Novel Drug Delivery Systems for Phytoconstituents
Novel Drug Delivery Systems for Phytoconstituents

Edited by
Madhu Gupta
Durgesh Nandini Chauhan
Vikas Sharma
Nagendra Singh Chauhan
Contents
Preface ... vii
Editors ... ix
Contributors .. xi

Section I Drug Delivery Systems

 Vikas Sharma, Madhu Gupta, Durgesh Nandini Chauhan, Nagendra Singh Chauhan,
 Ramesh K. Goyal, and Kamal Shah

2. Nanocarriers Systems and Their Application for the Delivery of Different
 Phytoconstituents ... 9
 Ebru Altuntaş, Gülgün Yener, and Burcu Özkan

3. Liposome-Based Nanocarrier System for Phytoconstituents .. 45
 Ngoc Thuy Trang Le, Linh Phuong Tran Pham, Diem Huong Tran Nguyen, Ngoc Hoang Le,
 Tuong Vi Tran, Cuu Khoa Nguyen, and Dai Hai Nguyen

4. Phytosomes as Novel Carriers of Herbal Extracts ... 69
 Sevgi Güngör, Özlem Akbal-Dağistan, Evren Algın Yapar, Murat Kartal, and Yıldız Özsoy

5. Lipid-Based Nanoparticles: SLN, NLC, and MAD ... 81
 Rita Cortesi, Paolo Mariani, Markus Drechsler, and Elisabetta Esposito

Section II Application of Phytodrug Delivery

6. Phytosomes as Useful Drug Delivery Systems for Cosmeceutical Application 105
 Francesca Froiio, Agnese Gagliardi, Massimo Fresta, Donato Cosco, and Donatella Paolino

7. Novel UV Filtering Agents for Next-Generation Cosmetics: From Phytochemicals to
 Inorganic Nanomaterials .. 121
 Aditya Arya and Jayanti Jha

8. Development of Ethosome Formulation for Topical Therapeutic Applications 137
 Mansoureh Nazari Vishkaei, Mohamed B. Khadeer Ahamed, and Amin Malik Shah
 Abdul Majid

9. Application of Phytodrug Delivery in Anticancer Therapy .. 157
 Xiuhua Wang and Shirui Mao
Contents

Section III Phytomolecule Drug Delivery

10. Improved Silymarin Characteristics for Clinical Applications by Novel Drug Delivery Systems

Maryam Tabarzad, Fatemeh Ghorbani-Bidkorbeh, and Tahereh Hosseinabadi

11. Silymarin—A Scintillating Phytoantioxidant: Clinical Applications and Bio-delivery Problems

Aditya Arya, Subhojit Paul, and Anamika Gangwar

12. Innovative Delivery Systems for Andrographolide Delivery

A. C. Santos, J. A. D. Sequeira, F. Veiga, A. Figueiras, and A. J. Ribeiro

13. Polymeric Colloidal Carriers for Natural Polyphenolic Compounds

Maria Rosaria Lauro, Teresa Musumeci, Francesca Sansone, Giovanni Puglisi, and Rosario Pignatello

14. Drug Delivery Systems for the Controlled Delivery of Berberine

Rosario Pignatello, Simona Cianciolo, and Agata K. Giuffrida

15. Lipid-Based Nanoformulations from Plants for Sustainable Drug Delivery

Ilaria Clemente, Ilaria Colzi, and Sara Falsini

16. Nanotechnological-Based Drug Delivery System for Magical Molecule Curcumin: Delivery, Possibilities and Challenges

Madhu Gupta, Vikas Sharma, Durgesh Nandini Chauhan, Nagendra Singh Chauhan, Kamal Shah, and Ramesh K. Goyal

Index
Men and medicine are inseparable from time immemorial. The use of plants for therapeutic purposes by humans is an age-old practice. Herbal medicines are drugs that use plants, their parts, or products for prevention and treatment of diseases.

Herbal formulations are made from plants or their parts, whole extracts, or active concentrates, with or without excipients into safe, effective, and uniform composition medicinal products. The scientific method by which the plant bioactive concentrates are processed into safe medicinal products is called herbal formulation development. These phytoconstituents achieved from nature consist of full of wide biological therapeutic activities to treat various chronic diseases. However, various challenges exist to use them such as lesser aqueous solubility, poor permeation, and lack of targeting specificity.

