PLANNING AND DESIGN FOR SUSTAINABLE URBAN MOBILITY
GLOBAL REPORT ON HUMAN SETTLEMENTS 2013
UN-HABITAT
FOR A BETTER URBAN FUTURE
PLANNING AND DESIGN FOR SUSTAINABLE URBAN MOBILITY
This page intentionally left blank
For more than half a century, most countries have experienced rapid urban growth and increased use of motor vehicles. This has led to urban sprawl and even higher demand for motorized travel with a range of environmental, social and economic consequences.

Urban transport is a significant source of greenhouse gas emissions and a cause of ill-health due to air and noise pollution. The traffic congestion created by unsustainable transportation systems is responsible for significant economic and productivity costs for commuters and goods transporters.

These challenges are most pronounced in developing country cities. It is here that approximately 90 per cent of global population growth will occur in the coming decades. These cities are already struggling to meet increasing demand for investment in transportation. That is why my Five-year Action Agenda, launched in January 2012, highlights urban transport – with a focus on pollution and congestion – as a core area for advancing sustainable development.

This year’s edition of the UN-Habitat Global Report on Human Settlements provides guidance on developing sustainable urban transportation systems. The report outlines trends and conditions and reviews a range of responses to urban transport challenges worldwide. The report also analyses the relationship between urban form and mobility, and calls for a future with more compact and efficient cities. It highlights the role of urban planning in developing sustainable cities where non-motorized travel and public transport are the preferred modes of transport.

I commend this report to all involved in developing sustainable cities and urban transport systems. Success in this area is essential for creating more equitable, healthy and productive urban living environments that benefit both people and the planet.

Ban Ki-moon
Secretary-General
United Nations
This page intentionally left blank
Urban transport systems worldwide are faced by a multitude of challenges. In most cities, the economic dimensions of such challenges tend to receive most attention. The traffic gridlocks experienced on city roads and highways have been the basis for the development of most urban transportation strategies and policies. The solution prescribed in most of these has been to build more infrastructures for cars, with a limited number of cities improving public transport systems in a sustainable manner.

However, the transportation sector is also responsible for a number of other challenges that do not necessarily get solved by the construction of new infrastructure. It is, for example, responsible for a large proportion of the greenhouse gas emissions that lead to climate change. Furthermore, road traffic accidents are among the main causes of premature deaths in most countries and cities. Likewise, the health effects of noise and air pollution caused by motorized vehicles are a major cause for concern. In some cities, the physical separation of residential areas from places of employment, markets, schools and health services force many urban residents to spend increasing amounts of time, and as much as a third (and sometimes even more) of their income, on public transport.

While those among the urban populace that have access to a private car, or can afford to make regular use of public transport, see traffic jams and congestion as a major concern; this is a marginal issue for people living in ‘transport poverty’. Their only affordable option for urban transportation is their own feet. Persons with low household incomes – but also others, including many women, and vulnerable groups such as the young, the elderly, the disabled, and ethnic and other minorities – form the bulk of those characterized as living in transport poverty.

Thus, when the Secretary-General of the United Nations launched his ‘5-year action agenda’ in January 2012, he identified sustainable transportation as one of the major building blocks of sustainable development. In particular, he stressed the need for urgent action to develop more sustainable urban ‘transport systems that can address rising congestion and pollution’. He noted that action was required by a range of actors, including ‘aviation, marine, ferry, rail, road and urban public transport providers, along with Governments and investors’.

Planning and Design for Sustainable Urban Mobility: Global Report on Human Settlements 2013 seeks to highlight the transportation challenges experienced in cities all over the world, and identifies examples of good practice from specific cities of how to address such challenges. The report also provides recommendations on how national, provincial and local governments and other stakeholders can develop more sustainable urban futures through improved planning and design of urban transport systems.

The report argues that the development of sustainable urban transport systems requires a conceptual leap. The purpose of ‘transportation’ and ‘mobility’ is to gain access to destinations, activities, services and goods. Thus, access is the ultimate objective of all transportation (save a small portion of recreational mobility). The construction of more roads for low-income cities and countries is paramount to create the conditions to design effective transport solutions. However, urban planning and design for these cities and others in the medium and high income brackets is crucial to reduce distances and increase accessibility to enhancing sustainable urban transport solutions. If city residents can achieve access without having to travel at all (for instance through telecommuting), through more efficient travel (online shopping or car-sharing), or by travelling shorter distances, this will contribute to reducing some of the challenges currently posed by urban transport. Thus, urban planning and design should focus on how to bring people and places together, by creating cities that focus on accessibility, rather than simply increasing the length of urban transport infrastructure or increasing the movement of people or goods.

The issue of urban form and functionality of the city is therefore a major focus of this report. Not only should urban planning focus on increased population densities; cities should also encourage the development of mixed-use areas. This implies a shift away from strict zoning regulations that have led to a physical separation of activities and functions, and thus an increased need for travel. Instead, cities should be built around the concept of ‘streets’,
which can serve as the focus for building liveable communities. Cities should therefore encourage mixed land-use, both in terms of functions (i.e. residential, commercial, manufacturing, service functions and recreational) and in terms of social composition (i.e. with neighbourhoods containing a mixture of different income and social groups).

Such developments also have the potential to make better use of existing transport infrastructure. Most of today’s cities have been built as ‘zoned’ cities, which tends to make rather inefficient use of their infrastructure; as ‘everyone’ is travelling in the same direction at the same time. In such cities, each morning is characterized by (often severe) traffic jams on roads and congestion on public transport services leading from residential areas to places of work. At the same time, however, the roads, buses and trains going in the opposite direction are empty. In the afternoon the situation is the opposite. Thus, the infrastructure in such cities is operating at half capacity only, despite congestion. In contrast, in cities characterized by ‘mixed land-use’ (such as Stockholm, Sweden), traffic flows are multidirectional – thus making more efficient use of the infrastructure – as residential areas and places of work are more evenly distributed across the urban landscape.

Furthermore, the report argues with strong empirical information that increased sustainability of urban passenger transport systems can be achieved through modal shifts – by increasing the modal share of public transport and non-motorized transport modes (walking and bicycling), and by reducing private motorized transport. Again, an enhanced focus on urban planning and design is required, to ensure that cities are built to encourage environmentally sustainable transportation modes. While encouraging a shift to non-motorized transport modes, however, the report acknowledges that such modes are best suited for local travel and that motorized transport (in particular public transport) has an important role while travelling longer distances. However, in many (if not most) countries there is a considerable stigma against public transport. The private car is often seen as the most desirable travel option. There is thus a need to enhance the acceptability of public transport systems. More needs to be done to increase reliability and efficiency of public transport services and to make these services more secure and safe.

The report also notes that most trips involve a combination of several modes of transport. Thus, modal integration is stressed as a major component of any urban mobility strategy. For example, the construction of a high-capacity public transport system needs to be integrated with other forms of public transport, as well as with other modes. Such integration with various ‘feeder services’ is crucial to ensure that metros, light rail and bus rapid transit (BRT) systems can fully utilize their potential as a ‘high-capacity’ public transport modes. It is therefore essential that planners take into account how users (or goods) travel the ‘last (or first) mile’ of any trip. By way of an example, it is not much use to live ‘within walking distance’ of a metro (or BRT) station, if this implies crossing a busy eight-lane highway without a pedestrian crossing, or if one is unable to walk to the station (due to disability, or lack of personal security). Likewise, it is unlikely that urban residents will make use of metros (and BRTs), if the nearest station is located beyond walking distance, and there is no public transport ‘feeder’ services providing access to these stations or no secure parking options for private vehicles near the stations.

Yet, it is important to note that considerable investments are still required in urban transportation infrastructure in most cities, and particularly in developing countries. City authorities should ensure that such investments are made where they are most needed. They should also make sure that they are commensurate with their financial, institutional and technical capacities. In many cities of developing countries, large proportions of the population cannot afford to pay the fare required to use public transport, or to buy a bicycle. Others may find these modes of transport affordable, but choose not to use them as they find the safety and security of public transport to be inadequate (due to sexual harassment or other forms of criminal behaviour), and/or the roads to be unsafe for bicycle use or walking (due to lack of appropriate infrastructure). Investment in infrastructure for non-motorized transport or affordable (and acceptable) public transport systems is a more equitable (and sustainable) use of scarce funds.

However, many cities and metropolitan areas, all around the world, experience considerable institutional, regulatory and governance problems when trying to address urban mobility challenges. In many cases national, regional and local institutions may be missing or their responsibilities may be overlapping, and even in conflict with each other. To address such concerns, the report notes that it is essential that all stakeholders in urban transport – including all levels of government, transport providers and operators, the private sector, and civil society (including transport users) – are engaged in the governance and development of urban mobility systems.

To ensure effective integration of transportation and urban development policies, it is essential that urban transportation and land-use policies are fully integrated. Such integration is required at all geographic scales. At the micro level, much is to be gained from advancing the model of ‘complete streets’; an acknowledgement that streets serve numerous purposes, not just moving cars and trucks. At the macro level, there is considerable scope for cross-subsidies between different parts of the urban mobility system, including through value-capture mechanisms which ensure that increased land and property values (generated by the development of high-capacity public transport systems) benefits the city at large, and the wider metropolitan region, rather than private sector actors alone.

Planning and Design for Sustainable Urban Mobility: Global Report on Human Settlements 2013 is released at a time when the challenges of urban transportation demands are greater than ever. This is particularly
the case in developing countries where populations (and the number of motorized vehicles) are growing at rates where urban infrastructure investments are unable to keep pace. I believe this report will serve as a starting point to guide local authorities and other stakeholders to address the challenges faced by urban transportation systems all over the world. The report provides some thought-provoking insights on how to build the cities of the future in such a manner that the ultimate goal of urban transport – namely enhanced access to destinations, activities, services and goods – takes precedence over ever-increasing calls for increased urban mobility.

Dr Joan Clos
Under-Secretary-General and Executive Director
United Nations Human Settlements Programme (UN-Habitat)
ACKNOWLEDGEMENTS

MANAGEMENT TEAM
Eduardo López Moreno (Branch Coordinator); Mohamed Halfani (Unit Leader); Inge Jensen (project coordinator).

AUTHORS: UN-HABITAT CORE TEAM
Anne Amin; Ben Arimah; Kevin John Barrett; Mohamed Halfani; Inge Jensen; Michael K. Kinyanjui; Udo Mbeche; Eduardo López Moreno; Raymond Otieno Otieno; Edlam Abera Yemeru.

AUTHORS: EXTERNAL CONSULTANTS
Robert Cervero, Department of City and Regional Planning University of California Berkeley, California, US (Chapters 1, 5 and 10); Holger Dalkmann, Robin King, Srikanth Shastri and Dario Hidalgo, EMBARQ, the WRI Center for Sustainable Transport, Washington, DC, US, and Juan Carlos Muñoz, The Across Latitudes and Cultures – Bus Rapid Transit Centre of Excellence (ALC-BRT) Centre of Excellence, Santiago, Chile (Chapter 3); Jean-Paul Rodrigue, Department of Global Studies and Geography, Hofstra University, New York, US (Chapter 4); David Banister, Transport Studies Unit, School of Geography and the Environment, University of Oxford, Oxford, UK (Chapter 7); Elliott Sclar, Center for Sustainable Urban Development, Columbia University, New York, US (Chapter 8); Harry T. Dimitriou, OMEGA Centre, Bartlett School of Planning, University College London, London, UK (Chapter 9).

AUTHORS/CONTRIBUTORS: UN-HABITAT INTERNS
Susanna Ahola; Helen Conlon; Lauren Fiemister; Eva Kabaru; Patricia Karamuta Baariu; Sarah Karge; Crispus Kihara; Eulenda Mkwanazi; Michelle Oren; Oyan Solana; Isabel Wetzel.

PREPARATION OF STATISTICAL ANNEX (UN-HABITAT)
Wandia Riunga; Inge Jensen; Julius Majale; Ann Kibet; Harith Gabow; Mercy Karori.

TECHNICAL SUPPORT TEAM (UN-HABITAT)
Nelly Kan’gethe; Naomi Mutiso-Kyalo.

