Handbook of Encapsulation and Controlled Release

The field of encapsulation, especially microencapsulation, is a rapidly growing area of research and product development. The Handbook of Encapsulation and Controlled Release covers the entire field, presenting the fundamental processes involved and exploring how to use those processes for different applications in industry. Written at a level comprehensible to non-experts, it is a rich source of technical information and current practices in research and industry.

This book is particularly designed for scientists and engineers working in various industries, including food, consumer products, pharmaceuticals, medicine, agriculture, nutraceuticals, dietary supplements, cosmetics, flavors, and fragrances. It offers a broad perspective on a variety of applications and processes, providing research information, figures, tables, illustrations, and references.

The book also lays the groundwork for further advancements in encapsulation technology and controlled release applications. Catering to professionals, researchers, students, and general readers in academia, industry, and research institutions, the Handbook of Encapsulation and Controlled Release is a much-needed reference on the state of the field and an authoritative resource for continued research and development in encapsulation and controlled release technologies.
Handbook of Encapsulation and Controlled Release
Handbook of Encapsulation and Controlled Release

Edited by
Munmaya Mishra
To my family

Also, to those who made and will make a difference through polymer research
for improving the quality of life!
Contents

Preface ... xiii
Editor .. xv
Contributors .. xvii

SECTION I Fundamentals

Chapter 1 Overview of Encapsulation and Controlled Release .. 3
Muunmaya K. Mishra

SECTION II Processes

Chapter 2 Process-Selection Criteria .. 23
James Oxley

Chapter 3 Microencapsulation by Spray Drying ... 35
Stephan Drusch and S. Diekmann

Chapter 4 Spray Drying and Its Application in Food Processing ... 47
Huang Li Xin and Arun S. Mujumdar

Chapter 5 Encapsulation via Spray Chilling/Cooling/Congealing ... 71
Carmen Sílvia Favaro-Trindade, Paula Kiyomi Okuro, and Fernando Eustáquio de Matos Jr.

Chapter 6 Encapsulation via Spinning Disk Technology .. 89
Aurélie Demont and Ian W. Marison

Chapter 7 Encapsulation via Fluidized Bed Coating Technology .. 111
Charles R. Frey

Chapter 8 Encapsulation via Pan-Coating ... 147
Charles R. Frey

Chapter 9 Microencapsulation by Dripping and Jet Break-Up .. 177
Aurélie Demont and Ian W. Marison
Chapter 10 Microencapsulation by Annular Jet Process

Thorsten Brandau

Chapter 11 Encapsulation via Hot-Melt Extrusion

Hemlata Patil, Roshan V. Tiwari, and Michael A. Repka

Chapter 12 Microencapsulation with Coacervation

Michael Yan

Chapter 13 Encapsulation via Microemulsion

Sushama Talegaonkar, Lalit Mohan Negi, and Harshita Sharma

Chapter 14 Iontropic Gelation and Polyelectrolyte Complexation Technique: Novel Approach to Drug Encapsulation

J.S. Patil, S.C. Marapur, P.B. Gurav, and A.V. Banagar

Chapter 15 Microencapsulation via Interfacial Polymerization

Biao Duan

Chapter 16 Microencapsulation via In Situ Polymerization

Biao Duan

Chapter 17 Microencapsulation with Miniemulsion Technology

Michael Yan

Chapter 18 Silica-Based Sol-Gel Microencapsulation and Applications

Rosaria Ciriminna and Mario Pagliaro

Chapter 19 Microencapsulation by Phase Inversion Precipitation

Ricard Garcia-Valls and Cinta Panisello

Chapter 20 Microfluidic Encapsulation Process

Fabrizio Sarghini

Chapter 21 Encapsulation Process in Granulation Technology

Himanshu K. Solanki

Chapter 22 Encapsulation via Electrohydrodynamic Atomization Spray Technology (Electrospray)

Milad Jafari-Nodoushan, Hamid Mobedi, and Jalal Barzin
Chapter 23 Encapsulation Process: Pulsed Combustion Spray Drying .. 439
 Chilwin Tanamal and James A. Rehkopf

Chapter 24 Supercritical Fluid Technology for Encapsulation .. 447
 Ángel Martín, Marta Fraile, Soraya Rodríguez-Rajo, and María José Cocero

Chapter 25 Melt-Dispersion Technique for Encapsulation .. 469
 Verica Djordjević, Steva Lević, Thomas Koupantsis, Fani Mantzouridou,
 Adamantini Paraskevopoulou, Viktor Nedović, and Branko Bugarski

SECTION III Ingredients

Chapter 26 Materials of Natural Origin for Encapsulation ... 493
 Munmaya K. Mishra

Chapter 27 Cellulose Ethers: Applications ... 517
 Robert Schmitt, True Rogers, William Porter III, Oliver Petermann,
 and Britta Huebner-Keese

Chapter 28 Cellulose-Based Biopolymers: Formulation and Delivery Applications 535
 J.D.N. Ogbonna, F.C. Kenechukwu, S.A. Chime, and A.A. Attama

Chapter 29 Starch-Based Polymeric Biomaterial: Drug Delivery 575
 Akhilesh Vikram Singh and Ashok M. Raichur

Chapter 30 Biodegradable Polymers: Drug Delivery Applications 583
 Satish Shilpi and Sanjay K. Jain

SECTION IV Characterization

Chapter 31 Encapsulation Field Polymers: Fourier Transform Infrared Spectroscopy (FTIR) 617
 Oana Lelia Pop, Dan Cristian Vodnar, and Carmen Socaciu

SECTION V Applications

Chapter 32 Encapsulation Technologies for Modifying Food Performance 643
 Maria Inês Ré, Maria Helena Andrade Santana, and Marcos Akira d’Ávila
Chapter 33 Microencapsulation: Probiotics .. 685
 Dan Cristian Vodnar, Oana Lelia Pop, and Carmen Socaciu

Chapter 34 Organogels as Food Delivery Systems .. 697
 Tarun Garg, Goutam Rath, and Amit K. Goyal

Chapter 35 β-Lactoglobulin: Bioactive Nutrients Delivery 729
 Li Liang and Muriel Subirade