Over the past two decades, significant advances have been made related to development of drug delivery systems for herbal products and extracts. Novel herbal drug delivery system opens new vistas for delivery of herbal drugs at the right place, at the right concentration, for the right period of time and also gives a scientific angle to verify the standardization of herbal drugs. The herbal drugs can be utilized in a better form with enhanced efficacy by incorporating them in modern dosage forms.

These modern approaches are termed novel drug delivery systems (NDDS), which contain polymeric nanocapsules, nanoparticles, nanoemulsions, liposomes, niosomes, phytosomes, microsphere, transferosomes, and ethosomes. All these novel systems are able to overcome the challenges associated with only herbal phytoconstituents. The drugs are delivered in a suitable formulation, keeping in view safety, efficacy, and acceptability among other factors, and the formulation is usually known as dosage form or drug delivery system.

Herbal drugs are becoming more popular in the modern world for their application to cure a variety of diseases with less toxic effects and better therapeutic effects. However, some limitations of herbal extracts/plant actives like instability in highly acidic pH, liver metabolism, etc. have led to drug levels below therapeutic concentration in the blood resulting in less or no therapeutic effect. Incorporation of novel drug delivery technology to herbal or plant actives minimizes the drug degradation or pre-systemic metabolism and serious side effects by accumulation of drugs to the non-targeted areas and improves the ease of administration in pediatric and geriatric patients.

For good bioavailability, natural products must have a good balance between hydrophilicity and lipophilicity. Many phytoconstituents like polyphenolics have good water solubility, but are, nevertheless, poorly absorbed either due to their multiple-ring large size molecules, which cannot be absorbed by simple diffusion, or due to their poor miscibility with oil and other lipids, severely limiting their ability to pass across the lipid-rich outer membranes of the enterocytes of the small intestine. Thus, the nano-sized novel drug delivery systems of herbal drugs have a potential future for enhancing the activity and overcoming problems associated with plant medicines.

A number of plant constituents like flavonoids, tannins, terpenoids, etc. show enhanced therapeutic effect at similar or less dose when incorporated into novel drug delivery vesicles as compared to conventional plant extracts. Hence, there is a great potential in development of novel drug delivery systems for valuable herbal drugs as it provides efficient and economical drug delivery.

In line with all these revolutionary progresses in the drug delivery field, *Novel Drug Delivery Systems for Phytoconstituents* is a compiled book analyzing the fundamental and more advanced aspects in the development of nanomedicines for herbal formulations. The selected book chapter contributions have been written by well-known experts in the field and comprise insights into the most promising moves toward superior drug-loaded nanoplatforms.

In this context, the first chapter is dedicated to current and future prospects of novel drug delivery systems, especially for phytoconstituents. These novel approaches of delivering herbal drugs would be able to enhance the efficacy and safety of phytoconstituents along with the increased stability of
the drug product. The second chapter is focused on various types of novel drug delivery systems for phytoconstituents, their advantages over conventional systems, and their potential applications in phytomedicine.

Chapters 3 through 5 discuss the delivery aspects, compositions, and applications with various strategies for liposomes and phytosomes including lipid-based nanoparticles: SLN, NLC, and MAD.

Chapters 6 and 7 focus on cosmeceutical applications of phytosomes as well as the role of major UV protecting agents from various plant sources and recent advancement in nano-medicine for improvement in context of UV protection, respectively. Chapter 8 exclusively emphasizes the development, optimization, characterization, and clinically therapeutic applications of ethosome formulations in treatment of melanoma and psoriasis. Chapter 9 focuses on the promising anticancer phytodrugs, including alkaloids, podophyllotoxin, combretastatins, and flavonoids, and the challenges in drug delivery. The promising micro/nano-carrier-based systems for better delivery of these anticancer phytodrugs were described.

Chapters 10 and 11 are exclusively dedicated to silymarin and discussing the role and application of diverse drug delivery systems studied so far. Liposomes, nanoparticles, micro-emulsions, and polymer-based systems are classified and the pros and cons of each system as well as benefits of nanoformulations for silymarin delivery that can be reconsidered with a much better and potentially beneficial role of phyto-antioxidant.

Chapter 12 extensively covers the innovative delivery systems for andrographolide delivery followed by a discussion on new delivery systems, their current producing methods, and their therapeutic role in improving the management of chronic illnesses. Chapter 13 is dedicated to the use of biocompatible natural and synthetic polymers able to formulate micro- and nanosystems with an improvement of the physicochemical, biological, and technological polyphenolic characteristics.