ADVOCACY, OUTREACH AND COMMUNICATION TEAM (UN-HABITAT)
Victor Mgendi; Ana. B. Moreno; Austin Ogola.
INTERNATIONAL ADVISERS (HS-NET ADVISORY BOARD MEMBERS)¹

Samuel Babatunde Agbola, Department of Urban and Regional Planning, University of Ibadan, Ibadan, Nigeria; Louis Albrechts, Department of Architecture, Urbanism and Planning, KULeuven, Leuven, Belgium; Paul A. Barter, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore; Peter Drooge, Institute of Architecture and Planning, University of Liechtenstein, Vaduz, Liechtenstein; Ingemar Elander, Centre for Urban and Regional Research, Örebro University, Örebro, Sweden; Xavier Godard, Independent Consultant, Aix en Provence, France; Ali Soliman Huzayyin, Faculty of Engineering, Cairo University, Cairo, Egypt; Alfonso Iraicheta, Programme of Urban and Environmental Studies, El Colégio Mexiquense, Toluca, Mexico; A.K. Jain, Unified Traffic and Transport Infrastructure (Planning and Engineering) Centre and School of Planning and Architecture, New Delhi, India; Won Bae Kim, Department of Urban Planning and Real Estate, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea; Darshini Mahadevia, Faculty of Planning and Public Policy, CEPT University, Ahmedabad, India; David Maunder, Independent Consultant, London, UK; Asteria Leon Mlombo, Dar Rapid Transit Agency, Dar es Salaam, Tanzania; Aloysius Mosha, Department of Architecture and Planning, University of Botswana, Gaborone, Botswana; Mee Kam Ng, Centre for Urban Planning and Environmental Management, University of Hong Kong, Hong Kong, China; Delke Peters, Sol Price School of Public Policy, University of Southern California, Los Angeles, US and Center for Metropolitan Studies, Technical University Berlin, Germany; Debra Roberts, eThekwini Municipality, Durban, South Africa; Pamela Robinson, School of Urban and Regional Planning, Ryerson University, Toronto, Canada; Francesc Robusté, Center for Innovation in Transport CENIT and Technical University of Catalonia, BarcelonaTech, Spain; Elliott Sclar, Centre for Sustainable Urban Development, Columbia University, New York, US; Graham Tipple, School of Architecture, Planning and Landscape, Newcastle University, Newcastle, UK; Iván Tosics, Metropolitan Research Institute (Városkutatás Kft), Budapest, Hungary; Eduardo Alcantara de Vasconcellos, Instituto Movimento, São Paulo, Brazil; Darshini Mahadevia, Faculty of Planning and Public Policy, CEPT University, Ahmedabad, India; David Maunder, Independent Consultant, London, UK; Asteria Leon Mlombo, Dar Rapid Transit Agency, Dar es Salaam, Tanzania; Aloysius Mosha, Department of Architecture and Planning, University of Botswana, Gaborone, Botswana; Mee Kam Ng, Centre for Urban Planning and Environmental Management, University of Hong Kong, Hong Kong, China; Delke Peters, Sol Price School of Public Policy, University of Southern California, Los Angeles, US and Center for Metropolitan Studies, Technical University Berlin, Germany; Debra Roberts, eThekwini Municipality, Durban, South Africa; Pamela Robinson, School of Urban and Regional Planning, Ryerson University, Toronto, Canada; Francesc Robusté, Center for Innovation in Transport CENIT and Technical University of Catalonia, BarcelonaTech, Spain; Elliott Sclar, Centre for Sustainable Urban Development, Columbia University, New York, US; Graham Tipple, School of Architecture, Planning and Landscape, Newcastle University, Newcastle, UK; Ivan Tosics, Metropolitan Research Institute (Városkutatás Kft), Budapest, Hungary; Eduardo Alcantara de Vasconcellos, Instituto Movimento, São Paulo, Brazil; Dawn Chui, Laurent Turner, International Association for Public Transport (IUTP), Brussels, Belgium; Konrad Otto-Zimmerman, International Institute for Transportation and Development, Ahmedabad, India; Aimee Gauthier, Walter Hook, Michael Kodransky and Stephanie Lotshaw, International Institute for Transportation and Development, New York, US; Paul Barter, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore; Greg McGill, London South Bank University, UK; Philipp Rode, LSE Cities, London School of Economics and Political Science, London, UK; Nick Low, Melbourne University, Australia; Barbara Crome, Ministry of Transport, Planning and Design for Sustainable Urban Mobility

OTHER INTERNATIONAL ADVISERS AND CONTRIBUTORS

Timothy Durant, ARUP, Bristol, UK; Stephen Bennett and Shailendra Kaushik, ARUP, Dubai, United Arab Emirates; Tiago Oliveira, ARUP, Dublin, Ireland; Tom Richardson and Colin Williams, ARUP, Hong Kong, People’s Republic of China; Gerard de Villiers, ARUP, Johannesburg, South Africa; Darren Briggs, Susan Claris, Richard Higgins, Josef Hargrave and Mark Watts, ARUP, London, UK; David Singleton, ARUP, Melbourne, Australia; Laura Frost, Amy Leitch and Trent Lethco, ARUP, ARUP, New York, US; Ryan Falconer, ARUP, Perth, Western Australia; Kevin Vervuurt, ARUP, Amsterdam, The Netherlands; Wendy Walker, Asian Development Bank, Bangkok, Thailand; Brooke A. Russell, C40 Cities Climate Leadership Group; Oscar Figueroa, Catholic University of Chile, Chile; Sayel Cortes, Rodrigo Diaz, Ricardo Fernandez, Salvador Herrera, Hilda Martinez, Gisela Méndez and Claudio Alberto Sarmiento, CTS EMBARQ, Mexico; Gina Porter, Department of Anthropology, Durham University, Durham, UK; Glen Weisbrod, Economic Development Research Group, US; Tejas Pande, EMBARQ, India; Robin King, EMBARQ, and Dario Hidalgo, EMBARQ, the WRI Center for Sustainable Transport, Washington, DC, US; Vincent Leiner, European Commission Directorate-General for Mobility and Transport, Brussels, Belgium; Christof Hertel, European Institute for Sustainable Transport, Hamburg, Germany; Ulrik Sylvest Nielsen, Gehl Architects, Copenhagen, Denmark; Carlos Felipe Pardo, GIZ, Bogotá, Colombia; Manfred Breithaupt and Michael Engelskirchen, GIZ, Eschborn, Germany; Nuno Quental, ICLEI – Local Governments for Sustainability; Xavier Godard, Independent consultant, Aix-en-Provence, France; Richard Meakin, Independent consultant, Bangkok, Thailand; Jeff Turner, Independent consultant, Leeds, UK; Roger Allport, Independent consultant, London, UK; Ed Dotson, Independent consultant, Melbourne, Australia; Eduardo Alcantara de Vasconcellos, Instituto Movimento, São Paulo, Brazil; Dawn Chui, Laurent Dauby, Tony Dufays, Yildigoz Kaan, Bertram Ludvig, Minna Melleri, Mohamed Mezghani, Adrien Moulin, Eleonora Pazos, Rob Pearce, Jérôme Pourbaix, D.C. Prakash, Susanne Stölting, Tasuku Takahama and Philip Turner, International Association of Public Transport (IUTP), Brussels, Belgium; Konrad Otto-Zimmerman, International Council for Local Environmental Initiatives, Bonn, Germany; Christoph Kost, International Institute for Transportation and Development, Ahmedabad, India; Aimee Gauthier, Walter Hook, Michael Kodransky and Stephanie Lotshaw, International Institute for Transportation and Development, New York, US; Paul Barter, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore; Greg McGill, London South Bank University, UK; Philipp Rode, LSE Cities, London School of Economics and Political Science, London, UK; Nick Low, Melbourne University, Australia; Barbara Crome, Ministry of Transport, Planning and Design for Sustainable Urban Mobility
AUTHORS OF BACKGROUND PAPERS

Heather Allen, International Association of Public Transport, Brussels, Belgium (‘Africa’s first full rapid bus system: The Rea Vaya bus system in Johannesburg, Republic of South Africa’; ‘Integrated public transport, Nantes, France’; ‘Bus reform in Seoul, Republic of South Korea’; ‘An integrated approach to public transport, Tehran, Islamic Republic of Iran’; and ‘Public transport’); Karen Anderton, Transport Studies Unit, School of Geography and the Environment, University of Oxford, Oxford, UK (‘Private motorized transport, Los Angeles, USA’); Anvita Arora, Innovative Transport Solutions, Delhi, India (‘Non-motorized transport in peri-urban areas of Delhi, India’ and ‘Non-motorized urban transport, Pune City, Maharashtra, India’); Ronaldo Balassiano and Richard William Campos Alexandre, Transport Engineering Programme, Federal University of Rio de Janeiro, Brazil (‘Informal motorized transport in Rio de Janeiro, Brazil’); David Banister, Transport Studies Unit, School of Geography and the Environment, University of Oxford, Oxford, UK (‘Private motorized transport’); David Banister and Jian Liu, Transport Studies Unit, School of Geography and the Environment, University of Oxford, Oxford, UK (‘Urban transport and the environment, Hangzhou, China’); David Banister, Transport Studies Unit, School of Geography and the Environment, University of Oxford, Oxford, UK and Eispeth Finch, Environment, ATKINS, London, UK (‘Urban transport and the environment, London, UK’); Paul A. Barter, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore and Edward Dotson, Independent consultant, Melbourne, Australia (‘Urban transport institutions and governance and integrated land use and transport, Singapore’); Juan Pablo Bocarejo, Research group on urban and regional sustainability, Universidad de Los Andes, Bogotá, Colombia and Luis Eduardo Tafur Herrera, Research group on urban and regional sustainability, Universidad de Los Andes, Bogotá, Colombia (‘Urban land use transformation driven by an innovative transportation project, Bogotá, Colombia’); Robert Cervero, Department of City and Regional Planning University of California Berkeley, California, US (‘Informal motorized transport’); Hoong-Chor Chin, Department of Civil and Environmental Engineering, National University of Singapore, Singapore (‘Sustainable urban mobility in South-Eastern Asia and the Pacific’); Laetitia Dablanc, French Institute of Science and Technology for Transport, Development and Networks, Marne-la-Vallée, France and Angelica Lozano, Engineering Institute, Universidad Nacional Autónoma de México, Mexico City, Mexico (‘Commercial goods transport, Mexico City’); Laetitia Dablanc, French Institute of Science and Technology for Transport, Development and Networks, Marne-la-Vallée, France (‘Commercial goods transport, Paris, France’); Harry T. Dimitriou, OMEGA Centre, Bartlett School of Planning, University College London, London, UK (‘Urban land-use and transport (mobility) planning’; and ‘Issues paper on sustainable urban transport’); Edward Dotson, Independent consultant, Melbourne, Australia, and Doan Thi Phin, Independent consultant, Hanoi, Viet Nam (‘Urban transport institutions and governance and integrated land use and transport, Hanoi, Viet Nam’); Ahmed Eln-Geneidy, Ehab Diab, Cynthia Jacques and Anais Mathez, School of Urban Planning, McGill University, Montréal, Canada (‘Sustainable urban mobility in the Middle East and North Africa’); Oscar Figueroa, Institute of Urban and Territorial Studies, Catholic University of Chile, Santiago, Chile and Claudia Rodriguez, Urban Planning, Ministry of Transports and Communications, Subsecretaria de Transportes, Santiago, Chile (‘Urban transport, urban expansion and institutions and governance in Santiago, Chile’); Ann Frye, Independent consultant, London, UK (‘Disabled and older persons and sustainable urban mobility’); Xavier Godard, Independent consultant, Aix en Provence, France (‘Sustainable urban mobility in “Francophone” Sub-Saharan Africa’); Margaret Greico, Transport Research Institute, Edinburgh Napier University, Edinburgh, UK (‘Access to urban mobility’); Paola Jirón, Institute of Housing, Faculty of Architecture and Urbanism, University of Chile, Santiago, Chile (‘Sustainable urban mobility in Latin America and the Caribbean’); A.K. Jain, Unified Traffic and Transport Infrastructure (Planning and Engineering) Centre and School of Planning and Architecture, New Delhi, India (‘Sustainable urban mobility in Southern Asia’); David A. King, Graduate School of Architecture, Planning and Preservation, Columbia University, New York, US (‘Exploring the perennial struggle for sustainable finance of the New York Metropolitan Transit Authority’); Tracy McMillan, Independent consultant, Flagstaff, Arizona, US (‘Children and youth and sustainable urban mobility’); Haixiao Pan, Kathy...
Planning and Design for Sustainable Urban Mobility