Chapter 36 Encapsulation of Polyphenolics .. 741
 Florence Edwards-Lévy and Aude Munin-César

Chapter 37 Encapsulation of Bioactive Compounds 765
 Francesco Donsì, Mariarenata Sessa, and Giovanna Ferrari

Chapter 38 Encapsulation of Flavors, Nutraceuticals, and Antibacterials 801
 Stéphane Desobry and Frédéric Debeaufort

Chapter 39 Encapsulation of Aroma ... 833
 Christelle Turchiuli and Elisabeth Dumoulin

Chapter 40 Molecular (Cyclodextrin) Encapsulation of Volatiles and Essential Oils 867
 Paulo José Salústio, Maria Graça Miguel, and Helena Cabral-Marques

Chapter 41 Microencapsulation: Artificial Cells .. 907
 Thomas Ming Swi Chang

Chapter 42 Cell Encapsulation ... 917
 James Blanchette

Chapter 43 Cell Immobilization Technologies for Applications in Alcoholic Beverages 933
 Argyro Bekatorou, Stavros Plessas, and Athanasios Mallouchos

Chapter 44 Enzyme Immobilization in Biodegradable Polymers for Biomedical Applications 957
 S.A. Costa, Helena S. Azevedo, and Rui L. Reis

Chapter 45 Emulsion-Solvent Removal System for Drug Delivery 981
 Wasfy M. Obeidat

Chapter 46 Organogels in Controlled Drug Delivery 1035
 V.K. Singh, B. Behera, Sai S. Sagiri, Kunal Pal, Arfat Anis,
 and Mrinal K. Bhattacharya
Contents

Chapter 47 Microparticulate Drug Delivery Systems .. 1067
 Hemant Kumar Singh Yadav, M. Navya, Abhay Raizaday,
 V. Naga Sravan Kumar Varma, and H.G. Shivakumar

Chapter 48 Colloid Drug Delivery Systems...1111
 Monzer Fanun

Chapter 49 Melt Extrusion: Pharmaceutical Applications .. 1127
 James DiNunzio, Seth Forster, and Chad Brown

Chapter 50 Nanoparticles: Biomaterials for Drug Delivery ..1151
 Abhijit Gokhale, Thomas Williams, and Jason M. Vaughn

Chapter 51 Polymer Systems for Ophthalmic Drug Delivery ...1167
 Sepideh Khoee and Frazaneh Hashemi Nasr

Chapter 52 Drug Delivery Systems: Oral Mucosal ... 1225
 Javier Octavio Morales

Chapter 53 Polymeric Biomaterials for Controlled Drug Delivery .. 1255
 Sutapa Mondal Roy and Suban K. Sahoo

Chapter 54 Nanogels: Chemical Approaches to Preparation... 1271
 Sepideh Khoee and Hamed Asadi

Chapter 55 Electrospinning Technology: Polymeric Nanofiber Drug Delivery1311
 Narendra Pal Singh Chauhan, Kiran Meghwal, Priya Juneja, and Pinki B. Punjabi

Chapter 56 Polyelectrolyte Complexes: Drug Delivery Technology .. 1333
 Lankalapalli Srinivas

Chapter 57 Polymeric Nano/Microparticles for Oral Delivery of Proteins and Peptides 1359
 S. Sajeesh and Chandra P. Sharma

Chapter 58 Vegetable Oil–Based Formulations for Controlled Drug Delivery1381
 V.K. Singh, Sai S. Sagiri, K. Pramanik, Arfat Anis, S.S. Ray,
 I. Banerjee, and Kunal Pal

Chapter 59 Introduction to Commercial Microencapsulation ...1413
 George A. Stahler
Chapter 60 Stable Core-Shell Microcapsules for Industrial Applications.......................... 1423
 Klaus Last

Chapter 61 Microencapsulation Applications in Food Packaging... 1439
 Artur Bartkowiak, Agnieszka Bednarczyk-Drag, Wioletta Krawczynska,
 Agnieszka Krudos, and Katarzyna Sobecka

Chapter 62 Microencapsulation of Phase Change Materials.. 1455
 Jessica Giro-Paloma, Mónica Martínez, A. Inés Fernández,
 and Luisa F. Cabeza

Index... 1483
Preface

The technology and applications of encapsulation (microencapsulation) are rapidly evolving. As a result, there is a clear need for a source of technical information that has broad coverage, is current, and is written at a level comprehensible to nonexperts. With these considerations in mind, the decision to publish the *Handbook of Encapsulation and Controlled Release* was apparent. My hope is to present the material in such a manner that it conveys important overviews of various processes and applications to help stimulate research for further advancements in the field. I have been working in the area for many years and am quite fascinated with the innovations that evolve around both science and art to some extent. I had the privilege of working with experts worldwide in preparing this book with its vast entries in the first edition spanning almost the entire field of encapsulation processes and many applications at that time.

This book is an authoritative and comprehensive reference on the broad subject of encapsulation (microencapsulation) and controlled release applications, which will enable readers to have an enriching experience in general and a targeted knowledge in this evolving arena. This groundbreaking work includes many chapters and offers a broad-based perspective on a variety of applications and processes, including research information, figures, tables, illustrations, and references. It provides the fundamentals, including chemical and physicochemical processes, and explores how to apply those processes for different applications in the industry. This book caters to engineers and scientists (polymer scientists, materials scientists, biomedical engineers, biochemists, and macromolecular chemists), researchers, pharmacists, doctors, and students, and general readers in academia, industry, and research institutions. It is envisioned that this book will serve as the most respected reference work on the process and application of encapsulation in various industries, such as those related to food, consumer products, pharmaceutical/medical, agriculture, nutraceuticals, dietary supplements, cosmetics, flavors, and fragrances.

I feel honored to undertake the important and challenging endeavor of developing the *Handbook of Encapsulation and Controlled Release*, which will cater to the needs of many who are working in the field or are somehow influenced by it. I would like to express my sincere gratitude and appreciation to the authors for their excellent professionalism and dedicated work. Needless to say, a book of this nature would never have existed if the expert authors had not devoted their valuable time for preparing the authoritative chapters. I thank the entire management team at Taylor & Francis Group (CRC Press) and, particularly, Barbara Glunn, who made this book possible.

