Design and Construction of Concrete Floors

George Garber
Design and Construction of Concrete Floors
Design and Construction of Concrete Floors

George Garber
Contents

Introduction

1. Thinking about floor design
 - The floor’s dual role
 - A user-oriented approach
 - Beyond structural design
 - A balanced approach
 - Method versus performance specifications
 - Single-course floors
 - Standards
 - Lessons from roadbuilding
 - Remedies for bad work

Part I The uses of concrete floors

2. Non-industrial floors
 - Residential floors
 - Office floors
 - Floors for the retail trade
 - Institutional floors

3. Warehouse floors
 - Storage systems
 - Materials-handling systems
 - Battery-charging areas
 - The load-class system
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mix design and mixing</td>
<td></td>
</tr>
<tr>
<td>Mix design</td>
<td>169</td>
</tr>
<tr>
<td>Mixing</td>
<td>172</td>
</tr>
<tr>
<td>11 Transporting and placing concrete</td>
<td></td>
</tr>
<tr>
<td>Transporting concrete</td>
<td>175</td>
</tr>
<tr>
<td>Slab layout</td>
<td>181</td>
</tr>
<tr>
<td>Side forms</td>
<td>190</td>
</tr>
<tr>
<td>Tools for placing concrete</td>
<td>191</td>
</tr>
<tr>
<td>Compaction</td>
<td>193</td>
</tr>
<tr>
<td>The next step</td>
<td>194</td>
</tr>
<tr>
<td>12 Curing</td>
<td></td>
</tr>
<tr>
<td>Curing methods</td>
<td>195</td>
</tr>
<tr>
<td>How to choose a curing method</td>
<td>203</td>
</tr>
<tr>
<td>Timing</td>
<td>203</td>
</tr>
<tr>
<td>Part IV Joints and Cracks</td>
<td></td>
</tr>
<tr>
<td>13 Cracks</td>
<td></td>
</tr>
<tr>
<td>Plastic-shrinkage cracks</td>
<td>207</td>
</tr>
<tr>
<td>Plastic-settlement cracks</td>
<td>208</td>
</tr>
<tr>
<td>Crazing</td>
<td>209</td>
</tr>
<tr>
<td>Drying-shrinkage cracks</td>
<td>210</td>
</tr>
<tr>
<td>Thermal-contraction cracks</td>
<td>211</td>
</tr>
<tr>
<td>Structural cracks</td>
<td>212</td>
</tr>
<tr>
<td>Crack repair</td>
<td>214</td>
</tr>
<tr>
<td>14 Curling</td>
<td></td>
</tr>
<tr>
<td>False curling</td>
<td>219</td>
</tr>
<tr>
<td>Resisting curl</td>
<td>221</td>
</tr>
<tr>
<td>Limiting curl</td>
<td>222</td>
</tr>
<tr>
<td>Designing around curl</td>
<td>223</td>
</tr>
<tr>
<td>Repairing curled slabs</td>
<td>224</td>
</tr>
<tr>
<td>15 Joints</td>
<td></td>
</tr>
<tr>
<td>The function of joints</td>
<td>227</td>
</tr>
<tr>
<td>Joint types</td>
<td>228</td>
</tr>
<tr>
<td>Load transfer at joints</td>
<td>233</td>
</tr>
<tr>
<td>Inducing joints</td>
<td>241</td>
</tr>
<tr>
<td>Joint fillers</td>
<td>245</td>
</tr>
<tr>
<td>Armoured joints</td>
<td>249</td>
</tr>
<tr>
<td>Joint sealants</td>
<td>249</td>
</tr>
</tbody>
</table>
Contents

16 Crack control in ground-supported floors 253
 The “let it crack” approach 254
 Unreinforced floors with joints 254
 Reinforced floors without joints 257
 Reinforced floors with joints 262
 Prestress 267
 Sub-slab friction 274

Part V The floor surface 275

17 Floor finishing 277
 Principles of finishing 277
 Tools for finishing 278
 The order of finishing steps 290
 Types of finishes 291
 Other finishing methods 294
 How to specify finishes 297

18 Concrete toppings 299
 Monolithic toppings 299
 Bonded toppings 301
 Unbonded toppings 302
 Forbidden thicknesses 303
 Cement–sand screeds 303
 Terrazzo 309
 Summary – choosing a topping 310

19 Surface regularity 311
 Flatness and levelness 312
 Defined versus random traffic 312
 F-numbers 313
 The TR 34 system 320
 Straightedge tolerances 325
 Factors that affect surface regularity 326
 Superflat floors 329

20 Resistance to wear 333
 The traditional approach 334
 Classifying wear resistance 335
 Testing wear resistance 337
 How to specify wear resistance 340
 Factors that affect wear resistance 340
 Improving wear resistance 345
21 Resistance to chemical attack 349
Concrete's chemical resistance 349
Protecting the concrete 350
Attack from below 353

22 Preparation for coatings, toppings and floorcoverings 355
Moisture 355
Bond 361
Surface regularity 362

References 365

Glossary 369

Index 379
Introduction
This list does not include published standards identified by the letters BS, ACI, or ASTM. Text references to such standards include each standard's number.

American Concrete Institute (1982). Concrete Craftsman Series – Slabs on Grade. American Concrete Institute.

Japan Society of Civil Engineers, 1985. *Method of Test for flexural strength and flexural toughness of SFRC*. Japan Society of Civil Engineers.

References