Lo Hau Yan, Mingcai Xu, Song Ye, Peng Wei and Weiwei Liu, Department of Urban Planning, Tongji University, Shanghai, China (‘Sustainable urban mobility in Eastern Asia’); Deike Peters, Sol Price School of Public Policy, University of Southern California, Los Angeles, US and Center for Metropolitan Studies, Technical University Berlin, Germany (‘Gender and sustainable urban mobility’); Gordon Pirie, Department of Geography and Environmental Studies, University of the Western Cape, Cape Town, South Africa (‘Sustainable urban mobility in “Anglophone” Sub-Saharan Africa’); Gina Porter, Department of Anthropology, Durham University, Durham, UK (‘Urban transport in Cape Coast, Ghana: A social sustainability analysis’); Andrea Rizvi, Urban Planning, Columbia University, New York, US (‘Alternative approaches to economically sustainable mobility in India: Comparing Ahmedabad bus rapid transit and Delhi metro systems’); Wojciech Suchorzewski, Department of Civil Engineering, Warsaw University of Technology, Warsaw, Poland (‘Sustainable urban mobility in transitional countries’); Ibnu Syabri, Pradono and Budhy T. Soegijanto, Research Group in Regional and Urban Infrastructure Systems, School of Architecture, Planning, and Policy Development, Institut Teknologi Bandung, Indonesia (SAPPD-ITB) (‘Embracing paratransit in Bandung Metropolitan Area, West Java, Indonesia’); Geetam Tiwari, Indian Institute of Technology, Delhi, India (‘Non-motorized transport’); Natcha Tulyasuwan, United Nations Food and Agriculture Organization (FAO) of the United Nations, Montpellier, France (‘Private motorized transport, Bangkok, Thailand’); Jeff Turner, Independent consultant, Leeds, UK (‘Urban mass transit and social sustainability in Jakarta, Indonesia’).

FINANCIAL SUPPORT

UN-Habitat is grateful for the financial support provided by the Governments of Norway and Sweden.

PUBLISHING TEAM

With thanks to the Editorial and Production teams at Routledge: Alice Aldous, Nicki Dennis, Joanna Endell-Cooper, Alex Hollingsworth and Tracey Scarlett; to Elizabeth Riley (copy-editor), and to all at Florence Production (typesetters).

IN MEMORY OF:

NOTES

1 The HS-Net Advisory Board consists of experienced researchers in the human settlements field, selected to represent the various geographical regions of the world. The primary role of the Advisory Board is to advise UN-Habitat on the substantive content and organization of the Global Report on Human Settlements.
CONTENTS

Foreword v
Introduction vii
Acknowledgements xi
List of Figures, Boxes and Tables xxi
List of Acronyms and Abbreviations xxv

1 The Urban Mobility Challenge 1
 Accessibility is at the Core of Urban Mobility 2
 The Transport Bias of Mobility 3
 Some of the Forces Promoting the Transport Bias 5
 Trends and Conditions in Transport-Oriented Mobility Systems 6
 Varying but declining dominance of public transport 6
 Informality 7
 Non-motorized transport 7
 Traffic congestion 8
 Sustainability Challenges of Urban Mobility 9
 Integration of land-use and transport planning 9
 Social dimensions 10
 Environmental dimensions 11
 Economic dimensions 12
 Institutional and governance dimensions 12
 Concluding Remarks and Structure of the Report 13
 Notes 14

2 The State of Urban Passenger Transport 15
 Non-Motorized Transport 16
 Developing countries 16
 Developed countries 17
 Infrastructure for non-motorized transport 18
 Impacts of non-motorized transport 20
 Formal Public Transport 21
 Developing countries 21
 Developed countries 21
 Infrastructure for public transport 24
 Impacts of formal public transport 24
 Informal Transport 26
 Developing countries 26
 Developed countries 28
 Impacts of informal transport 28
 Private Motorized Transport 30
 Developed countries 31
 Developing countries 32
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure for private motorized transport</td>
<td>33</td>
</tr>
<tr>
<td>Impacts of private motorized transport</td>
<td>34</td>
</tr>
<tr>
<td>Intermodality in Urban Transport</td>
<td>35</td>
</tr>
<tr>
<td>Concluding Remarks and Lessons for Policy</td>
<td>36</td>
</tr>
<tr>
<td>Notes</td>
<td>37</td>
</tr>
<tr>
<td>3 Metro, Light Rail and BRT</td>
<td>39</td>
</tr>
<tr>
<td>Main Characteristics of Metro, Light Rail and BRT Systems</td>
<td>39</td>
</tr>
<tr>
<td>Metro</td>
<td>39</td>
</tr>
<tr>
<td>Light rail</td>
<td>40</td>
</tr>
<tr>
<td>Bus rapid transit</td>
<td>40</td>
</tr>
<tr>
<td>Main physical characteristics, outputs and requirements</td>
<td>40</td>
</tr>
<tr>
<td>Examples of National Policies toward High-Capacity Public Transport in</td>
<td>42</td>
</tr>
<tr>
<td>Developing Countries</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>42</td>
</tr>
<tr>
<td>India</td>
<td>42</td>
</tr>
<tr>
<td>Brazil</td>
<td>43</td>
</tr>
<tr>
<td>Mexico</td>
<td>43</td>
</tr>
<tr>
<td>Kenya</td>
<td>43</td>
</tr>
<tr>
<td>Morocco</td>
<td>43</td>
</tr>
<tr>
<td>Nigeria</td>
<td>44</td>
</tr>
<tr>
<td>South Africa</td>
<td>44</td>
</tr>
<tr>
<td>Metro Systems Around the World: Trends and Conditions</td>
<td>44</td>
</tr>
<tr>
<td>Light Rail Systems Around the World: Trends and Conditions</td>
<td>47</td>
</tr>
<tr>
<td>BRT Systems Around the World: Trends and Conditions</td>
<td>48</td>
</tr>
<tr>
<td>Main Challenges Facing High-Capacity Public Transport Systems</td>
<td>51</td>
</tr>
<tr>
<td>Integration within the public transport system</td>
<td>51</td>
</tr>
<tr>
<td>Integration with other elements of the transport system</td>
<td>51</td>
</tr>
<tr>
<td>Integration with the built environment</td>
<td>52</td>
</tr>
<tr>
<td>Quality of service</td>
<td>53</td>
</tr>
<tr>
<td>Finance</td>
<td>53</td>
</tr>
<tr>
<td>Financial risks in public transport project development</td>
<td>53</td>
</tr>
<tr>
<td>Funding sources</td>
<td>54</td>
</tr>
<tr>
<td>Public transport subsidies</td>
<td>54</td>
</tr>
<tr>
<td>Institutions</td>
<td>54</td>
</tr>
<tr>
<td>Concluding Remarks and Lessons for Policy</td>
<td>55</td>
</tr>
<tr>
<td>Notes</td>
<td>56</td>
</tr>
<tr>
<td>4 Urban Goods Transport</td>
<td>57</td>
</tr>
<tr>
<td>Urban Goods Transport: Key Components and Actors</td>
<td>57</td>
</tr>
<tr>
<td>Components of urban goods transport</td>
<td>58</td>
</tr>
<tr>
<td>Actors and stakeholders in urban goods transport</td>
<td>59</td>
</tr>
<tr>
<td>Trends and Conditions of Urban Goods Transport</td>
<td>60</td>
</tr>
<tr>
<td>Developed countries</td>
<td>61</td>
</tr>
<tr>
<td>Developing countries</td>
<td>62</td>
</tr>
<tr>
<td>Goods Transport in an Urban Context</td>
<td>63</td>
</tr>
<tr>
<td>Terminal facilities</td>
<td>64</td>
</tr>
<tr>
<td>Distribution facilities</td>
<td>65</td>
</tr>
<tr>
<td>Logistics sprawl</td>
<td>65</td>
</tr>
<tr>
<td>Challenges of Urban Goods Transport</td>
<td>67</td>
</tr>
<tr>
<td>Environmental challenges</td>
<td>67</td>
</tr>
<tr>
<td>Economic Challenges</td>
<td>68</td>
</tr>
<tr>
<td>Social and institutional challenges</td>
<td>69</td>
</tr>
<tr>
<td>Existing Policy Responses</td>
<td>71</td>
</tr>
<tr>
<td>Rationalization of deliveries</td>
<td>71</td>
</tr>
<tr>
<td>Freight facilities</td>
<td>71</td>
</tr>
<tr>
<td>Modal adaptation</td>
<td>72</td>
</tr>
</tbody>
</table>
Contents

Concluding Remarks and Lessons for Policy 73
Notes 73

5 **Mobility and Urban Form** 75

Decentralization, Car Dependence and Travel 77
- The dispersal metropolis 77
- Global urban density patterns and trends 78
- Urban transport as a factor increasing urban sprawl 78
- Urban density and travel 79
- Other attributes of urban form influencing travel 80
- Urban form and travel 82

Urban Densities and Public Transport Thresholds 84

Planning the Accessible City 87

Built Environments and Travel at the Neighbourhood Scale 90
- Traditional neighbourhoods and the new urbanism 92
- Transit-oriented development (TOD) 93
- Traffic-calmed and car-restricted neighbourhoods 94

Corridor Contexts 95
- Mobility and development trade-offs 95
- Public transport-oriented corridors 96

Regional Context 99
- Connectivity and large urban configurations 99
- City cluster variances and transport responses 99

Impacts of Transportation Investments on Urban Form 102
- Impacts of public transport investments 102
- Public transport and land price appreciation 103
- Bus-based public transport and urban-form adjustments 104
- Impacts of motorways 104

Concluding Remarks and Lessons for Policy 105
Notes 106

6 **Equitable Access to Urban Mobility** 107

Affordable Urban Mobility 108
- Challenges and impacts of urban poverty 108
- Policy responses and innovative practices 111
 - Supporting non-motorized transport 111
 - Improving affordability and quality of service of public transport 112
 - Improving affordability through urban form and land use 114

Vulnerable and Disadvantaged Groups and Urban Mobility 115
- Global conditions, trends and challenges 115
- Policy responses and innovative practices 118
 - Gender-sensitive design, infrastructure and services 119
 - Increasing pedestrian accessibility and safety 120
 - ‘Universal design’ or ‘access for all’ 120

Safety and Security in Urban Mobility Systems 121
- Global conditions, trends and challenges 121
 - Road traffic accidents 121
 - Transportation security: Risks and fears related to the use of public transport 122
- Policy responses and innovative practices 123
 - Reducing road traffic accidents 123
 - Improving the safety and security of vulnerable groups 125

Concluding Remarks and Lessons for Policy 126
Notes 127

7 **Urban Mobility and the Environment** 129

Environmental Challenges in Urban Mobility Systems 129
- Motorization and oil dependence 130
- Mobility and climate change 132
A.4 Number of urban households, rate of change and mean household size 216
A.5 Urban agglomerations 217

Country-Level Data 220
B.1 Total population size, rate of change and population density 220
B.2 Urban and rural population size and rate of change 224
B.3 Urbanization and urban slum dwellers 228
B.4 Number of urban households, rate of change and mean household size 232
B.5 Access to drinking water and sanitation 236
B.6 Poverty and inequality 240
B.7 Transport infrastructure 244
B.8 Road motor vehicles and fuel prices 248
B.9 Road traffic accidents 252

City-Level Data 256
C.1 Urban agglomerations with 750,000 inhabitants or more: Population size and rate of change 256
C.2 Population of capital cities (2011) 266
C.3 Access to services in selected cities 270