I also express my sincere love and appreciation to my wife, Bidu Mishra, PhD, for her encouragement, sacrifice, and support during the weekends, early mornings, and holidays spent on this book. Without her help and support, this project would have never been started or completed.

Munmaya K. Mishra
Editor

Munmaya K. Mishra, PhD, is a polymer scientist who has worked in the industry for more than 25 years. He has been engaged in research, management, technology innovations, and product development and contributed immensely to multiple aspects of polymer applications, including encapsulation and controlled release technologies. He is the author/coauthor of hundreds of scientific articles and author/editor of seven books. He is the inventor of many technology innovations and holds over 40 U.S. patents, over 50 U.S. patent pending applications, and over 100 world patents. Dr. Mishra is the recipient of many recognitions and awards, including the Texaco Research Chairman’s Award from the American Chemical Society’s Mid-Hudson Section and the New York Research Award. He is currently the editor-in-chief of three renowned polymer journals published by the Taylor & Francis Group. He is the editor-in-chief of the recently published 11-volume Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. He is also the founder of a scientific organization, the International Society of Biomedical Polymers and Polymeric Biomaterials. About 20 years ago, he founded and established a scientific meeting titled Advanced Polymers via Macromolecular Engineering, which has gained international recognition and is still being held under the sponsorship of the International Union of Pure and Applied Chemistry.
Contributors

Arfat Anis
Department of Chemical Engineering
SABIC Polymer Research Center
King Saud University
Riyadh, Saudi Arabia

Hamed Asadi
Department of Polymer Chemistry
School of Science
University of Tehran
Tehran, Iran

A.A. Attama
Faculty of Pharmaceutical Sciences
Department of Pharmaceutics
University of Nigeria
Nsukka, Nigeria

Helena S. Azevedo
Department of Polymer Engineering
University of Minho
Braga, Portugal

A.V. Banagar
VMVVS’S School of Pharmacy
Karnataka, India

I. Banerjee
Department of Biotechnology and Medical Engineering
National Institute of Technology
Odisha, India

Artur Bartkowiak
Center of Bioimmobilisation and Innovative Packaging Materials
West Pomeranian University of Technology
Szczecin, Poland

Jalal Barzin
Department of Biomaterials
Iran Polymer and Petrochemical Institute
Tehran, Iran

Agnieszka Bednarczyk-Drag
Center of Bioimmobilisation and Innovative Packaging Materials
West Pomeranian University of Technology
Szczecin, Poland

B. Behera
Department of Biotechnology and Medical Engineering
National Institute of Technology
Odisha, India

Argyro Bekatorou
Department of Chemistry
University of Patras
Patras, Greece

Mrinal K. Bhattacharyya
Department of Botany and Biotechnology
Karimganj College
Assam, India

James Blanchette
University of South Carolina
Columbia, South Carolina

Thorsten Brandau
BRACE GmbH
Alzenau, Germany

Chad Brown
Merck & Co., Inc.
West Point, Pennsylvania

Branko Bugarski
Faculty of Technology and Metallurgy
University of Belgrade
Belgrade, Serbia

Luisa F. Cabeza
GRE·A Innovació Concurrent
Edifici Centre de Recerca en Economia Aplicada
Universitat de Lleida
Lleida, Spain
<table>
<thead>
<tr>
<th>Contributors</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helena Cabral-Marques
Research Institute for Medicine and Pharmaceutical Sciences
University of Lisbon
Lisbon, Portugal</td>
<td>Aurélie Demont
Laboratory of Integrated Bioprocessing
School of Biotechnology
Dublin City University
Dublin, Ireland</td>
</tr>
<tr>
<td>Thomas Ming Swi Chang
Faculty of Medicine
Artificial Cells and Organs Research Center
McGill University
Montréal, Québec, Canada</td>
<td>Stéphane Desobry
Laboratoire d'Ingenierie des Biomolecules
Nancy-Université-INPL-ENSAIA
Vandoeuvre, France</td>
</tr>
<tr>
<td>Narendra Pal Singh Chauhan
Department of Polymer Science
University College of Science
Mohanlal Sukhadia University
Udaipur, India</td>
<td>S. Diekmann
Institute of Food Technology and Food Chemistry
Technical University of Berlin
Berlin, Germany</td>
</tr>
<tr>
<td>S.A. Chime
Faculty of Pharmaceutical Sciences
Department of Pharmaceutics
University of Nigeria
Nsukka, Nigeria</td>
<td>James DiNunzio
Merck & Co., Inc.
Kenilworth, New Jersey</td>
</tr>
<tr>
<td>Rosaria Ciriminna
Istituto per lo Studio dei Materiali Nanostrutturati
Palermo, Italy</td>
<td>Verica Djordjević
Faculty of Technology and Metallurgy
University of Belgrade
Belgrade, Serbia</td>
</tr>
<tr>
<td>María José Cocero
Department of Chemical Engineering and Environmental Technology
University of Valladolid
Valladolid, Spain</td>
<td>Francesco Donsi
Department of Industrial Engineering
University of Salerno
Fisciano, Italy</td>
</tr>
<tr>
<td>S.A. Costa
Department of Polymer Engineering
University of Minho
Braga, Portugal</td>
<td>Stephan Drusch
Institute of Food Technology and Food Chemistry
Technical University of Berlin
Berlin, Germany</td>
</tr>
<tr>
<td>Marcos Akira d’Ávila
School of Chemical Engineering
University of Campinas
Campinas, Brazil</td>
<td>Biao Duan
Encapsys, a Division of Appvion, Inc.
Appleton Wisconsin</td>
</tr>
<tr>
<td>Frédéric Debeaufort
Université de Bourgogne–EMMA EA 581
Institut Universitaire de Technologie
Dijon, France</td>
<td>Elisabeth Dumoulin
AgroParisTech
Massy, France</td>
</tr>
<tr>
<td>Aurélie Demont
Laboratory of Integrated Bioprocessing
School of Biotechnology
Dublin City University
Dublin, Ireland</td>
<td>Florence Edwards-Lévy
Faculty of Pharmacy
Institute of Molecular Chemistry of Reims
University of Reims Champagne-Ardenne
Reims, France</td>
</tr>
<tr>
<td>Contributors</td>
<td>Institution/Company</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Monzer Fanun</td>
<td>Colloids and Surfaces Research Center</td>
</tr>
<tr>
<td>Carmen Sílvia Favaro-Trindade</td>
<td>College of Animal Science and Food Engineering</td>
</tr>
<tr>
<td>A. Inés Fernández</td>
<td>Departament de Ciència dels Materials i Enginyeria Metal·lúrgica</td>
</tr>
<tr>
<td>Giovanna Ferrari</td>
<td>Department of Industrial Engineering</td>
</tr>
<tr>
<td>Seth Forster</td>
<td>Merck & Co., Inc.</td>
</tr>
<tr>
<td>Marta Fraile</td>
<td>Department of Chemical Engineering and Environmental Technology</td>
</tr>
<tr>
<td>Charles R. Frey</td>
<td>Coating Place, Inc.</td>
</tr>
<tr>
<td>Ricard Garcia-Valls</td>
<td>Departament d'Enginyeria Química</td>
</tr>
<tr>
<td>Tarun Garg</td>
<td>Department of Pharmaceutics</td>
</tr>
<tr>
<td>Jessica Giro-Paloma</td>
<td>Departament de Ciència dels Materials i Enginyeria Metal·lúrgica</td>
</tr>
<tr>
<td>Abhijit Gokhale</td>
<td>Product Development Services</td>
</tr>
<tr>
<td>Amit K. Goyal</td>
<td>Department of Pharmaceutics</td>
</tr>
<tr>
<td>P.B. Gurav</td>
<td>SVERI's College of Pharmacy</td>
</tr>
<tr>
<td>Frazaneh Hashemi Nasr</td>
<td>Department of Polymer Chemistry</td>
</tr>
<tr>
<td>Britta Huebner-Keese</td>
<td>Dow Chemical Company</td>
</tr>
<tr>
<td>Milad Jafari-Nodoushan</td>
<td>Department of Novel Drug Delivery Systems</td>
</tr>
<tr>
<td>Sanjay K. Jain</td>
<td>Pharmaceutics Research Projects Laboratory</td>
</tr>
<tr>
<td>Priya Juneja</td>
<td>Jubilant Life Sciences</td>
</tr>
<tr>
<td>F.C. Kenechukwu</td>
<td>Department of Pharmaceutics</td>
</tr>
</tbody>
</table>
Contributors