Chapters 14 and 15 focus on various delivery systems used for the controlled delivery of berberine and new delivery systems with enhanced affinity for the target while taking care of human safety and the environment respectively. Chapter 16 exclusively attracts the reader’s attention by describing the drug delivery for curcumin in special reference on novel delivery systems such as liposomes, nanoparticles, micelles, nanogels, nanoeмуulsions, nanocrystal suspensions, phytosome complexes, and inclusion complexes, which could open new avenues for enhancing the bioavailability and biological activity of curcumin.

This field of herbal drug delivery systems is dynamic and extensive. Probably it would need an encyclopedia to cover all the types of drug delivery systems. The aim of this book is to compile major drug delivery systems and offer a source of information for all those working in pharmaceutical academia as well as industry.

We also acknowledge our teachers Professor V.K. Dixit and Professor S.P Vyas for their valuable guidance. Special thanks to our families for their support and encouragement. We express our gratitude to the CRC Press publishing and Production team, specially Renu Upadhyay, Sikha Garg and Sundaramoorthy for their kind, proficient and encouraging guidance.

Last, but not least, we would like to express our sincere gratitude to all the authors who have taken time from their busy schedules to be part of this project and written wonderful chapters that added both the depth and value to this book. We welcome suggestions and criticisms for our readers.
Editors

Madhu Gupta has research experience pertaining to drug delivery to nanoformulations for magical molecule delivery, bioligands for targeting of bioactives and drug moiety, biopolymers, cancer nanomedicine, as well as topical delivery that is carried out at the Department of Pharmaceutical Sciences, Dr. H.S. Gour Central University, Sagar. Dr. Gupta has done her B. Pharm (Gold Medalist), M. Pharm, PhD in Pharmaceutics with experience of more than 12 years in academics, administrative functions, and research in areas of pharmaceutical nanotechnology and targeted drug delivery related to cancer, fungal infection, and psoriasis.

Presently she is working as an officer on special duty to Vice-Chancellor in Delhi Pharmaceutical Sciences and Research University. Along with teaching and research, she is Chief Operating Officer of World Class Skill Centre courses, PRO, website In-charge, IQAC in addition to much other managerial work.

She is pioneer scientist in the fields of nanotechnology and drug delivery. She has judiciously exploited bioligands for targeting of bioactives and drug moiety. She has over 40 research publications to her credit published in journals of high scientific impact and contributed 18 chapters in various renowned books and to several international and national books. Dr. Gupta has H-index of 12, i10-index of 14, and more than 600 citations. She has been awarded by various national and international conferences in the form of best oral and poster presentation award and other national and international awards. She has supervised 15 MPharm students. Dr. Gupta has availed several prestigious fellowships and awards SRF AICTE (NDF), JRF (AICTE), Travel grant awards (DST, ICMR, INSA, and DBT, MPCST), Prof. G.P. Nair Award (2004), and Prof. C.S. Chauhan Award (2004). She has her research work at BioAsia Innovation Award—2012, Grace India Awards, Youth Education Award 2018, and Young Researcher Award. She has successfully completed one project that is funded by MPCST Bhopal.

She is the nominee of CPCSEA and also an active member of various pharmaceutical bodies such as APTI and others. She is a reviewer of various journals of repute. She has attended various conferences/seminars/workshops/FDPs as organizer/coordinator/resource person/participant. Dr. Gupta and her team have been selected for funding of one start-up.

Durgesh Nandini Chauhan completed her BPharm degree in Pharmacy from the Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India, and her MPharma (pharmaceutical sciences) in pharmaceutics from Uttar Pradesh Technical University, currently Dr. A.P.J. Abdul Kalam Technical University, Lucknow, in 2006. Mrs. Durgesh Nandini Chauhan has 10 years of academic (teaching) experience from Institutes of India in pharmaceutical sciences. She taught such subjects as pharmaceutics, pharmacognosy, traditional concepts of medicinal plants, drug-delivery phytochemistry, cosmetic technology, pharmaceutical engineering, pharmaceutical packaging, quality assurance, dosage form designing, and anatomy and physiology.

