is more regular than rainfall, 
although even here there is some variability (Chapter 3). The resulting wastewater is closely 
related in timing and magnitude to the water supply. The wastewater is conveyed by the 
building drainage directly to the foul sewer. An exception is where an industry treats its own 
waste separately and then discharges treated ef�uent directly to the receiving water. The 
quality of the water (originally potable) deteriorates during usage. The foul sewer conveys the 
wastewater to the WTP with patterns related to the water consumption. Unintentional �ow 
may leave the pipes via ex�ltration to the ground (Chapter 3). At other locations, ground-
water may act as a source and add water into the system via pipe in�ltration (Chapter�3). 
Misconnections can cause unintentional mixing of the wastewater with stormwater in either 
pipe (Chapter 5). The treatment plant, in turn, discharges to the receiving water.
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Figure 1.9  Urban drainage (separate sewers) and the urban water system.
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Non-pipe solutions are effectively included in the “SURFACES” components of Figure 
1.9. Alterations to paved and roof surfaces such as porous pavements, rain gardens, and 
rainwater harvesting will reduce runoff rates into downstream combined sewers, local 
receiving waters, or groundwater. This will, in effect, mitigate �ooding and reduce water-
course pollution. For separate systems, similar interventions can help eliminate the need for 
some storm sewers entirely.

1.8 CHANGING CONTEXT

Urban drainage has come a long way in a relatively short time. Figure 1.10 illustrates the 
changing context and drivers over the last 50 years or so. It is increasingly being realised 
that urban drainage sits within a wider context sometimes characterised as water cycle 
management, integrated urban water management, or sustainable water management (see 
Chapter 24 for more details). Furthermore, these areas also sit within wider urban planning 
and improvements. Such concepts recognise the “joined-up” nature of water systems and the 
fact that there is only one water cycle, however we might try and dissect it. In addition, it is 
increasingly being recognised that stormwater and wastewater are not nuisances or threats 
that should be immediately dealt with but are, in fact, resources that should be managed.

PROBLEMS

 1.1 Do you think urban drainage is taken for granted by most people in developed coun-
tries? Why? Is this a good or bad thing?

Flood 
mitigation

Public health 
(pathogens)

Flood 
mitigation

Flood 
mitigation
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mitigation
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mitigation
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Receiving water 
ecology

Receiving water 
quality

Receiving water 
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Receiving water 
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Receiving water 
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Microclimate & 
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1960s present

Figure 1.10  Changing context and drivers of urban drainage over time. (Adapted from Fletcher, T.D. et�al. 
2015. Urban Water Journal, 12(7), 525–542.)
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 1.2 How does urbanisation affect the natural water cycle?
 1.3 Some claim that urban drainage engineers, throughout history, have saved more 

lives than doctors and nurses. Can that be justi�ed, nationally and internationally?
 1.4 What have been the main in�uences on urban drainage engineers since the start of 

their profession?
 1.5 “Mixing of wastewater and stormwater (in combined sewer systems) is fundamen-

tally irrational. It is the consequence of historical accident, and remains a cause of 
signi�cant damage to the water environment.” Explain and discuss this statement.

 1.6 Explain the characteristics of piped and non-piped systems. Discuss the advantages 
and disadvantages of each.

 1.7 Describe how urban drainage systems interact with the overall urban water system. 
(Use diagrams.) How would you represent rainwater harvesting on the diagram?

 1.8 In what way does urban drainage form a part of integrated urban water management?
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