Munmaya K. Mishra
Altria Research Centre
Richmond, Virginia

Hamid Mobedi
Department of Novel Drug Delivery Systems
Iran Polymer and Petrochemical Institute
Tehran, Iran

Javier Octavio Morales
Department of Pharmaceutical Science and Technology
School of Chemical and Pharmaceutical Sciences
University of Chile
Santiago, Chile

Arun S. Mujumdar
Department of Mechanical Engineering
National University of Singapore
Singapore

Aude Munin-César
Faculty of Pharmacy
Institute of Molecular Chemistry of Reims
University of Reims Champagne-Ardenne
Reims, France

M. Navya
Department of Pharmaceutics
Chalapathi Institute of Pharmaceutical Sciences
Acharya Nagarjuna University
Andhra Pradesh, India

Viktor Nedović
Faculty of Agriculture
Department of Food Technology and Biochemistry
University of Belgrade
Belgrade-Zemun, Serbia

Lalit Mohan Negi
Faculty of Pharmacy
Department of Pharmaceutics
Jamia Hamdard University
New Delhi, India

Wasfy M. Obeidat
Department of Pharmaceutics
Jordan University of Science and Technology
Irbid, Jordan

J.D.N. Ogbonna
Faculty of Pharmaceutical Sciences
Department of Pharmaceutics
University of Nigeria
Nsukka, Nigeria

Paula Kiyomi Okuro
College of Animal Science and Food Engineering
University of São Paulo
São Paulo, Brazil

James Oxley
Department of Pharmaceuticals and Bioengineering
Southwest Research Institute
San Antonio, Texas

Mario Pagliaro
Istituto per lo Studio dei Materiali Nanostrutturati
Palermo, Italy

Kunal Pal
Department of Biotechnology and Medical Engineering
National Institute of Technology
Odisha, India

Cinta Panisello
Departament d’Enginyeria Química
Universitat Rovira i Virgili
and
Centre Tecnològic de la Química de Catalunya
Carrer Marcel·lí Domingo
Tarragona, Spain

Adamantini Paraskevopoulou
Laboratory of Food Chemistry and Technology
School of Chemistry
Aristotle University of Thessaloniki
Thessaloniki, Greece

Hemalata Patil
School of Pharmacy
University of Mississippi
University, Mississippi
Contributors

J.S. Patil
VT’S Shivajirao S. Jondhale
College of Pharmacy
Maharashtra, India

Oliver Petermann
Dow Chemical Company
Midland, Michigan

Stavros Plessas
Faculty of Agricultural Development
Laboratory of Microbiology, Biotechnology and Hygiene
Democritus University of Thrace
Orestiada, Greece

Oana Lelia Pop
Department of Food Science and Technology
University of Agricultural Sciences and Veterinary Medicine
Cluj-Napoca, Romania

William Porter III
Dow Chemical Company
Midland, Michigan

K. Pramanik
Department of Biotechnology and Medical Engineering
National Institute of Technology
Odisha, India

Pinki B. Punjabi
Department of Chemistry
University College of Science
Mohanlal Sukhadia University
Rajasthan, India

Ashok M. Raichur
Department of Applied Chemistry
University of Johannesburg
Doornfontein, South Africa

Abhay Raizaday
Department of Pharmaceutics
College of Pharmacy
Jagadguru Sri Shivarathreeswara University
Karnataka, India

Goutam Rath
Department of Pharmaceutics
ISF College of Pharmacy
Punjab, India

S.S. Ray
Department of Biotechnology and Medical Engineering
National Institute of Technology
Odisha, India