References 275
Index 307
LIST OF FIGURES, BOXES AND TABLES

FIGURES

1.1 Average annual urban population increase, by region (1970–2045) 2
1.2 Passenger light-duty vehicle fleet and ownership rates by region, estimates and projections (1980–2035) 4
1.3 Transportation infrastructure investments by mode, Europe (1995–2010) 5
1.4 Modal splits of urban trips (2005) 6
1.5 World oil consumption by sector 11
2.1 Urban travel modal shares in selected cities 17
2.2 Cycling and walking share of daily trips in Europe, North America and Australia (1999–2009) 18
2.3 Number of inhabitants per bicycle, developed countries 18
2.4 Transport investments in Indian cities under the Jawaharlal Nehru National Urban Renewal Mission (by December 2011) (percentages) 19
2.5 Percentage of daily trips by public transport, selected cities in Europe, US and Australia (2001 data) 22
2.6 Annual public transport passenger trips per capita, Australia (1930–2010) 22
2.7 Transport investments in Africa (2008) 24
2.8 Length of public transport networks, selected cities in Africa and Latin America 25
2.9 Informal transport market share and GDP per capita in ten selected cities in Africa 28
2.10 Total stock of motor vehicles, OECD and non-OECD countries (2005 and 2050) 31
2.11 Global sales of new cars (1990–1999 and 2012) 31
2.12 Vehicle kilometres travelled per capita for cars versus GDP per capita (1970–2008) 32
2.13 Car and motorcycle ownership rates, selected Asian cities 33
3.1 Initial cost versus capacity and speed 41
3.2 Growth of metro systems worldwide 45
3.3 Metro systems around the world 46
3.4 Evolution of BRT – Number of new cities each year and cumulative number of cities with operational BRT systems (1970–2012) 49
3.5 BRT systems around the world, number of cities and system lengths (mid-2013) 50
4.1 Components of city logistics and their relative importance 59
4.2 Main stakeholders and relationships in urban freight distribution 60
4.3 World’s major gateways (sea and air freight) (2006) 61
4.4 Logistics sprawl: Location of terminals of large parcel and express transport companies in the Paris region (1974 and 2010) 66
4.5 City logistics and land use 67
5.1 Urban population densities of 1366 cities, mean densities by region (2000–2010) 78
5.2 Long-term decline in built-up area densities in 25 selected cities (1800–2000) 79
5.3 Influences of urban densities on transport-related energy consumption, 32 cities (1989) 80
5.4 Population density gradients of seven cities 81
5.5 Average land coverage by region, among 1366 cities (2000–2010) 81
5.6 Urban form and the spatial pattern of travel flows 82
5.5 Density thresholds for cost-effective public transport in the US
5.6 Dysfunctional densities of Los Angeles, US
5.7 ‘Compact cities’ or ‘smart growth’
5.8 5 Ds of built environments that influence travel
5.9 Land-use diversity
5.10 Transit-oriented development
5.11 Pearl River Delta mega-region
5.12 Prerequisites to urban-form changes
6.1 Understanding the parameters of urban transport
6.2 Nairobi–Thika highway improvement project, Kenya
6.3 Supporting non-motorized transport investments in Africa
6.4 Integrating non-motorized transport into transportation systems in Bogotá, Colombia
6.5 Metropolitan regional transport plans and priorities, Atlanta, US
6.6 Children and youth: Population trends
6.7 Women’s participation in the transport sector in China
6.8 Private transport for special groups
6.9 Convention on the Rights of Persons with Disabilities (Article 9, paragraph 1)
6.10 Rwanda’s road-safety programme
6.11 Toolkits for road safety
6.12 Reducing road traffic fatalities in Bogotá, Colombia
7.1 Fuel subsidies
7.2 Air pollutants
7.3 A successful bicycle sharing system, Changwon, the Republic of Korea
7.4 Internet shopping
7.5 Transport accessibility to Canary Wharf, London, UK
7.6 Promoting sustainable transport solutions in Eastern African cities
7.7 TransMilenio: Supporting sustainable mobility in Bogotá, Colombia
7.8 Sustainable transport in Hangzhou, China
7.9 The Hybrid and Electric Bus Test Programme, Latin America
7.10 Hybrid trucks
7.11 Freight loads and emissions standards
7.12 Car-free living: Vauban, Germany
8.1 Public transport cost recovery from fares
8.2 Crossrail and agglomeration benefits, London, UK
8.3 The high personal cost of urban transport: Anglophone Sub-Saharan Africa
8.4 Urban road pricing initiatives
8.5 Parking charges: A promising source of finance for public and non-motorized transport
8.6 Versement transport, Paris, France
8.7 Hong Kong and its Mass Transit Railway Corporation, China
8.8 Value capture has a long history to ensure private sector profits
8.9 Types of public–private partnerships
8.10 Economic rationale for using public–private partnerships
8.11 The use of a public–private partnership to upgrade the London Underground, UK
8.12 Multiple funding sources: The New York Metropolitan Transportation Authority, US
8.13 Funding of public transport investments: Lessons from Delhi and Ahmedabad, India
9.1 The Executive Council of Urban Transport (CETUD), in Dakar, Senegal
9.2 Typical challenges of urban transport institutions in South Asia
9.3 The Land Transport Authority of Singapore
9.4 Key challenges in integrated land-use and transport planning
9.5 The potential of social media and open source material
9.6 Main causes for the sustainable mobility planning achievements of Nantes, France
9.7 Institutional framework for urban mobility in Santiago de Chile
9.8 Social participation in decision-making: The ‘mobility pact’ in Barcelona, Spain
9.9 Institutional developments for urban mobility in Hanoi, Viet Nam
9.10 Climate change activity at the state level, US
9.11 The Freight Charter, Paris, France
9.12 Land-use and transport planning, Bogotá, Colombia
9.13 Institutional and governance framework in support of light rail in Portland, Oregon, US
9.14 The Lagos Metropolitan Area Transport Authority (LAMATA), Nigeria
9.15 Functions of ‘Infrastructure Australia’
TABLES

2.1 Non-motorized transport benefits 20
2.2 Global overview of structure of formal public transport 23
2.3 Global stock of motor vehicles and passenger cars (2010) 30
2.4 Two-/three-wheeler use restrictions, selected Asian countries 33
2.5 Road transport infrastructure in selected cities 34
3.1 Main physical characteristics of metro, light rail and BRT 40
3.2 Outputs and requirements for metro, light rail and BRT 41
3.3 Metro systems by region 45
3.4 Metro systems with average daily ridership of more than 2 million passengers per day 46
3.5 Top ten light rail and tram systems by ridership 48
3.6 Current state of BRT systems around the world (mid-2013) 49
3.7 The world’s major BRT systems 50
3.8 Examples of cities with infrastructure, information systems and payment elements that promote multi-modal connectivity 52
4.1 Major actors in urban freight distribution and their land-use handhold 64
4.2 Key challenges in urban goods transport 68
4.3 Social externalities of freight distribution 70
4.4 Main city logistics policies 71
5.1 5 D influences on VKT, expressed as average elasticities 91
5.2 Changes in retail sales transactions in pedestrianized areas of West German cities (1965–1975) 95
6.1 Dimensions of poverty and the impact of improved transport 110
6.2 Public transport affordability index values for selected cities 113
6.3 Female travel patterns and constraints in developing countries 116
6.4 Estimated prevalence of moderate and severe disability, by region, sex and age (2004) 117
6.5 Threats to security of person and property 123
7.1 World transport energy use and CO₂ emissions, by mode 130
7.2 Energy efficiency for urban transport, by mode of transport 132
7.3 CO₂ emissions levels overall and for transport (2009) 133
7.4 Planning and development measures taken in New York City and Singapore 139
7.5 GlaxoSmithKline – 2010 corporate responsibility report 148
8.1 Number of people employed by public transport operators, by region (2009) 158
8.2 Projected transport infrastructure investment, road and rail (2005–2030) 158
9.1 Institutional models for urban mobility, mainland China 180
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>£</td>
<td>Sterling pound</td>
<td></td>
</tr>
<tr>
<td>€</td>
<td>Euro</td>
<td></td>
</tr>
<tr>
<td>ADB</td>
<td>Asian Development Bank</td>
<td></td>
</tr>
<tr>
<td>BRT</td>
<td>bus rapid transit</td>
<td></td>
</tr>
<tr>
<td>CBD</td>
<td>central business district</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
<td></td>
</tr>
<tr>
<td>CNG</td>
<td>compressed natural gas</td>
<td></td>
</tr>
<tr>
<td>dB(A)</td>
<td>decibel</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>gross domestic product</td>
<td></td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>human immunodeficiency virus infection/acquired immunodeficiency syndrome</td>
<td></td>
</tr>
<tr>
<td>km²</td>
<td>square kilometre</td>
<td></td>
</tr>
<tr>
<td>MTA</td>
<td>Metropolitan Transportation Authority (New York, US)</td>
<td></td>
</tr>
<tr>
<td>MTRC</td>
<td>Mass Transit Railway Corporation (Hong Kong, China)</td>
<td></td>
</tr>
<tr>
<td>NGO</td>
<td>non-governmental organization</td>
<td></td>
</tr>
<tr>
<td>NIMBY</td>
<td>not-in-my-backyard</td>
<td></td>
</tr>
<tr>
<td>NMT</td>
<td>non-motorized transport</td>
<td></td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrogen oxides</td>
<td></td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
<td></td>
</tr>
<tr>
<td>PPP</td>
<td>purchasing power parity</td>
<td></td>
</tr>
<tr>
<td>RMB</td>
<td>Chinese renminbi (yuan)</td>
<td></td>
</tr>
<tr>
<td>SAR</td>
<td>Special administrative region (of China; used about Hong Kong and Macao)</td>
<td></td>
</tr>
<tr>
<td>SUV</td>
<td>sports utility vehicle</td>
<td></td>
</tr>
<tr>
<td>TfL</td>
<td>Transport for London (UK)</td>
<td></td>
</tr>
<tr>
<td>TOD</td>
<td>transit-oriented development</td>
<td></td>
</tr>
<tr>
<td>UITP</td>
<td>International Association of Public Transport</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td></td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td></td>
</tr>
<tr>
<td>US$</td>
<td>US dollar</td>
<td></td>
</tr>
<tr>
<td>VKT</td>
<td>vehicle-kilometres travelled</td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
<td></td>
</tr>
</tbody>
</table>
Hyper-mobility – the notion that more travel at faster speeds covering longer distances generates greater economic prosperity – seems to be a distinguishing feature of urban areas, where more than half of the world’s population currently reside. By 2005, approximately 7.5 billion trips were made each day in cities worldwide. In 2050, there may be three to four times as many passenger-kilometres travelled as in the year 2000, infrastructure and energy prices permitting. Freight movement could also rise more than threefold during the same period. Mobility flows have become a key dynamic of urbanization, with the associated infrastructure invariably constituting the backbone of urban form. Yet, despite the increasing level of urban mobility worldwide, access to places, activities and services has become increasingly difficult. Not only is it less convenient – in terms of time, cost and comfort – to access locations in cities, but the very process of moving around in cities generates a number of negative externalities. Accordingly, many of the world’s cities face an unprecedented accessibility crisis, and are characterized by unsustainable mobility systems.

This report examines the state of urban mobility in different parts of the world. It explores the linkages between urban form and mobility systems, with a view to determining the essential conditions for promoting the sustainable movement of people and goods in urban settings. This introductory chapter reviews key issues and concerns of urban mobility and provides a framework for the content of the rest of the report. It outlines development trends impacting on urban mobility and then discusses urban mobility issues of the twenty-first century, including the challenges of fostering sustainable mobility.

Current urbanization patterns are causing unprecedented challenges to urban mobility systems, particularly in developing countries. While these areas accounted for less than 40 per cent of the global population growth in the early 1970s, this share has now increased to 86 per cent, and is projected to increase to more than 100 per cent within the next 15 years, as the world’s rural population starts to contract. What is perhaps even more striking is the regional patterns of urban population growth. Figure 1.1 shows how an increasing share of this growth is projected to occur in Africa (19 per cent of total annual growth today, compared to 43 per cent in 2045), while the combined annual urban population increase in developed countries, China, Latin America and the Caribbean is projected to decrease from 46 per cent of the total today to 11 per cent in 2045. Thus, it is the world’s poorest regions that will experience the greatest urban population increase. These are the regions that will face the greatest challenges in terms of coping with increasing demands for improved transport infrastructure. In fact, projections indicate that Africa will account for less than 5 per cent of the global investments in transport infrastructure during the next few decades (see Table 8.2).