She is member of the Association of Pharmaceutical Teachers of India, SILAE: *Società Italo-Latinoamericana di Etnomedicina* (The Scientific Network on Ethnomedicine, Italy), and so forth. Her
Editors

previous research work includes Penetration Enhancement Studies on Organogel of Oxytetracycline HCL. She also attended AICTE-sponsored Staff Development Program on “Effects of Teaching and Learning Skills in Pharmacy-Tool for Improvement of Young Pharmacy Teachers” and workshop on Analytical Instruments. She has written more than 10 publications in national and international journals, 13 book chapters, and authored 2 books: Optimization and Evaluation of an Organogel and Plant and Marine Based Phytochemicals for Human Health: Attributes, Potential, and Use. She is also active as a reviewer for several international scientific journals and active participant in national and international conferences such as Bhartiya Vigyan Sammelan and International Convention of Society of Pharmacognosy. Presently she is part of the Ishita Research Organization, Raipur, India, as a freelance writer and guiding pharmacy, Ayurvedic, and science students in their research projects.

Vikas Sharma is Associate Professor and Principal Shri Rawatpura Sarkar Institute of Pharmacy Datia, India. Dr. Sharma obtained his BPharm from Jiwaji University Gwalior, MPharm in Pharmacognosy, and PhD from Dr. H.S. Gour Central University Sagar, India. Dr. Sharma has more than 12 years of teaching and research experience. He has made significant contributions in the area of medicinal plant research. He has been working on evidence-based validation of medicinal plants and pharmacological screening of herbal drugs. Dr. Sharma works on marker and biomarker analysis of herbs for quality evaluation. He has also made significant contributions to development of chemical profiling of extracts and formulation through TLC, HPTLC, and LC-MS. He is supervising scientific research of the post-graduation and the doctoral level. He has written several researches and review paper in reputed journals and has contributed several chapters in books on pharmaceutical and indigenous drugs. He is a member of various professional and academic bodies like Association of Pharmaceutical Teachers of India (APTI) and the Society of Pharmacognosy.

Nagendra Singh Chauhan obtained his MPharm and PhD from Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar in 2006 and 2011. He has around 14 years of research experience. He is presently working as Senior Scientific Officer Grade-II and Government Analyst at Drugs Testing Laboratory avam Anusandhan Kendra, Raipur, Chhattisgarh, India. He has professional expertise in natural product isolation. He also has hands-on experience in various techniques like extraction, isolation, and purification of natural products from plant extracts using various chromatographic techniques for separation of compounds including column, LC-MS, chromatography, preparative TLC, and structure elucidation of natural products with the help of various techniques like UV, mass, IR, and NMR. He is well versed with the design, conduct, and data treatment of various in vivo experiments like aphrodisiac, antidiabetic, anti-stress, hair growth, BPH, hepatoprotective, and reproductive parameters. He has written more than 50 articles published in national and international journals and 20 book chapters. He has more than 1400 citations with h-index 21 and i10 index of 32 (Google scholar) and scopus h-index 15; 669 citations. He is a member of various professional and academic bodies like Society of Pharmacognosy, International Natural Product Sciences Taskforce (INPST) Society, SILAE: Società Italo-Latinoamericana di Etnomedicina (The Scientific Network on Ethnomedicine, Italy), Institutional Human ethical committee, and the Association of Pharmaceutical Teachers of India (APTI).
Contributors

Mohamed B. Khadeer Ahamed
EMAN Biodiscoveries Sdn. Bhd.
Universiti Sains Malaysia (USM)
Minden, Malaysia

Özlem Akbal-Dağistan
Department of Pharmaceutical Technology
Faculty of Pharmacy
Istanbul University
Istanbul, Turkey

Ebru Altuntaş
Department of Pharmaceutical Technology
Faculty of Pharmacy
Istanbul University
Istanbul, Turkey

Aditya Arya
Pathfinder Research and Training Foundation
New Delhi, India

Durgesh Nandini Chauhan
Department of Pharmaceutics
Columbia Institute of Pharmacy
Raipur, India

Nagendra Singh Chauhan
Department of Health and Family Welfare
Drugs Testing Laboratory Avam Anusandhan Kendra
Raipur, India

Simona Cianciolo
Department of Drug Sciences
University of Catania
Catania, Italy

Ilaria Clemente
Department of Chemistry “Ugo Schiff”
Università di Firenze
Firenze, Italy

Ilaria Colzi
Department of Biology
Università di Firenze
Firenze, Italy

Rita Cortesi
Department of Chemistry and Pharmaceutical Sciences
University of Ferrara
Ferrara, Italy