Maria Inês Ré
Research Center of Albi on Particulate Solids, Energy and Environment
Albi School of Mines
Albi, France

and
Center of Processes and Products Technology
Institute of Technological Research of the São Paulo State
São Paulo, Brazil

James A. Rehkopf
Pulse Holdings, LLC
Payson, Arizona

Rui L. Reis
Department of Polymer Engineering
University of Minho
Braga, Portugal

Michael A. Repka
School of Pharmacy
University of Mississippi
University, Mississippi

True Rogers
Dow Chemical Company
Midland, Michigan
Contributors

Soraya Rodríguez-Rojo
Department of Chemical Engineering and Environmental Technology
University of Valladolid
Valladolid, Spain

Sutapa Mondal Roy
Department of Applied Chemistry
Sardar Vallabhbhai National Institute of Technology, Surat
Gujarat, India

Sai S. Sagiri
Department of Biotechnology and Medical Engineering
National Institute of Technology
Odisha, India

Suban K. Sahoo
Department of Applied Chemistry
Sardar Vallabhbhai National Institute of Technology, Surat
Gujarat, India

S. Sajeesh
Division of Biosurface Technology
Sree Chitra Tirunal Institute for Medical Sciences and Technology
Kerala, India

Paulo José Salústio
Research Institute for Medicines and Pharmaceutical Sciences
University of Lisbon
Lisbon, Portugal

Maria Helena Andrade Santana
Department of Biotechnological Processes
University of Campinas
Campinas, Brazil

Fabrizio Sarghini
Department of Agriculture
University of Naples Federico II
Naples, Italy

Robert Schmitt
Dow Chemical Company
Midland, Michigan

Mariarenata Sessa
Department of Industrial Engineering
University of Salerno
Fisciano, Italy

Chandra P. Sharma
Division of Biosurface Technology
Sree Chitra Tirunal Institute for Medical Sciences and Technology
Kerala, India

Harshita Sharma
Department of Pharmaceutics
Jamia Hamdard University
New Delhi, India

Satish Shilpi
Pharmaceutics Research Projects Laboratory
Department of Pharmaceutical Sciences
Dr. Hari Singh Gour University
Madhya Pradesh, India

H.G. Shivakumar
Department of Pharmaceutics
College of Pharmacy
Jagadguru Sri Shivarathreeswara University
Karnataka, India

Akhilesh Vikram Singh
Department of Materials Engineering
Indian Institute of Science
Karnataka, India

V.K. Singh
Department of Biotechnology and Medical Engineering
National Institute of Technology
Odisha, India

Katarzyna Sobecka
Center of Bioimmobilisation and Innovative Packaging Materials
West Pomeranian University of Technology
Szczecin, Poland
Carmen Socaciu
Department of Food Science and Technology
University of Agricultural Sciences and Veterinary Medicine
Cluj-Napoca, Romania

Himanshu K. Solanki
Department of Pharmaceutics
SSR College of Pharmacy
Dadra and Nagar Haveli, India

Lankalapalli Srinivas
GITAM Institute of Pharmacy
GITAM University
Andhra Pradesh, India

George A. Stahler
Encapsys, a Division of Appvion, Inc.
Portage, Wisconsin

Muriel Subirade
Research Institute of Nutraceuticals and Functional Foods
Laval University
Québec City, Québec, Canada

Sushama Talegaonkar
Faculty of Pharmacy
Department of Pharmaceutics
Jamia Hamdard University
New Delhi, India

Chilwin Tanamal
Encapsys, a Division of Appvion, Inc.
Portage, Wisconsin

Roshan V. Tiwari
School of Pharmacy
University of Mississippi
University, Mississippi

Christelle Turchiuli
AgroParisTech Massy-Genial
Massy, France

V. Naga Sravan Kumar Varma
Department of Pharmaceutics
College of Pharmacy
Jagadguru Sri Shivarathreeswara University
Karnataka, India

Jason M. Vaughn
Patheon Pharmaceuticals, Inc.
Cincinnati, Ohio

Dan Cristian Vodnar
Department of Food Science and Technology
University of Agricultural Sciences and Veterinary Medicine
Cluj-Napoca, Romania

Thomas Williams
Product Development Services
Patheon Pharmaceuticals, Inc.
Cincinnati, Ohio

Huang Li Xin
Research Institute of Chemical Industry of Forestry Products
Nanjing, Chang, People’s Republic of China

Hemant Kumar Singh Yadav
Department of Pharmaceutics
RAK College of Pharmaceutical Sciences
RAK Medical and Health Sciences University
Ras Al Khaimah, United Arab Emirates

Michael Yan
Encapsys, a Division of Appvion, Inc.
Appleton, Wisconsin
Section I

Fundamentals
Encapsulation or commonly referred to as microencapsulation involves the incorporation of actives (such as: flavors, drugs, enzymes, cells, or other materials) in small capsules. Capsules offer a means to protect sensitive components, transform liquids into easily handled solid ingredients, and incorporate controlled release attributes (such as time-release, targeted-release, or trigger-release mechanisms) into the product formulations. Various techniques are available to design capsules depending on the end use of the final product. A timely and targeted release improves the effectiveness of actives, broadens the application range of ingredients, and ensures optimal dosage, thereby
improving the cost effectiveness for the manufacturer. Encapsulation techniques can facilitate product development through the use of carefully tuned controlled release attributes.

This chapter provides a short overview of encapsulation technologies commonly practiced to encapsulate active ingredients. The simplest way of looking at a microcapsule is that of imagining a grape or hen’s egg reduced in size. The shell has a number of names and can be referred to as a membrane, a wall, a covering, or a coating. Similarly the core also goes by a number of terms such as payload, encapsulant, fill, active ingredient, internal phase, or internal ingredient.

1.1 DEFINITIONS

Encapsulation is defined as a technology of casing solids, liquids, or gaseous materials in miniature sealed capsules (which are nanometer to micrometer to millimeter range) that can release their contents at controlled rates under specific conditions. This technique depends on the physical and chemical properties of the material to be encapsulated. The microencapsulation technology has been employed in a diverse range of industry such as chemicals, cosmetics, food, pharmaceuticals, printing, etc.