A major point of departure for this report is that sustainable mobility extends beyond technicalities of increasing speed and improving the effectiveness and efficiency of transport systems, to include demand-oriented measures (e.g. promoting walking and cycling, and reducing the need to travel), with the latter representing a pivotal factor in achieving relevant progress. It suggests that the prevailing challenges of urban mobility are consequences of the preoccupation with the means of mobility rather than its end – which is the realization of accessibility.

The first chapter of the report starts with a discussion of the need to focus on access as the basis for urban mobility planning. It urges urban planners and decision-makers to move away from a ‘transport bias’ in urban mobility planning, towards a focus on the human right to equitable access to opportunities. This is followed by a brief analysis of global conditions and trends with respect to the urban movement of people and goods. The last part of the chapter provides a brief discussion of the social, environmental, economic and institutional dimensions of sustainability in urban mobility systems.
ACCESSIBILITY IS AT THE CORE OF URBAN MOBILITY

In directing attention beyond transport and mobility, and giving prominence to the aspect of accessibility, this report calls for a paradigm shift in transport policy. This alternative approach emphasizes the need to reduce the global preoccupation on mobility enhancement and infrastructure expansion. This kind of transportation planning has been implicated in problems of environmental degradation and social isolation. However, most fundamentally, a focus on mobility as a transportation-policy goal neglects the consensus view that the vast majority of trips are not taken for the sake of movement per se, but in order to reach destinations, or more broadly, to meet needs.

While the speed and efficiency of travel are important, more critical however, is the ease of reaching those destinations in terms of proximity, convenience as well as positive externalities. Transport and mobility as derived demands are treated as means for enabling people to access other people and places. Reducing the need for such demands and minimizing travel time also entails optimizing the value of being at the destination. Mobility is thus properly viewed as a means to the greater end of accessibility. Nonetheless, it is not the only means to this end: accessibility can be enhanced through proximity, as well as electronic connectivity. As a result, enhancing accessibility places human and spatial dimensions at the core of sustainable mobility.

This focus on accessibility emphasizes the need for a holistic and integrated approach to sustainable urban mobility. It establishes a link between urban form (in terms of shape, structure, function as well as demographics) and urban transportation systems. Particular attention is given to the urban form’s potential to support the increased proximity of places and functions, thus minimizing the need for extended movement. Land-use planning ensures the proximity and compactness of locations, and diversifies functions, so as to cater to a variety of needs.

The accessibility focus for sustainable mobility also entails paying due consideration to the built form of the city, particularly the optimization of urban density and the fostering of a sense of place. The combination of high-density settlements, strong sense of place and mixed-used functions not only minimize the need for extended movement, but also enhance economies of agglomeration and encourage non-motorized mobility. Furthermore, appropriate design and layout of streets and neighbourhoods, proper allowance for building configuration and density, and streamlined arrangement of arterial streets and roads, should also be taken into account. The backbone of accessibility-based urban mobility is public transport, particularly high-capacity public transport systems that are well integrated in a multi-nodal arrangement.

The bottom line for accessibility is not the hardware; rather it is the quality and efficiency of reaching destinations whose distances are reduced. Equally important is the affordability and inclusiveness in using the provided facilities. Sustainable mobility is thus determined by the degree to which the city as a whole is accessible to all its residents, including low-income earners, the elderly, the
young, the disabled, as well as women with children. Furthermore, transport interventions should be explicitly targeted to prevent negative outcomes. By permitting high levels of innovative services and giving priority to public and non-motorized transport, the need for private cars is reduced. Strategies to change public attitudes and encourage sustainable forms of mobility thus have a key role to play.

This alternative approach also brings to the fore the human rights dimension of sustainable mobility: ‘the right to mobility is universal to all human beings, and is essential for the effective practical realisation of the right to mobility’ with ‘transportation’ has fostered a tendency towards increasing motorization, and a propensity to expand the network of urban roads. Highway structures, including viaducts and flyovers, tunnels and foot-bridges have become standard features of the modern city and urban landscape. Encouraging this whole process is the excessive sectorization of transportation planning and management. Apart from causing a spiral of negative externalities, this approach further distorts the urban form and severely undermines the environmental, social and economic sustainability of cities. A major missing link which this report underscores is that sustainable mobility entails – and indeed requires – a closer connection between transport and land-use planning.

Globally, the transport bias of urban mobility is demonstrated by the dominance of motorization, and particularly private motor vehicles as the preferred means of mobility. In 2010, there were more than 1 billion motor vehicles worldwide (excluding two-wheelers). Based on data from 2005, nearly half of all urban trips were made by private motorized modes, a figure that continues to climb. By 2010, developed countries had, on average, ten times as many motor vehicles (excluding two-wheelers) per capita as developing ones. In some rapidly emerging economies such as India, the number of light-duty motor vehicles – cars, sports utility vehicles (SUVs), light trucks and mini-vans – is projected to reach nearly 1.6 billion (Figure 1.2). The majority of these will be found in developing countries, especially China, India and other Asian countries. China alone is projected to have approximately 350 million private cars by 2035, nearly ten times as many as they had in 2008. In some rapidly emerging economies such as India, the number of cars, trucks, and motorized two-wheelers on city streets is growing at a rate of more than 20 per cent annually. Mexico City’s car population is increasing faster than its human population – two new cars enter into circulation every time a child is born. In India, private vehicle growth exceeds population gains by a factor of three.

The extent of global motorization is a major cause for the increasing trends in energy use and carbon emissions worldwide. This has fuelled low-density development and sprawling urban forms, which have gradually increased the dependence on motorized transport. Furthermore, government policies in the United States (US) have contributed towards shaping car-dependent settlement patterns. Following the Second World War, the US government invested heavily in high-capacity highways and freeways and subsidized home mortgages, while most of its European counterparts channelled funds into development of urban rail systems, and social and market-rate housing near public transport stops.

THE TRANSPORT BIAS OF MOBILITY

In many cities of the world, the equation of ‘mobility’ with ‘transportation’ has fostered a tendency towards increasing motorization, and a propensity to expand the network of urban roads. Highway structures, including viaducts and flyovers, tunnels and foot-bridges have become standard features of the modern city and urban landscape. Encouraging this whole process is the excessive sectorization of transportation planning and management. Apart from causing a spiral of negative externalities, this approach further distorts the urban form and severely undermines the environmental, social and economic sustainability of cities. A major missing link which this report underscores is that sustainable mobility entails – and indeed requires – a closer connection between transport and land-use planning.

Globally, the transport bias of urban mobility is demonstrated by the dominance of motorization, and particularly private motor vehicles as the preferred means of mobility. In 2010, there were more than 1 billion motor vehicles worldwide (excluding two-wheelers). Based on data from 2005, nearly half of all urban trips were made by private motorized modes, a figure that continues to climb. By 2010, developed countries had, on average, ten times as many motor vehicles (excluding two-wheelers) per capita as developing ones. In some rapidly emerging economies such as India, the number of light-duty motor vehicles – cars, sports utility vehicles (SUVs), light trucks and mini-vans – is projected to reach nearly 1.6 billion (Figure 1.2). The majority of these will be found in developing countries, especially China, India and other Asian countries. China alone is projected to have approximately 350 million private cars by 2035, nearly ten times as many as they had in 2008. In some rapidly emerging economies such as India, the number of cars, trucks, and motorized two-wheelers on city streets is growing at a rate of more than 20 per cent annually. Mexico City’s car population is increasing faster than its human population – two new cars enter into circulation every time a child is born. In India, private vehicle growth exceeds population gains by a factor of three.

The extent of global motorization is a major cause for the increasing trends in energy use and carbon emissions worldwide. This has fuelled low-density development and sprawling urban forms, which have gradually increased the dependence on motorized transport. Furthermore, government policies in the United States (US) have contributed towards shaping car-dependent settlement patterns. Following the Second World War, the US government invested heavily in high-capacity highways and freeways and subsidized home mortgages, while most of its European counterparts channelled funds into development of urban rail systems, and social and market-rate housing near public transport stops.
However, global motorization explains only part of the increasing energy use and greenhouse gas emissions worldwide. Other contributing factors relate to economic growth and rising incomes, especially in developing countries. From 2002 to 2007, China’s per capita incomes almost doubled, and car ownership nearly tripled. Car dependency is also served by a cultural and commercial system, which promotes the car as a symbol of status and personal freedom. Therefore, many developing countries perceive motorization as a condition for development. Conversely, evidence from an analysis of the relationship between car use and gross domestic product (GDP) per capita levels between 1970 and 2008 in eight developed countries shows that travel distances by cars may have peaked and that further increases in GDP per capita are unlikely to lead to increased travel distances.

Another recent study found that the annual increase in car use per capita in developed countries fell from 4.2 per cent in the 1960s, to 2.3 per cent in the 1990s, to 0.5 per cent from 2000 to 2010. Saturation occurs partly because the amount of additional wealth that people choose to spend on travel is reduced when incomes reach a certain point. In the US, for instance, households earning US$50,000 per year averaged more kilometres of vehicle travel in 2009 than households with twice as much annual income. Moreover, factors such as shrinking city sizes and lifestyle changes are contributing to levelling off of car ownership and usage in developed countries. Furthermore, increasingly ageing populations further contribute to the stabilization of motorization rates.

In many transitional countries, the shift to capitalist economies has been accompanied by an explosive growth in the number of freight vehicles, particularly trucks. From 1993 to 2009, truck traffic grew by 165 per cent in Poland, 213 per cent in Croatia, and 247 per cent in the Czech Republic. Many trucks are old and are kept running for longer than the manufacturer’s estimated lifetime, aggravating energy requirements, local environmental problems and carbon emissions. In Asia’s rapidly industrializing cities, globalization and consumerism have given rise to a wide variety of freight-carrying modes – trucks, pickup vans, trailers, ropeways and railways that coexist with non-motorized modes such as cycle rickshaws, animal-powered carts and head-loading. For every truck in Delhi, India, there are about five feeder informal motorized goods vehicles, five non-motorized vehicles and five to ten head-loaders.

Another feature of the transport bias has been heavy investments in infrastructure. In China, for example, the total length of urban roads more than doubled in the 13-year period between 1990 and 2003. During the same period, the total area allocated to roads more than tripled. Similarly, in Nairobi, Kenya, a total of 143 kilometres of urban roads was either newly constructed or rehabilitated for a total cost of US$537.8 million between 2008 and 2012. This is a substantial amount for a young African economy, and was invested mainly to increase traffic flows and to enable faster mobility. In European countries, road infrastructure accounted for more than two-thirds of infrastructure investments in the transport sector between 1995 and 2010 (Figure 1.3).

The global expansion of mobility encompasses great innovations that have linked transportation with intelligent communication systems, transforming the way in which people organize their travel and communication considerably. The interplay of these systems has redefined the core of social interaction and urban life. Accordingly, the evolving transport system of the last century is firmly rooted in a number of key components including motorized modes, oil industry, consumerist lifestyles, global procurement of oil, spatial and infrastructure planning, urban and street design and societal values that embrace mobility as part of what constitutes high quality of life standards.
SOME OF THE FORCES PROMOTING THE TRANSPORT BIAS

The rapid motorization of many of the world’s cities is further compounded by expanding globalization, rising trade flows and incomes, leading to an enhanced demand for personal mobility. In many parts of the world, and particularly in developing countries, the private car has become a status symbol, depicting affluence and success in life. A prime example is the largely unregulated large-scale importation of used vehicles to developing countries. Evidence suggests that over 80 per cent of the vehicle stock in Peru was originally imported as used vehicles from the US or Japan. Similarly, in many African countries, import-liberalization policies introduced during the 1990s made it easier and cheaper for households to buy second-hand vehicles imported from overseas.