Donato Cosco
Department of Health Sciences
University “Magna Græcia” of Catanzaro
Catanzaro, Italy

Markus Drechsler
Bavarian Polymerinstitute “Electron and Optical Microscopy”
University of Bayreuth
Bayreuth, Germany

Elisabetta Esposito
Department of Chemistry and Pharmaceutical Sciences
University of Ferrara
Ferrara, Italy

Sara Falsini
Department of Biology
Università di Firenze
Firenze, Italy

A. Figueiras
Department of Pharmaceutical Technology
Faculty of Pharmacy
University of Coimbra
and
REQUIMTE/LAQV, Group of Pharmaceutical Technology
Faculty of Pharmacy
University of Coimbra
Coimbra, Portugal

Massimo Fresta
Department of Health Sciences
University “Magna Græcia” of Catanzaro
Catanzaro, Italy
Contributors

Francesca Froiio
Department of Experimental and Clinical Medicine
University “Magna Græcia” of Catanzaro
Catanzaro, Italy

Agnese Gagliardi
Department of Experimental and Clinical Medicine
University “Magna Græcia” of Catanzaro
Catanzaro, Italy

Anamika Gangwar
Defence Research and Development Organization
New Delhi, India

Fatemeh Ghorbani-Bidkorbeh
Department of Pharmaceutics
School of Pharmacy
Shahid Beheshti University of Medical Sciences
Tehran, Iran

Agata K. Giuffrida
Department of Drug Sciences
University of Catania
Catania, Italy

Ramesh K. Goyal
Department of Pharmacology
Delhi Pharmaceutical Sciences and Research University
New Delhi, India

Sevgi Güngör
Department of Pharmaceutical Technology
Faculty of Pharmacy
Istanbul University
Istanbul, Turkey

Madhu Gupta
Department of Pharmaceutics
Delhi Pharmaceutical Sciences and Research University
New Delhi, India

Tahereh Hosseinabadi
Department of Pharmacognosy and Biotechnology
School of Pharmacy
Shahid Beheshti University of Medical Sciences
Tehran, Iran

Jayanti Jha
Dr. R.P. Centre for Ophthalmic Sciences
All India Institute of Medical Sciences
New Delhi, India

Murat Kartal
Center of Education, Practice and Research in Phytotherapy
Bezmialem Vakif University
Istanbul, Turkey

Maria Rosaria Lauro
Department of Pharmacy
University of Salerno
Salerno, Italy

Ngoc Hoang Le
Institute of Applied Materials Science
Vietnam Academy of Science and Technology
and
Ton Duc Thang University
Ho Chi Minh City, Vietnam

Ngoc Thuy Trang Le
Graduate University of Science and Technology
Vietnam Academy of Science and Technology
Hanoi, Vietnam
and
Institute of Applied Materials Science
Vietnam Academy of Science and Technology
Ho Chi Minh City, Vietnam

Amin Malik Shah Abdul Majid
School of Pharmaceutical Sciences
Universiti Sains Malaysia
Gelugor, Malaysia
and
John Curtins School of Medical Research
Australian National University
Acton, Australian Capital Territory, Australia
and
Eman Research Ltd
Blacktown, New South Wales, Australia

Shirui Mao
School of Pharmacy
Shenyang Pharmaceutical University
Shenyang, China
Paolo Mariani
Department of Life and Environmental Sciences and CNISM
Polytechnic University of Marche
Università Politecnica delle Marche
Ancona, Italy

Teresa Musumeci
Department of Drug Sciences
University of Catania
Catania, Italy

Cuu Khoa Nguyen
Graduate University of Science and Technology
Vietnam Academy of Science and Technology
Hanoi, Vietnam

and
Institute of Applied Materials Science
Vietnam Academy of Science and Technology
Ho Chi Minh City, Vietnam

Dai Hai Nguyen
Graduate University of Science and Technology
Vietnam Academy of Science and Technology
Hanoi, Vietnam

and
Institute of Applied Materials Science
Vietnam Academy of Science and Technology
Ho Chi Minh City, Vietnam

Diem Huong Tran Nguyen
Institute of Applied Materials Science
Vietnam Academy of Science and Technology
Ho Chi Minh City, Vietnam

Burcu Özkan
Department of Bioengineering
Faculty of Chemistry and Metallurgical
Yıldız Technical University
Istanbul, Turkey