The development of early encapsulation technology and preparation of microcapsules dates back to 1950s when Green and coworkers produced microencapsulated dyes by complex coacervation of gelatin and gum Arabic, for the manufacture of carbonless copying paper. The technologies developed for carbonless copy paper have led to the development of various microcapsule products in later years.

1.2 JUSTIFICATION FOR ENCAPSULATION

The capsule has the ability to preserve a substance in the finely divided state and to release it as needed. The size of the capsules may range from submicrometer to several millimeters in size and have a multitude of different shapes, depending on the materials and methods used to prepare them. The encapsulations/entrapment of active ingredients are done for a variety of reasons:

- Protecting the core material from degradation by reducing its reactivity to the outside environment (such as UV light, heat, moisture, air oxidation, chemical attack, acids, bases, etc.).
- Reducing/retarding the evaporation or transfer rate of a volatile active ingredient (the core material) to the outside environment.
- Enhancing the visual aspect and marketing concept of the final encapsulated product.
- Modifying the physical characteristics of a material, making it easier to handle (e.g., converting liquid into solid form, improving the handling properties of a sticky material, etc.).
- Achieving controlled and/or targeted release of active ingredients. The product can be tailored to either release slowly over time or at a certain point. Improving shelf life by preventing degradative reactions (dehydration, oxidation, etc.).
- Masking of taste or odors of active ingredient(s).
- Handling highly valuable active ingredient (the core material can be diluted when only very small amounts are required, yet still achieve a uniform dispersion in the host material).
- Mixing incompatible compounds by separating components within a mixture that would otherwise react with one another.
- Improved processing of materials (texture and less wastage of ingredients, control of hygroscopic attributes, enhance other attributes such as flowability, solubility, and dispersibility; dust-free powder).
- For safe handling of the toxic materials.
1.3 CLASSIFICATION

Microcapsules can be classified on the basis of their size or morphology, and they range in size from 1 µm to few millimeters. Some microcapsules whose diameter is in the nanometer range are referred to as nanocapsules to highlight their small size. Particles having diameter between 3 and 8 µm are called microparticles or microspheres or microcapsules. Particles larger than 1000 µm are called macroparticles. The microscopic size of microcapsules provides a huge surface area (e.g., the total surface area of 1 µm of hollow microcapsules having a diameter of 0.1 mm has been reported to be about 60 m²) is available for sites of adsorption and desorption, chemical reactions, etc.\(^{17}\)

The morphology of microcapsules depends mainly on the core material, how it is distributed within the system, and the deposition process of the shell. Similarly, the morphology of the internal structure of a microparticle depends largely on the selected shell materials and the microencapsulation methods that are employed. The microcapsules may be categorized into several arbitrary and overlapping classifications such as

- **Mononuclear (also known as core–shell) microcapsules** contain the shell around the core. This is also called a single-core or monocore capsule.
- **Polynuclear capsules** have many cores enclosed within the shell. This is also called polycore- or multicore-type capsule.
- **Matrix encapsulation** in which the core material is distributed homogeneously within the shell material.

In addition to these three basic morphologies, microcapsules can also be mononuclear with multiple shells (such as layering of shells), or they may form clusters of microcapsules (as noted in Figure 1.1). Matrix encapsulation is the simplest structure, in which the active ingredient (core) is much more dispersed within the carrier/shell material either in the form of relatively small droplets or more homogenously distributed/embedded in a continuous matrix of wall material. The active ingredients in the matrix type morphology are also present at the surface unless there is additional coating applied.

The composition, mechanism of release, particle size, and final physical form of microcapsules can be changed to suit specific applications. The properties of the shell materials are extremely important for the stabilization of the core material. Importantly, it must be inert toward active ingredients.

FIGURE 1.1 Schematics of types of microcapsules (spherical shaped shown; however, other forms possible).
It could be film-forming, pliable, tasteless, stable, nonhygroscopic, no high viscosity, economical, soluble in an aqueous media or solvent, or melting. In addition, the shell material can be flexible, brittle, hard, thin, etc. Microcapsule-based systems increase the life span of actives and control the release of said actives.

1.4 TECHNIQUES OF MICROENCAPSULATION

In a sense, the process of microencapsulation actually covers three separate processes on a time scale:

1. The first process consists of forming a shell wall around the core material.
2. The second process involves keeping the core materials intact inside the wall material so that it does not release.
3. The third process involves releasing the core material at the right time and at the right rate.

1.5 CRITERIA FOR SELECTING ENCAPSULATION TECHNOLOGY

The selection of the microencapsulation process is determined by the physical and chemical properties of core and shell/coating materials and the intended application. Various technologies and shell materials have been developed to design microcapsules with wide variety of functionalities. By using selective encapsulation techniques and shell materials, designed microcapsules with controlled and/or targeted release of the active encapsulated ingredients (by using triggers, such as pH change, mechanical stress, temperature, enzymatic activity, time, osmotic force, etc.) can be obtained.

It is not a matter of trial and error for selecting the proper encapsulation technology rather a well-thought process, which includes fulfilling certain requirements. The purpose of encapsulation must be clearly defined before considering the properties desired in encapsulated products. One of the first things to access is the type of benefits (such as desired properties, improving product/process, storage stability, etc.) one would like to accomplish through encapsulation technology. Various considerations come into play in designing the encapsulation process. The following items need to be considered for designing the encapsulation and selecting the proper encapsulation process:

- The physicochemical characteristics of the active and the functionality of the encapsulated ingredients in the final product.
- The appropriate processing conditions during the final production of products for the survival of the encapsulated ingredient.
- The storage conditions of encapsulated ingredients prior to use.
- The storage conditions of the final product containing the ingredients.
- The physical properties (the particle size, density, and stability requirements) of the encapsulated ingredient.
- The trigger(s) and mechanism(s) for releasing the active ingredient from microcapsules.
- The cost constraints if any.

Based on the outcome of the evaluation process, the following items need to be selected for the preferred encapsulation process.

- The type of coating/shell-wall material(s). The selection of coating material decides the physical and chemical properties of microcapsules/microspheres. The polymer should be capable of forming a film that is cohesive with the core material.
- The amount/percentage of core/loading for the microcapsule. The concentration of the active ingredient in the microcapsule.
7

Overview of Encapsulation and Controlled Release

The type of encapsulation technology/process.
- The legal issues, if any, to be considered concerning the technology.
- The intellectual property status and freedom to practice/use.
- The scale-up possibilities with no quality concerns.