A number of influential converging factors – such as economic policies that maintain fuel subsidies and planning practices that incentivize suburban residential developments, large malls and retail centres with extensive parking – all play a role in increasing motorization. The suburban development that supported the car culture allowed people to live in low-density residential areas that, although requiring a longer commute, were cheaper in terms of land prices. Some examples include the rise of new ‘urban villages’ such as Mahindra World City in Chennai (India), Gurgaon satellite town near Delhi (India) and Tlajomulco in the urban agglomeration of Guadalajara (Mexico). Similarly, in Metro Manila, the Philippines, new settlements described as ‘exurbs’ have emerged during the last two decades, including Bulacan, Pampanga, Rizal, Quezon, Cavite, Laguna and Batangas, all of which have been converted into gated communities and sustained by dependence on car-based transportation. It should also be mentioned that between 1970 and 1990, Los Angeles, US, sprawled an additional 1020 square kilometres, during which time the population increased by 3.1 million residents.

Such planning choices ensured that the car became an essential part of most people’s transportation needs. In many instances, governments at all levels have also accelerated sprawl by building more roads to the urban fringe. For example, despite having only 10 per cent more freeway kilometres, Chicago has more than twice as many residents as Houston. The increasing trend to build more roads in Houston has encouraged development to shift to newer areas, with minimal bus service. This has reinforced the vicious circle of car dependency, where the new roads develop their own congestion problems. In 1999 alone, Houstonians lost 36 hours per person as a result of traffic congestion, more than commuters in all but three other American cities (Los Angeles, San Francisco and Dallas).

The fragmentation and sectoralization of the management of urban development in many parts of the world is also reinforcing the dominance of the traditional ‘transport bias’ in urban mobility systems.

Beyond the strategic and economic dynamics within countries, global forces in much of the...
second half of the twentieth century fostered a spatial pattern that provided a justification for the traditional transport bias of urban mobility systems. The ‘Fordist’ pattern of accumulation – which prevailed after the Second World War – promoted a distinct spatial urban landscape and system of governance, which was hierarchical and highly fragmented. The core–periphery delineation was replicated across all levels, with a set of cities acquiring the status of global centres for driving the system of globalization. At the city level, the centrality of manufacturing and trading was facilitated through spatial segregation and by maximizing the economies of urbanization. Towards the last quarter of the twentieth century, greenfield land, suburban housing and urban infrastructural investments became the avenues for illicit wealth generation that caused the global financial crisis. In many parts of Europe, the US and Latin America there are swaths of real estate spread out in the suburban areas and exurban regions that were part of such schemes. The highways and boulevards leading to these sites further enhanced the motorization trend.

It has been estimated that between 1950 and 2005, raw material extraction (biomass, fossil-energy carriers, ores and industrial minerals, construction minerals) increased from 10 to 60 billion metric tonnes, excluding water and land resources. The most significant increase came from the extraction of construction materials and ores/industrial minerals. In 1900, biomass accounted for almost 75 per cent of total material use; however its share had dropped to only one-third by 2005, indicating that the global economy has gradually reduced its dependence on renewable materials (i.e. biomass) and increased its dependence on finite mineral resources, which cannot be replaced. While demand was increasing, for a long time prices were also declining, thus encouraging increased dependence on the finite resources, including, in this case, motorization as the dominant mode of mobility.

TRENDS AND CONDITIONS IN TRANSPORT-ORIENTED MOBILITY SYSTEMS

This section provides an overview of global trends and conditions, with transport as the main focus of improving mobility and enabling access. It examines formal and informal modes of transport, including walking and cycling. Furthermore, the implications of rapid motorization on economic performance and social equity in cities are discussed. An overview of the alternative to transport-oriented mobility will be provided in chapters 5 to 8; specifically, the components of an accessibility-based sustainable mobility.

Varying but declining dominance of public transport

In 2005, 16 per cent of all trips in urban areas worldwide were by some form of public transport (i.e. formal, institutionally recognized services, such as buses and rail-based public transport) (Figure 1.4). The role of public transport in individual cities varies widely, accounting for 45 per cent of urban trips in some cities of Eastern Europe and Asia, 10 to 20 per cent in much of Western Europe and Latin America, and less than 5 per cent in North America and Sub-Saharan Africa. In 2001, more than half of all mechanized trips (i.e. excluding walking) in Hong Kong and Eastern European cities (such as Bucharest, Romania; Moscow, Russia; and Warsaw, Poland) were by public transport, compared to an average of about 25 per cent for Western European cities, and less than 10 per cent in the high-income, car-oriented cities of Dubai (United Arab Emirates), Melbourne (Australia) and Chicago (US). However even within Western Europe, the role of public transport varies sharply, capturing more than a third of all mechanized trips in rail-served cities such as Berlin (Germany), Helsinki (Finland), Lisbon (Portugal) and Vienna (Austria) and fewer than 10 per cent of mechanized trips in European cities such as Ghent (Belgium), Lille (France) and Glasgow (UK).

In cities of developing countries, the role of public transport varies markedly, particularly among African cities. Only a handful of Sub-Saharan Africa cities (such as Addis Ababa, Ethiopia; Abidjan, Côte d’Ivoire; and Ouagadougou, Burkina Faso) have reasonably well-developed, institutionalized public bus services that account for 25 to 35 per cent of all motorized trips. Most other parts of Sub-Saharan Africa are characterized by private paratransit and informal operators, with local buses serving only a small fraction of trips, if any. In fact, in most of Sub-Saharan Africa, and poorer parts of South and Southeast Asia, government-sponsored public transport services are either inadequate or non-existent. However, in North Africa, many cities have well-
developed public transport systems, including formal buses and informal shared taxis, and rail-based modes. In Egypt for example, Cairo’s metro has been operational and expanding since 1987. Similarly, a modern light rail system in Tunis, Tunisia, has been successfully operating since the early 1990s. In Cairo, public transport (formal and informal) accounts for more than 75 per cent of daily motorized trips.38

In South-Eastern Asia, conventional 50-passenger buses are the workhorse of the public transport networks of most cities. In Bangkok, Thailand, 50 per cent of passenger trips are by bus, rising to 75 per cent during peak hours.40 In Eastern Asia, buses serve slightly larger shares of mechanized trips than metros in Taipei, China (14.4 versus 12.9 per cent) and Shanghai, China (12.9 per cent versus 5.7 per cent); whereas metros are more dominant in Hong Kong, China (35.5 per cent of mechanized trips); Seoul, Republic of Korea (34.8 per cent); and greater Tokyo, Japan (57 per cent).41 Throughout Latin America, buses dominate, even in rail-served cities such as São Paulo (Brazil), Santiago (Chile) and Buenos Aires (Argentina). As noted in Chapter 3, the world’s most extensive bus rapid transit (BRT) networks are currently found in Latin America, where a total of 18 cities currently have some form of BRT system.42

Despite growing concerns over energy supplies, climate change and access for the poor, public transport’s modal share of trips is expected to decline over the next decade in all world regions. If recent trends continue, the number of trips made by public transport will increase by around 30 per cent between 2005 and 2025, an estimate that is far less than the 80 per cent growth in trips by private motorized vehicles over the same period.43 In recent years, public transport’s downward spiral has been most pronounced in Eastern Europe. The transition to capitalist economies has brought with it substantial public transport services cuts and disinvestments – the same kind of vicious cycle that has marginalized public transport in more advanced economies.

The declining market share of trips served by public transport is cause for concern since they are the most efficient forms of motorized mobility, particularly for low-income earners. The low and decreasing role of public transport renders it even more complicated to foster an effective linkage between land-use and transport planning. More effort is devoted to control and regulation of the private and informal sector operators whose main motivation is increasing profit.

Informality

Worldwide, the informal transport sector provides much-needed (and much-valued) mobility, particularly for the poor. The lack of affordable and accessible public transport systems in developing countries has led to the proliferation of informal operators, such as private microbus and minibus services. These modes help fill service gaps but can also worsen traffic congestion and air quality. In some settings, informal carriers are the only forms of public transport available. In India, for example, only about 100 of the more than 5000 cities and towns have formal public transport systems. Accordingly, conventional public transport has been replaced by more ubiquitous but less affordable paratransit such as motorcycle taxis, rickshaws, jeepneys and jinneys.44

Since cities in poorer countries seldom have the institutional and financial capacity to increase and sustain public transport systems – and private firms typically lack the capital and incentive to provide comprehensive transport systems – small, private and informal systems prevail. Like many market-based solutions, they provide a service that must be filled, but not without compromises to the environment and lack of service to those who are marginalized or live in less profit-rich locations.45 These are called informal public transport or paratransit, because they serve the public and are essentially providing a public good.

Non-motorized transport

Non-motorized transportation is often the dominant mode of urban mobility when public transport services are poor and incomes are low. In 2005, about 37 per cent of urban trips worldwide were made by foot or bicycle, which are the two major modes of urban non-motorized transport (Figure 1.4). For very short trips, walking is the main mode of transport in both developed and developing countries. The modal share of walking can be very high. In African cities, walking accounts for 30–35 per cent of all trips. In Dakar (Senegal) and Douala (Cameroon) the share is much higher, at over 60 per cent.46 Evidence shows that non-motorized transport is an important component in poorer and smaller cities, capturing as much as 90 per cent of all person-trips.47 Furthermore, in densely packed urban centres, non-motorized transport provides access to places that motorized modes cannot reach, and is often the fastest means of getting around. In South Asia’s densest, most congested cities, more than half of all passenger and goods trips are by foot, bicycles or rickshaw.48

Walking is often the only form of transport for the very poor, when weather and topography permit. Many people in developing countries are ‘captive walkers’, meaning that they walk because they cannot afford an alternative. For them, having a well-connected and safe pedestrian environment is critical to meeting their daily needs.49 As the least costly form of mobility, walking allows the very poor to reduce their daily expenses, and thus has significant poverty impacts. The most visible indicator
Traffic congestion is a major indication of the disjuncture between land-use planning and transport systems. In many peripheral trips through the central business district, rising congestion problem in Latin American cities such as Mexico City (Mexico), Santiago (Chile) and São Paulo (Brazil).62 Congestion has widespread impacts on the urban quality of life, consumption of fossil fuels, air pollution and economic growth and prosperity. World Bank studies from the 1990s estimated that traffic congestion lowered the GDP of cities by some 3–6 per cent, with the higher value applying mostly to rapidly growing cities (e.g. places with busy port traffic, reliance on just-in-time inventorying and manufacturing, and other time-sensitive activities).63 Time losses from traffic congestion are estimated to cost the equivalent of 2 per cent of GDP in Europe and 2–5 per cent in Asia.64 The hidden external costs of traffic congestion in Metro Manila (the Philippines), Dakar (Senegal) and Abidjan (Côte d'Ivoire) have been pegged at nearly 5 per cent of those cities’ GDPs.65 Such costs not only exact a burden on the present generation, but also commit future generations to long-term debts, which can eventually slow global growth.

Traffic congestion is a major indication of the disjuncture between land-use planning and transport systems. It not only exposes the limitation of a transport-oriented bias to mobility, but it also reveals the efficiency of land-use systems in a given city. Limited road capacity, in the face of growing demand for motorized mobility, partly explains deteriorating traffic conditions. In general, the percentage of the total land area devoted to streets in developing-country cities is considerably lower than in the cities of developed countries.67 In India, the annual growth rate in traffic during the 1990s was around 5 per cent in Mumbai, 7 per cent in Chennai and 10 per cent in Delhi. However, none of these cities have expanded their road supply by even 1 per cent annually.68

In most developing-country cities, the inadequate quantity and structure of road infrastructure is often associated with rapid population growth. For instance, Nairobi, Kenya – a city with approximately 3.5 million inhabitants – has a shortage of collector streets and major thoroughfares to serve traffic demands, compared to developed-country cities of a similar size. The city’s arterials are mostly radial and the lack of circumferential roads force-funnels many peripheral trips through the central business district, with widespread effects on traffic flows.69 Central Bangkok, Thailand, has a fishbone street pattern, featuring narrow local streets that channel most motorized trips onto oversaturated thoroughfares. The absence of many collector-distributor
roads has contributed to inefficient patterns of traffic flows.\(^7^0\)

Congested road infrastructure in developing countries, is further exacerbated by forms of encroachment onto the carriageway, or excessive provisions for local access. The most common forms of encroachment are caused by street hawkers and informal transport operators, which combine to block the smooth flow of traffic. In Sub-Saharan Africa, street vendors occupy around a third of road space in crowded cities.\(^7^1\) A further congestion-related problem is the absence of traffic management in many developing countries. Phnom Penh, Cambodia – a city of nearly 2 million inhabitants – has 864 kilometres of roads, but just 36 traffic signals.\(^7^2\) In Lebanon, congestion is made worse by inadequate road signage, a failure to manage limited supplies of parking and a culture of aggressive, unruly driving.\(^7^3\)

Freight movements can also contribute to congestion. In most poor countries, the goods-movement sector lacks basic infrastructure, such as freight terminals, warehousing, parking and staging areas, freight-forwarding centres and other logistical needs. Few developing-country cities specifically plan for freight movements, thus a haphazard, dysfunctional arrangement of urban logistics is often the rule. An example is Lomé, Togo, where the absence of a bypass road around the city causes trucks to leave the port and head directly into the core of the city.\(^7^4\) Heavy trucks contribute to (and suffer from) poor-quality roads – because wear-and-tear exponentially rises with the dead-axle weight of a vehicle (e.g. one heavily loaded truck can inflict as much road damage as 10,000 passing cars).\(^7^5\) Consequently, road decay worsens congestion and increases the operating costs.