Yıldız Özsoy
Department of Pharmaceutical Technology
Faculty of Pharmacy
Istanbul University
Istanbul, Turkey

Donatella Paolino
Department of Experimental and Clinical Medicine
University “Magna Græcia” of Catanzaro
Catanzaro, Italy

Subhojit Paul
Defence Research and Development Organization
New Delhi, India

Linph Tran Pham
Department of Biomaterials and Bioengineering
Institute of Applied Materials Science
Vietnam Academy of Science and Technology
Ho Chi Minh City, Vietnam

Rosario Pignatello
Department of Drug Sciences
University of Catania
Catania, Italy

Giovanni Puglisi
Department of Drug Sciences
University of Catania
Catania, Italy

A. J. Ribeiro
Department of Pharmaceutical Technology
Faculty of Pharmacy
University of Coimbra
Coimbra, Portugal

and
I3S, Group Genetics of Cognitive Dysfunction
Institute for Molecular and Cell Biology
Porto, Portugal

Francesca Sansone
Department of Pharmacy
University of Salerno
Salerno, Italy
A. C. Santos
Department of Pharmaceutical Technology
Faculty of Pharmacy
University of Coimbra
and
REQUIMTE/LAQV, Group of Pharmaceutical Technology
Faculty of Pharmacy
University of Coimbra
Coimbra, Portugal

J. A. D. Sequeira
Department of Pharmaceutical Technology
Faculty of Pharmacy
University of Coimbra
Coimbra, Portugal

Kamal Shah
Institute of Pharmaceutical Research
GLA University
Mathura, India

Vikas Sharma
Department of Natural Product
Shri Rawatpura Sarkar Institute of Pharmacy
Datia, India

Maryam Tabarzad
Protein Technology Research Center
Shahid Beheshti University of Medical Sciences
Tehran, Iran

Tuong Vi Tran
Graduate University of Science and Technology
Vietnam Academy of Science and Technology
Hanoi, Vietnam

and

Institute of Applied Materials Science
Vietnam Academy of Science and Technology
Ho Chi Minh City, Vietnam

F. Veiga
Department of Pharmaceutical Technology
Faculty of Pharmacy
University of Coimbra
and
REQUIMTE/LAQV, Group of Pharmaceutical Technology
Faculty of Pharmacy
University of Coimbra
Coimbra, Portugal

Mansoureh Nazari Vishkaei
Department of Pharmacology
School of Pharmaceutical Sciences
Universiti Sains Malaysia
Minden, Malaysia

Xiuhua Wang
School of Pharmacy
Shenyang Pharmaceutical University
Shenyang, China

Evren Algan Yapar
Analysis and Control Laboratories Department
Ministry of Health of Turkey
Turkish Medicines and Medical Devices Agency
Ankara, Turkey

Gülgün Yener
Department of Pharmaceutical Technology
Faculty of Pharmacy
Istanbul University
Istanbul, Turkey
Section I

Drug Delivery Systems
1

Novel Drug Delivery Systems for Phytoconstituents: Current and Future Prospects

Vikas Sharma, Madhu Gupta, Durgesh Nandini Chauhan, Nagendra Singh Chauhan, Ramesh K. Goyal, and Kamal Shah

CONTENTS
1.1 Introduction .. 3
1.2 Requirements for Novel Drug Delivery Systems for Phytoconstituents... 4
1.3 Current Developments in the Delivery System of Herbals .. 5
1.4 Limitations of Novel Delivery Systems of Herbals ... 6
1.5 Conclusion .. 7
References .. 7

1.1 Introduction

Since ancient times, herbal plants have been utilized to treat distinctive ailments because of their availability, accessibility, inherited practice, economic feasibility, and perceived efficacy. Ayurveda is the oldest health care system and describes a large number of medicinal plants with their curative properties.

In recent times, developed nations are turning to the utilization of traditional medicinal systems that include the use of herbal drugs and remedies, and as indicated by the World Health Organization (WHO), relatively 65% of the total population has incorporated plants as therapeutic agents into their main modality of health care. Furthermore, 25% of all drugs prescribed today originate from plants. Plant-determined constituents make up a huge portion of natural product based pharmaceuticals. Out of numerous families of secondary metabolites, alkaloids have contributed to the biggest number of medications like atropine (anticholinergics), opium alkaloids (analgesics), quinine (hostile to malarial), galantamine (anticholinesterases), vinblastine/vincristine (anticancer), steroids, etc. giving them an equally essential role to human well-being. They range from Na+/K+ pump-inhibiting cardiac glycosides from Digitalis spp., antineoplastic paclitaxel, antimalarial artemisinin, anti-inflammatory triptolide are also important for disease fighting (Mukhopadhyay et al., 2012).