Microencapsulation processes are usually categorized into two main groupings: chemical processes and mechanical or physical processes. These distinctions can be somewhat misleading as some processes classified as mechanical might involve or even rely upon a chemical reaction, and some chemical techniques rely solely on physical events. Some of the encapsulation processes are listed in Tables 1.1 and 1.2.

The subsequent sections will briefly describe the most widely used encapsulation processes however; the other chapters in the book will describe some of the techniques in detail.

1.6 ANNULAR JET (VIBRATIONAL NOZZLE)

The Annular Jet technology was developed by the Southwest Research Institute, USA. The technique involves two concentric jets, the inner containing the active ingredient (liquid core material) and the outer jet contains the liquid wall material, generally molten that solidifies when exiting the jet. Core–shell encapsulation can be done by using a laminar flow through a nozzle and an additional vibration of the nozzle or liquid. The vibrational nozzle also helps to control the droplet size giving a more uniform product with lower microcapsule sizes down to submicron diameters. The process involves the pumping of a dual fluid stream of liquid core and shell materials through concentric tubes/nozzles and forms droplets under the influence of vibration. The shell is then hardened by cooling (thermal gelation), chemical cross-linking, or solvent evaporation. Different types of extrusion nozzles have been developed in order to optimize the process. The vibration has to be done in resonance with Rayleigh instability and leads to the formation of very uniform droplets as the dual fluid stream naturally breaks.

<table>
<thead>
<tr>
<th>TABLE 1.1</th>
<th>Various Encapsulation Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annular Jet Process</td>
<td>Layer-by-Layer Deposition</td>
</tr>
<tr>
<td>Centrifugal suspension separation</td>
<td>Matrix encapsulation</td>
</tr>
<tr>
<td>Coacervation and phase separation</td>
<td>Melt-dispersion</td>
</tr>
<tr>
<td>Cocrytallization</td>
<td>Microfluidic encapsulation</td>
</tr>
<tr>
<td>Controlled precipitation</td>
<td>Molecular encapsulation</td>
</tr>
<tr>
<td>Dispersion/suspension polymerization</td>
<td>Organogels</td>
</tr>
<tr>
<td>Dripping and jet break up</td>
<td>Pan coating technology</td>
</tr>
<tr>
<td>Electrospraying</td>
<td>Phase inversion/precipitation</td>
</tr>
<tr>
<td>Emulsification/emulsion polymerization</td>
<td>Polyelectrolyte complexation</td>
</tr>
<tr>
<td>Emulsion-solvent removal</td>
<td>Self-assembly</td>
</tr>
<tr>
<td>Fluidized bed coating technology</td>
<td>Sol-gel process</td>
</tr>
<tr>
<td>Freeze-drying</td>
<td>Solvent evaporation</td>
</tr>
<tr>
<td>Garnulation</td>
<td>Spinning disk technology</td>
</tr>
<tr>
<td>Hot-melt extrusion process</td>
<td>Spray chilling/cooling/congealing</td>
</tr>
<tr>
<td>In situ polymerization</td>
<td>Spray drying</td>
</tr>
<tr>
<td>Interfacial cross-linking/reaction</td>
<td>Supercritical fluid technology</td>
</tr>
<tr>
<td>Interfacial polymerization</td>
<td>Templating</td>
</tr>
<tr>
<td>Ionotropic gelation</td>
<td>Vapor phase deposition</td>
</tr>
</tbody>
</table>
TABLE 1.2

Microencapsulation Processes with Their Relative Particle Size Ranges

<table>
<thead>
<tr>
<th>Process</th>
<th>Approximate Particle/Capsule Size (µm)</th>
<th>Approximate Payload%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annular et</td>
<td>150–5000</td>
<td>30–90</td>
</tr>
<tr>
<td>Coacervation</td>
<td>2–1200</td>
<td>40–90</td>
</tr>
<tr>
<td>Electrospay</td>
<td>2–100</td>
<td>20–60</td>
</tr>
<tr>
<td>Emulsification</td>
<td>0.2–5000</td>
<td>1–100</td>
</tr>
<tr>
<td>Fluid-bed technology</td>
<td>5–2000</td>
<td>5–50</td>
</tr>
<tr>
<td>Freeze drying</td>
<td>20–5000</td>
<td>Varies</td>
</tr>
<tr>
<td>Granulation</td>
<td>Varies</td>
<td>Varies</td>
</tr>
<tr>
<td>In situ polymerization</td>
<td>1–1000</td>
<td>Varies</td>
</tr>
<tr>
<td>Inclusion complexation</td>
<td>0.001–0.01</td>
<td>5–20</td>
</tr>
<tr>
<td>Interfacial polymerization</td>
<td>1–1000</td>
<td>Varies</td>
</tr>
<tr>
<td>Ionic gelation (coextrusion)</td>
<td>200–5000</td>
<td>20–50</td>
</tr>
<tr>
<td>Jet cutting</td>
<td>100–3000</td>
<td>20–60</td>
</tr>
<tr>
<td>Liposome entrapment</td>
<td>1–10</td>
<td>5–50</td>
</tr>
<tr>
<td>Melt extrusion/hot melt</td>
<td>300–5000</td>
<td>5–40</td>
</tr>
<tr>
<td>Melt injection</td>
<td>200–2000</td>
<td>5–20</td>
</tr>
<tr>
<td>Microfluidics</td>
<td>2–1000</td>
<td>30–60</td>
</tr>
<tr>
<td>Pan coating</td>
<td>250–5000</td>
<td>Varies</td>
</tr>
<tr>
<td>Phase inversion</td>
<td>0.5–5</td>
<td>Varies</td>
</tr>
<tr>
<td>Polyelectrolyte multilayer</td>
<td>0.2–5000</td>
<td>1–90</td>
</tr>
<tr>
<td>Polymer–polymer incompatibility</td>
<td>0.5–1000</td>
<td>Varies</td>
</tr>
<tr>
<td>Solvent evaporation</td>
<td>0.5–1000</td>
<td>Varies</td>
</tr>
<tr>
<td>Spinning disc</td>
<td>5–1500</td>
<td>Varies</td>
</tr>
<tr>
<td>Spray-chilling/cooling</td>
<td>20–1000</td>
<td>10–20</td>
</tr>
<tr>
<td>Spray-drying</td>
<td>10–400</td>
<td>5–50</td>
</tr>
<tr>
<td>Supercritical fluid</td>
<td>10–400</td>
<td>20–50</td>
</tr>
</tbody>
</table>