SUSTAINABILITY CHALLENGES OF URBAN MOBILITY

Building on the seminal Brundtland Report of 1987,\(^7^6\) a sustainable urban mobility system is one that satisfies current mobility needs of cities without compromising the ability of future generations to meet their own needs.\(^7^7\) The idea of sustainability in urban mobility has moved beyond a focus on ecology and the natural environment to also include social, economic and institutional dimensions. Furthermore, it has moved beyond the preoccupation with movement and flows within urban settings to looking at enhancing proximity in space. A holistic and integrated approach to urban land-use and transport planning and investment is needed if urban areas are to become socially, environmentally and economically sustainable.

Accordingly, four pillars of sustainability are considered in the review and analysis of urban mobility in this report; namely the social, environmental, economic and institutional dimensions. These are not separate or isolated, as there are important synergies and co-benefits. For instance, pursuing economic sustainability can also confer environmental benefits, such as instituting taxation policies that also conserve energy. In the early 2000s, Japan phased in reduced ownership taxes on fuel-efficient vehicles by 25 to 50 per cent and imposed higher charges on large-engine vehicles, including vehicles that were more than ten years of age.\(^7^8\) While regulatory and fiscal instruments can be used to promote urban sustainability, as mentioned earlier, the most effective mechanism is the effective utilization of the planning process.

Integration of land-use and transport planning

As pointed out in the preceding sections, the ultimate goal of mobility is the capacity to traverse urban space. Relationships between locations, as well as impediments and conveniences between them, are critical in determining the ease and convenience of accessing them. The development of a sustainable transportation system starts with the organization of urban space. The main objective is to reduce the need for mobility by reducing the number of trips and length of travel distance. As a result, urban density is optimized and functionality of urban places enhanced. Sustainability entails a shift of emphasis from transportation to people and places. In operational terms, it still calls for improvement in transportation systems and even advocates for innovations in other modes of communication, while giving emphasis to streamlining space utilization in its relationship with people.

Neglecting the connection between land use and mobility has created the urban sprawl evidenced in most cities today. During the period since the Second World War, the urban land area in developed countries has doubled, while it has grown by a factor of five in developing countries.\(^7^9\) From 1995 to 2005, 85 per cent of the 78 largest cities in developed countries experienced a faster growth in their suburban areas than their urban cores.\(^8^0\) In Europe, studies of land-cover changes reveal that cities in Estonia, Latvia, Croatia, Slovakia, Poland, Hungary and Bulgaria are experiencing the most sprawl.\(^8^1\)

In many developing countries, urban sprawl comprises of two main contrasting types of development in the same city. The first is characterized by large peri-urban areas with informal and illegal patterns of land use. This is combined with a lack of infrastructure, public facilities and basic services, and is often accompanied by little or no public transport and by inadequate access roads. The other is a form
The urban form – emerging either from a haphazard process of locating settlements and activities, or from strategically planned intervention – makes a big difference in mobility systems.

Urban transport is socially sustainable when mobility benefits are equally and fairly distributed, with few if any inequalities in access to transport infrastructure and services based on income, social and physical differences.

The percentage of urban land allocated to streets is one of the factors that influence the level of connectivity within urban areas. Another factor is how appropriately the streets are laid out to cater for the various mobility modes used within the city. A study found that a large number of cities in developing countries have low percentages of urban land allocated to streets; for example, 6 per cent in Bangui (Central African Republic), 6.1 per cent in Yerevan (Armenia), 11.1 per cent in Accra (Ghana) and 12.3 per cent in Ouagadougou (Burkina Faso). This is despite the fact that these cities are experiencing rapid rates of urbanization, a phenomenon which is poised to impact on their mobility and hence levels of accessibility. The same study found that cities in developed countries had significantly higher percentages of land allocated to streets, the average rate being 29 per cent. The linkages between urban land allocated to streets and the planning of accessible cities are discussed further in Chapter 5.

Land-use and transport planning have been called for and to some extent addressed since the 1970s. Nevertheless, a persisting challenge remains the application of integrated land-use and transport planning in practice, as well as dealing with existing transport infrastructure and land-use patterns that cannot always be easily changed, particularly in old middle-size or larger cities. Accordingly, research needs to be directed to such pragmatic issues. It is in making such critical decisions with respect to places and people that the pillars and principles of sustainability can be operationalized.

Social dimensions

Urban transport is socially sustainable when mobility benefits are equally and fairly distributed, with few if any inequalities in access to transport infrastructure and services based on income, social and physical differences (including gender, ethnicity, age or disabilities). Social sustainability is rooted in the principle of accessibility wherein equality exists among all groups in terms of access to basic goods, services and activities – such as work, education, medical care, shopping, socializing – and to enable people to participate in civic life. It recognizes the critical importance of mobility and accessibility in fully enjoying human rights.

As earlier indicated, one important aspect of accessibility is the affordability of transport modes. Affordable transportation means that people, including those with low incomes, can afford access to basic services and activities (healthcare, shopping, school, work and social activities) without budget strain. For many urban dwellers in developing countries, the availability of reliable and affordable public transport services can be the difference between being integrated into the economic and social life of a city or not. Unaffordable mobility prevents the urban poor from breaking out of the shackles of inter-generational poverty. Furthermore, exorbitant expenditures on public transport take money away from other essential needs, such as food, health care, education and shelter.

Where governments are unable to construct and subsidize public transport services, travellers often have to pay large, sometimes exorbitant, shares of their incomes to private, often informal, paratransit operators. Setting prices at whatever amount the market will bear, informal operators invariably charge more per kilometre travelled than publicly supported ones. In the poor informal housing settlements on the outskirts of Mexico City – beyond the service jurisdiction of the city’s metro system – residents sometimes take two to three separate colectivos (shared-ride taxis and microbuses) to reach a metro terminal that provides low-cost connections to the city and job opportunities. Travel can consume 25 per cent or more of daily wages. Time costs can also be exorbitant: 20 per cent of workers in Mexico City spend more than three hours travelling to and from work each day. Studies show that taking a series of informal minibuses and motorized tricycles to and from work can cost 20 to 25 per cent of daily wages in rapidly growing cities such as Delhi (India), Buenos Aires (Argentina) and Manila (the Philippines), and as much as 30 per cent in Nairobi (Kenya), Pretoria (South Africa) and Dar es Salaam (Tanzania).
Social sustainability also has gender, age and disability dimensions. A majority of women in many parts of the world are less likely to have access to individual means of transport, be they cars or bikes: in Bamako (Mali), 87 per cent of women versus 57 per cent of men walk for virtually all trips; in Chennai (India), 83 versus 63 per cent; and in Chengdu (China), 59 versus 39 per cent. In addition, women often create complex trip chains — e.g. taking children to school followed by shopping and other errands — so as to make traditional fixed-route bus services impractical, forcing them to rely on more expensive door-to-door services (whether by private car in developed countries or by rickshaws, bicycles, motorcycle taxis in poorer countries). Other transport-related burdens faced by women are: lack of pavements and safe crosswalks; sexual harassment in overcrowded buses; and personal security threats from unlighted streets and public transport stops.

In many developed countries, the elderly and disabled have statutory rights that guarantee equal and full accessibility to public facilities like pavements, rail-based public transport and buses, such as legislated in the Americans with Disabilities Act (ADA) in the US. Few developing countries provide such protection, or design streets and transport infrastructure, to enable access for the elderly and disabled. Young people constitute a group at further risk of transport disadvantage. In Sub-Saharan Africa, school-age children and youth often walk long distances, along congested corridors, to reach schools, exposing them to accident risks and all sorts of hardships and deprivations.

Safety is a crucial aspect of a high-quality urban mobility system. It includes the safety of infrastructures and of the rolling stock, as well as citizen’s safety in reaching the system (e.g. walking from home to the bus stop). Road accidents have become a global pandemic. Each year, around 1.0 million people are killed and a further 20–50 million injured in road traffic accidents worldwide. Road crashes result in economic costs of up to 3 per cent of GDP. The vast majority of road traffic accident deaths (more than 90 per cent) occur in developing countries, despite these countries accounting for only 33 per cent of the world’s motor vehicles. Road safety levels differ sharply between developing and developed countries and the gap is widening. In the latter part of the twentieth century, road accident fatalities fell in developed countries but rose sharply elsewhere — e.g. 300 per cent increase from 1980 to 2000 in Africa. The World Health Organization (WHO) predicts road traffic deaths in low-income countries will more than double between 2005 and 2030, while they are expected to fall in wealthier nations. Rapid urbanization, greater reliance on motorized transport to move people and goods, growing income disparities and lax enforcement of traffic laws, are among the factors that account for rising road traffic crashes and fatalities.

Environmental dimensions

Many of the environmental challenges in the urban transport sector are rooted in its reliance on the non-renewable fossil fuel to propel private motor vehicles. The share of the world’s oil consumption accounted for by transportation increased from 45.4 per cent in 1973 to 61.5 per cent in 2010, with the sector expected to continue to sustain the increasing demands for oil (Figure 1.5). World reserves of conventional oil exceed what has been used to date, but with rapid motorization, many observers believe it is unlikely that this energy source will last beyond the mid-century mark. As demand for transportation fuels rises, prices increase. End consumers have to cope with a rise in prices of petrol and diesel fuels for motorized travel.

Rising greenhouse gas emissions and global temperatures underscore the urgency of weaning the transport sector from its dependency on oil and automobility. Globally, 13 per cent of all greenhouse gas emissions come from the transport sector and three-quarters of this is caused by road transport. By 2050, global carbon dioxide (CO₂) emissions from motor vehicle use could be three times as large as they were in 2010. The transport sector’s footprint, however, varies widely across parts of the world.
cities, accounting for 11 per cent of greenhouse gas emissions in Shanghai and Beijing (China), 20 per cent in New York City (US) and London (UK), 35 per cent in Rio de Janeiro (Brazil) and Mexico City, 45 per cent in Houston and Atlanta (US), and 60 per cent in São Paulo (Brazil). Levels of energy consumption for transport vary significantly even among cities with similar GDPS, depending on urban form, financing and taxation policies, and the quality and affordability of alternative modes. As urban form gets more compact and dense, CO₂ emissions from transport decline. For instance, Austria’s urban areas are more than four times denser than Australia’s, and generate only 60 per cent of the amount of CO₂ per capita that Australia’s urban areas generate. Mode share is also an important factor: energy consumption levels decrease as the share of trips on public transport and non-motorized modes increases. In 2007, per capita energy consumption in the transport sector was more than three times higher in the US than in Japan and Germany. This is partly explained by the modal share in these countries; in Japan, for example, 40 per cent of all urban motorized trips are made by public transport, compared to only 4 per cent in the US. Indeed, greenhouse gas emissions per passenger of public transport (bus, rail and trams) is about one-twelfth that of the car.

The urban transport sector is also a major source of air and noise pollution, with serious public health impacts. Long-term repeated exposure to high levels of ozone and particulates can diminish lung functions and trigger asthma and other respiratory illnesses.