Developed nations are swinging to the utilization of customary traditional medicinal systems in light of the fact that the phyto-constituents are potent in various remedial applications as they indicate defensive mechanism of action against various chronic diseases including diabetes, neurodegenerative illness, cancer, and cardiovascular disease. Yet at the same time there are a few challenges in appropriate use of phytochemicals because of their low water solubility, low absorptivity, and bioavailability. So a procedure of designed phytochemicals has been created to improve solubility, cell penetrability, proteolytic stability, and half-life of plant biomolecules (Upadhya, 2014).

The research and development push is focused on development of new creative and innovative delivery systems for plant based drugs. Phytoconstituents obtained from plants generally possess an inherent drawback of limited oral bio availability and instability owing to their hydrophilic nature. These water solvent phytoconstituents (e.g., tannins, flavonoids) have a poor lipophilicity and large atomic size, which
prevents their entrance through the cell membrane (Kadu and Apte, 2011). To tackle this issue Indena created Phytosome innovation, which essentially conjugates a hydrophilic phytoconstituent to a phospholipid through hydrogen bonds. In Phytosome, phospholipid and phytoconstituent are available in a specific stoichiometric proportion of 2:1 or 1:2 (Bhattacharya, 2009).

Recently, there has been growing enthusiasm about the advancement of novel drug delivery systems for phytoconstituent. The novel carriers should ideally fulfill two essentials. Firstly, it ought to deliver the drug at a rate directed by the requirements of the body, over the period of treatment. Furthermore, it should channel the active substance of the herbal drug to the site of action. Conventional dosage forms including delayed release dosage forms can’t meet these requirements. In phyto-formulation research, developing dosage forms (strong lipid nanoparticles, polymeric nanoparticles and nanocapsules, liposomes, nanoemulsion, phytosomes, etc.) have various advantages for herbal drugs, including improvement of solubility and bioavailability, improvement of pharmacological action, protection from toxicity, improvement of stability, enhancing tissue macrophages distribution, sustained delivery, protection from physical and chemical degradation, and so on. Accordingly, the nano sized novel drug delivery systems of herbal drugs have a potential future for upgrading the action and defeating issues related with plant constituents (Ajazuddin and Saraf, 2010) (Figure 1.1).

1.2 Requirements for Novel Drug Delivery Systems for Phytoconstituents

Because of the complex nature of herbal extracts/constituents, high doses, poor bioavailability, and dose recurrence, their use in the modern medicinal system is limited. The three principle objectives of novel drug delivery systems (NDDS) is by giving sustained drug release, selected targeting to the site of action, and expanded patient compliance. NDDS lessen the frequency of dose as well as diminish peak and valley variances, which lead to improved bioavailability. The uses of NDDS in phytopharmaceuticals have been generally explored, and different marketed formulations of phytoconstituents are accessible in the worldwide market which individuals will consume and find beneficial (Singh, 2015). The proposed section will be useful in growing new delivery systems, which will overcome these issues related with traditional herbal extracts. This will investigate the capability and potential of herbal extracts with blending of modern industrial dimension, and ultimately outcomes in appropriate usage of herbal wealth of the state with helpful in enhancing socio-economic condition of the state.

The necessities of novel drug delivery systems of herbal medication over conventional herbal extracts include the following (Sharma, 2014):

- To increase the bio-availability of herbal extracts. They appear ready to convey high concentrations of medications to disease sites as a result of their unique size and high loading capacities.
- To deliver the medication in small particle sizes that improve the whole surface area of the drugs dispensing quicker dissolution in the blood.
- The effort appears to persist at the sites for the more extended periods. It shows an EPR (improved pervasion and maintenance) effect, i.e., improved permeation through the barriers due to the small size and retention because of poor lymphatic drainage such in as tumors.
- To assure localized delivery, i.e., to the liver and so on, by novel carrier systems. It exhibits passive targeting to the disease site of action without the addition of a specific ligand moiety.
- To reduce side effects.
- To make uniform dosage form and reduce doses of the drug formulation.
- To keep the degradation of herbal extract in the GIT.
- Effective chloroform, petroleum ether, acetone, and methanolic extracts are accessible, which may not be appropriate for delivery as such.
1.3 Current Developments in the Delivery System of Herbals