Economic dimensions

The urban transport sector is economically sustainable when resources are efficiently used and distributed to maximize the benefits and minimize the external costs of mobility. This safeguards investments in and maintenance of transport infrastructure and assets. The translation of investments into walkways, bikeways, railways and roadways creates jobs, encourages business expansion and increases economic output. Increasingly, the litmus test of cost-effective transport infrastructure is whether the project is ‘bankable’ – capable of attracting loans and private investors.

Urban transport infrastructure is expensive. It can consume a large share of the public budget in emerging economies. In Ho Chi Minh City, Viet Nam, a US$5 billion subway is currently under construction and in Jakarta, Indonesia, a new ring road is expected to cost a similar amount. Crafting reliable and equitable funding programmes for transport infrastructure that reward efficient and sustainable behaviour remains a formidable challenge.

Public transport often faces serious fiscal challenges. Almost universally, public transport systems rely on public subsidies. Cities that finance the costs of public transport operations can face severe fiscal burdens. Experiences show that in many cases operating subsidies are used to finance higher worker compensation and benefit packages, without commensurate improvements in public transport services. In developing countries, cities without adequate fiscal resources end up relying on informal sector operators to fill the gaps. Lower-income cities that borrow funds in foreign currency to build transport infrastructure also face the risk of having to pay back loans with devalued local currency.

Another fiscal challenge cities face worldwide is paying for ongoing road maintenance and expansion. Taxes on fuels are usually the primary means of funding road infrastructure. However, increased fuel economy, combined with travel saturation, has reduced such revenues in developed countries. For example, fuel economy improvements in France that reduce CO₂ emissions of the average diesel car from 160 to 130 grams per kilometre, have at the same time dramatically reduced government revenues. This has called for a shift to kilometre-based taxes, something which is now possible given technological advances such as global positioning systems (GPS) and radio frequency identification devices.

Institutional and governance dimensions

Translating visions and plans for sustainable urban mobility depends on the presence of supportive and nurturing governance, as well as sound institutional and regulatory structures. The ability to manage and respond to escalating demands for urban travel – i.e. to plan, predict, foresee, preserve rights-of-way, build, operate and maintain facilities – is often limited in developing countries. The lack of adequate institutional capacity – whether in the form of a trained and educated civil-service talent pool, or a transparent and largely corruption-free procurement process for providing transport infrastructure and services – poses immense challenges in advancing sustainable urban transport.

Institutional fragmentation undermines the ability to coordinate urban transportation services. Separating urban sector functions into different organizations — each with its own boards, staff, budgets and by-laws – often translates into unisectoral actions and missed opportunities, such as the failure to site new housing projects near BRT stations. Multiple public transport service providers can mean uncoordinated bus and rail schedules, multiple fare payments (which increase user costs) and facility designs that are poorly integrated. In addition, bloated bureaucracies are notorious for waste and delays in the deployment of urban transport projects.

Another institutional void is the minimal involvement of citizens and broad-based community interests in the planning and design of urban trans-
port facilities and services. Decision-making needs to be more inclusive, transparent and democratic. Decentralizing decision-making ensures greater voice and legitimacy to non-governmental organizations (NGOs) and civil society.

Lack of capacity for strategic planning and coordination is a major problem in many cities of the world, particularly in developing countries. Institutions rarely have sufficient time or funds to expand transport infrastructure fast enough to accommodate travel demands. The ability to advance sustainable mobility programmes or introduce efficient pricing schemes presumes something that rarely exists — a well-managed transport authority that sets clear and measurable objectives and rigorously appraises the expenditure of funds in a transparent and accountable manner. Often, the mechanisms for coordinated multi-sectoral planning are either weak or absent. Understanding the linkage between land-use and urban transport planning is important for the multiplicity of actors, levels and institutions involved.

CONCLUDING REMARKS AND STRUCTURE OF THE REPORT

This chapter has provided an overview of the implications of the unfolding events of rapid urbanization, hyper-mobility and the health and climate hazards associated with car-dependent cities — all of which are inextricably linked. During the past 100 years, the structural foundations for today’s urban mobility systems were derived from developmental circumstances, when resources were cheap, urban populations were low and modes of communication were limited. However, while the global trends discussed in this chapter pose uncertainties and risks, there are also unprecedented opportunities for advancing sustainable urban mobility.

In order to become more sustainable, cities should be more compact, encourage mixed land use and prioritize sustainable modes of mobility such as public and non-motorized transport. Furthermore, urban mobility systems need to be inclusive, providing mobility opportunities for all. Improved urban planning will be critical toward designing and retrofitting cities to better accommodate sustainable modes. Compact, mixed-use cities with high-quality pedestrian and cycling infrastructure, combined with policy measures that charge the true social cost of using private motorized vehicles, offer the best hope of increasing the modal shares of sustainable modes of mobility.

A paradigm shift is also needed in how transport users think about transportation and its relationship to the city. Of particular significance is the need for government institutions and planning processes to emphasize accessibility over mobility. Furthermore, policies to encourage sustainable urban mobility should take into account social, environmental, economic as well as institutional dimensions of sustainability. This calls for a more holistic and inclusive framework for the planning, design and provision of urban mobility systems and services. Accordingly, translating visions and plans for sustainable urban transport futures depends on the presence of a supportive governance and regulatory structure.

The following nine chapters of this report analyse global trends, conditions and policy responses with respect to urban mobility. They investigate the connection between transport and various aspects of urban form, and suggest measures towards the promotion of sustainable mobility. The discussion in the next three chapters focuses on trends and conditions with respect to the two main categories of urban transport: passenger transport in Chapters 2 and 3 and goods transport in Chapter 4. The evidence presented in these chapters shows that, urban transport policy and planning challenges in developing countries and countries with economies in transition differ significantly from those found in the urban areas of developed countries; as do the resources and institutional frameworks at the disposal of policy-makers and planners. Notwithstanding, the best choice of policy responses will also vary within each region and even within countries.

Chapter 5 serves as the anchor of this report, exposing the basis of the prevailing anomalies and opportunities for corrective intervention. It looks at the interrelation between mobility and the spatial structure of the city, while stressing the need to reconfigure urban form to enhance accessibility. The importance of integrating transport and land-use planning is emphasized while the underlying principles of sustainable development provide the normative framework for change. The policy implications discussed in Chapter 5 lay the ground for the subsequent discussion in Chapters 6 to 9, which focus on the social, environmental, economic and institutional dimensions of sustainable mobility. Chapter 10 concludes the report and presents policy recommendations on how to enhance the sustainability of urban mobility systems.
NOTES

1 Pourbaix, 2012.
2 ITF, 2011.
3 ITF, 2011.
4 CEMR, 2007; Preamble.
5 See Table 2.3.
6 Pourbaix, 2011.
7 See Table 2.3.
8 IEA, 2011.
9 Pan, 2011; Tiwari, 2011.
10 Jirón, 2011.
11 Jain, 2011; World Bank, 2011b.
12 Altshuler, 1979; Pucher and Lefevre, 1996.
14 See Figure 2.12 (and Figure 8.1).
16 Millard-Ball and Schipper, 2010; ITF, 2011.
17 ITF, 2011.
18 ITF, 2011.
19 Suchorzewski, 2011.
20 Jain, 2011.
21 From 95,000 in 1990 to 208,000 kilometres in 2003 (Wenhua, 2005).
22 From 892 million square metres in 1990 to 3156.5 million square metres in 2003 (Wenhua, 2005).
26 Davis and Kahn, 2011.
30 In varying degrees an observation made by the Governor of New York resonates for many cities in the world. He said that ‘the simple truth is that New York’s State and local governments have become too big, too expensive, and too ineffective. In fact, there now are more than 1,000 State agencies – an ever proliferating tangle of boards, commissions, councils, departments, divisions, offices, task forces and public authorities. Likewise, New York’s antiquated system of local government today consists of more than 10,500 governmental entities. This oversized and inefficient bureaucracy is a luxury taxpayers cannot afford’ (Cuomo, 2010, p61).
31 See, for example, Sassen, 2007; Hall, 1997.
33 Swilling, 2012.
34 Swilling, 2012.
35 UITP, 2006.
36 UITP, 2006.
37 Pirie, 2011; Godard, 2011b.
40 Chin, 2011.
41 Pan et al, 2011.
42 Wright, 2011.
43 Pourbaix, 2012.
44 Jain, 2011.
46 UITP, 2011b.
47 Pendakur, 2011.
48 Jain, 2011.
49 Montgomery and Roberts, 2008.
50 Pucher and Buehler, 2008.
53 Pendakur, 2011.
54 Pendakur, 2005.
55 Pirie, 2011.
56 Jain, 2011.
57 Jain, 2011.
58 IBM Corporation, 2010.
59 IBM Corporation, 2010.
60 IBM Corporation, 2010.
62 Jirón, 2011.
63 Kessides, 1993; World Bank, 1994; World Bank, 2002a.
64 London European Partnership for Transport, 2011.
65 Chin, 2011; UITP, 2011b.
66 For the purpose of this report, the term ‘streets’ includes all categories of road infrastructure, including arterial highways, primary and secondary roads, as well as bikepaths and footpaths. 67 Vasconcellos, 2001; see also UN-Habitat, 2013b.
70 Cervero, 1991.
71 Pirie, 2011; Pendakur, 2005.
72 Chin, 2011.
73 El-Geneidy et al, 2011.
74 Godard, 2011b.
75 Papagiannakis and Mostavizadeh, 2008.
76 VWCED, 1997.
77 Black, 1996; Satoh and Law, 2009.
78 Hirota and Poos, 2005.
79 OECD, 2010a.
80 OECD, 2010b.
81 Hirt and Stanilov, 2009.
82 UN-Habitat, 2013b; see also Vasconcellos, 2001.
83 UN-Habitat, 2013b; see also Vasconcellos, 2001.
84 Cervero, 1998.
86 World Bank, 2009b.
87 Ferrarazzo and Arauz, 2000; Kaltheier, 2002; Carruthers et al, 2005.
88 Peters, 2011.
89 McMillan, 2011.
91 World Bank, 2008a.
92 Aaron-Thomas and Jacobs, 2011.
93 See Table 2.3.
94 World Bank, 2008a.
95 WHO, 2008.
96 Aaron-Thomas and Jacobs, 2011.
97 Black, 2010.
98 See Figure 7.1.
99 UN-Habitat, 2011.
100 ITF, 2011.
101 IEA, 2011d; UN-Habitat, 2011.
102 OECD, 2010a.
103 OECD, 2009.
104 Korea Transport Institute, 2010.
106 Chin, 2011.
108 Van Dender and Crist, 2011.
109 Dimitriou, 2011.
REFERENCES

Ainsworth, B., R. Mannell, T. Behrens and L. Caldwell (2007) ‘Perspectives of public health and leisure studies on...

Cervero, R. and J. Murakami (2008a) ‘Rail + property development: A model of sustainable transit finance and

References

Hall, P. and C. Hass-Klau (1985) Can Rail Save the City? The Impacts of Rail Rapid Transit and Pedestrianisation on British and German Cities, Gower, Farnborough

Institution of Civil Engineers (1990) *Rail Mass Transit for Developing Countries*, Thomas Telford, London

Japan Society of Traffic Engineers (2007) *The Planning and Design of At-Grade Intersections*, Tokyo, Japan

Kenya Revenue Authority (undated) ‘The frequently asked questions (FAQs)’, Customs Services Department, http://www.kra.go.ke/customs/faqcustoms2.html, last accessed 30 January 2013
Korea Transport Institute (2010) Toward an Integrated Green Transportation System in Korea, Korea Transport Institute, Seoul

LTA (Land Transport Authority) Academy (2011) ‘Passenger transport mode shares in world cities’, *Journeys* 7: 60–70

MTRC (Mass Transit Railway Corporation) (undated) ‘Share services.php#04, last accessed 30 January 2013

UNCHS (1997) *The Istanbul Declaration and the Habitat Agenda*, with subject index, UNCHS, Nairobi

UNCHS (1997) *The Istanbul Declaration and the Habitat Agenda*, with subject index, UNCHS, Nairobi

Planning and Design for Sustainable Urban Mobility

Zhao, J. (2011) ‘Land value capture China style: The good, the bad and the ugly’, Paper presented at University of Minneapolis, August