Novel drug delivery system (Table 1.1) is a novel way to deal with medication that is held to the constraints of conventional drug delivery systems. India has a vast knowledge base of Ayurveda whose potential is just being recognized in recent years. In any case, the formulation utilized for administering herbal drugs to the patient is conventional and outdated, bringing about decreased capability of the drug. In the event that the novel drug delivery technology is coupled in herbal drugs, it might help in expanding adequacy and decrease the side effects of different herbal compounds and herbs. This is the essential thought behind incorporating novel techniques for drug delivery in herbal medicines. Along these lines it is critical to incorporate novel drug delivery systems and Indian Ayurvedic medicines to fight progressively serious illnesses. For quite a while herbal medicines were not considered for improvement as novel formulations due to
Novel Drug Delivery Systems for Phytoconstituents

The absence of scientific justification and processing difficulty, for example, standardization, extraction, isolation, and identification of individual constituents in complex polyherbal systems. Notwithstanding, present day phytopharmaceutical research can resolve the scientific requirements (for example, determination of pharmacokinetics, accurate dose required, mechanism of action, site of action, etc.) of herbal medicines to be incorporated in novel drug delivery, for example, liposomes, solid lipid nanoparticles, microsphere, ethosomes, transferosomes, microbubbles, carbon nanotubes, hydrogel, nanoparticles, microemulsions, matrix systems, solid dispersions, and copolymer micelles (Devi et al., 2010).

1.4 Limitations of Novel Delivery Systems of Herbals

Limitations of NDDS include poor storage stability, poor encapsulation efficiency, lengthy production procedures, and when chemical cross-linking is involved, possible inactivation of herbal components. Better understanding of metabolic pathways is important to ensure the safety of nanocarriers in clinical applications (Liu and Feng, 2015). Complexity of conducting clinical research in phytoconstituents...
toxicity as well as safety evaluation in animals are observed (Devi et al., 2010). Clinical assessments required for the herb–drug interaction potential of phytoconstituents incorporating these novel formulations. Regulatory requirement required for phytoconstituents extract interaction with other medicine (Gurley, 2011). Future study required on explanation of metabolic pathways (yielding potentially new active compounds), and the evaluation of elimination routes and their kinetics (Bhattaram et al., 2002).

1.5 Conclusion

The modern prospect of plant constituent delivery development is extremely encouraging. There is incredible capability of herbal delivery to be a safe, effective, convenient, and economic treatment. In any case, herbal formulation development studies are usually exploratory to date and need active expansion. It is widely expected that utilization of herbal drug delivery will make novel therapeutics, changing the prospect of phyto-pharmaceutical industries. Development of phyto-constituent delivery can help in achieving consistent quality, bioavailability, and therapeutic effects of herbal drugs and products. Different phyto-constituent delivery systems are being researched, either in development or in clinical stages, and there are numerous areas of interest where there will be effective and safer targeted therapeutics for a numerous of clinical applications. With the improvement in materials and equipment, an ever increasing number of herbal drugs will undoubtedly be formulated in the future. Effectiveness, stability studies, and shelf life of herbal drugs can be extensively improved by formulation development. It will be evolving very soon for the benefit of humanity at large.
References

Touitou, E. 1996. Compositions for applying active substances to or through the skin. Google Patents.

FDA/CFSAN. 2002. Is it a Cosmetic, a Drug or Both (or is it Soap?!). U.S. Food and Drug Administration, Centre for Food Safety & Applied Nutrition, Office of cosmetics and colors fact sheet.

Cremolini, C., Loupakis, F. et al. 2015. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: Updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncology, 16(13): 1306–1315.

Cremolini, C., Loupakis, F. et al. 2015. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: Updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncology, 16(13): 1306–1315.

Cremolini, C., Loupakis, F. et al. 2015. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: Updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncology, 16(13): 1306–1315.

Pade, D.S. 2007. *Use of in Silico Predictors, Solubility and Permeability to Select Bioavailability and Bioequivalence Markers in Herbal Supplements*. The University of Texas, Austin, TX.

Singh T., Prasad R. et al. 2016. Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. Am J Cancer Res. 6(6): 1287–1301.