1.7 CENTRIFUGAL EXTRUSION

This process is mostly used to encapsulate flavor oils. The liquid coextrusion process employs nozzles consisting of concentric orifices located on the outer circumference of a rotating cylinder. Simultaneously the liquid core material and the liquid wall material are fed through inner and outer orifice, respectively. The extruded rope of core material surrounded by wall material splits into round droplets directly after clearing the nozzle as the device rotates. By the action of surface tension, the coating material envelops the core material, thus accomplishing encapsulation. The shell wall of the droplets is solidified by cooling or gelling bath to produce capsules. The microcapsules thus formed can be collected on a moving bed of fine-grained starch, which cushions their impact and absorbs unwanted coating moisture. The capsule size depends on the rotational speed. Typical wall materials include starch, maltodextrins, gelatin, polyethylene glycol (PEG). Particles produced by this method have diameter ranging from 150 to 2000 mm.18

1.8 CENTRIFUGAL SUSPENSION SEPARATION

This is a continuous high-speed process that involves mixing the core and wall materials and then adding to a rotating disk. The core materials with a coating of residual liquid ejects out of the disk. The microcapsules are then dried or chilled after removal from the disk. Solids, liquids, or suspensions of 30 µm to 2 mm can be encapsulated in this manner.
1.9 COCRYSTALLIZATION

Cocrystallization encapsulation process utilizes sucrose as a matrix for the incorporation of core materials. The cocrystallization of sucrose/core ingredient is induced by adding a core material to supersaturated sucrose syrup (maintained at a high temperature to prevent crystallization) under vigorous mechanical agitation. The addition of core ingredient provides nucleation for the sucrose/core ingredient mixture to crystallize. A substantial heat is released as the syrup reaches the temperature at which transformation and crystallization begin. It is very important to properly control the rates of nucleation and crystallization as well as the thermal balance during the various phases. By this process, core materials in a liquid form can be converted to a dry powdered form without additional drying.

1.10 COACERVATION

A coacervate is a tiny spherical droplet of assorted organic molecules, which is held together by hydrophobic forces and the sizes ranging from 1 to 100 µm across. The name derives from the Latin coacervare, meaning “to assemble together or cluster.” There are two types of coacervation processes available, namely, simple and complex coacervation. In simple coacervation, a desolvation agent is added for phase separation. Whereas in complex coacervation, a complexation is involved between two oppositely charged polymers. Complex coacervation refers to the phase separation of a liquid precipitate, or phase, when solutions of two hydrophilic colloids are mixed under suitable conditions. As an example in a complex coacervation process, the core material (usually oil) is dispersed into a polymer solution (e.g., a cationic aqueous polymer, and gelatin) to which a second polymer (anionic, water soluble, and gum Arabic) solution is added. Deposition of the shell material onto the core particles occurs when the two polymers form a complex, which is generally triggered by the addition of salt or by changing the pH, temperature, or dilution of the medium. The microcapsules can be stabilized by cross linking, desolvation, or thermal treatment. The microcapsules are usually collected by filtration or centrifugation, washed with an appropriate solvent, and subsequently dried by standard techniques such as spray- or fluidized-bed drying to yield free-flowing, discrete particles. In recent years, modified coacervation processes have also been developed to overcome some of the problems encountered during a typical gelatin/gum acacia complex coacervation process. For example, a room-temperature process for the encapsulation of heat-sensitive ingredients such as volatile flavor oils by mixing the coating materials and inducing the phase separation (coacervation) by adjusting the pH. The formation of a multilayered coacervated microcapsule can be achieved by repeating the coacervation stages in which an additional layer of wall material is applied to the microcapsule at each passage.

Complex coacervation can be used to produce microcapsules containing flavor, fragrant oils, liquid crystals, dyes, or inks as the core material. Capsules for carbonless paper applications were produced by complex coacervation process.

1.11 EMULSIFICATION/EMULSION POLYMERIZATION

Emulsions can be used as a delivery vehicle for either water soluble and/or lipophilic active ingredient. In an emulsion polymerization, surfactant is dissolved in water until the critical micelle concentration is reached. The interior of the micelle provides the site necessary for polymerization. As the polymerization proceeds, these nuclei grow gradually and simultaneously entrap the core material to form the final microcapsules. The most common type of emulsion polymerization is an oil-in-water emulsion, in which droplets of monomer (the oil) are emulsified (with surfactants) in a continuous phase of water. Water-soluble active ingredients might be encapsulated in water-in-oil (w/o) emulsions or double emulsions of the type water-in-oil-in-water (w/o/w). Similarly lipophilic active ingredients might be encapsulated via o/w emulsions. Several technologies have been developed to produce highly uniform emulsion droplets, including
single-drop technologies like microfluidics. The release profile of entrapped active ingredients could be more defined and predictable with uniform/narrow dispersed emulsions than the poly-dispersed ones. This can be very important in pharmaceutical applications. The emulsions can be dried by spray drying or freeze drying to provide a dry powder version of the encapsulated product.

1.12 FLUID-BED COATING

Fluid-bed coating is a technique in which a coating is applied onto powder particles in a batch process or a continuous setup. Different types of fluid-bed coaters include top spray, bottom spray, and tangential spray and used for encapsulating solid or liquids absorbed into porous particles. The bottom spray version of the coating process is commonly known as Wurster coating and was developed in the 1950s and 1960s. Wurster coater relies upon a bottom positioned nozzle spraying the wall material up into a fluidized bed of core particles. Particles of the active ingredient, spheres or granules, are suspended in an upward-moving stream of air and then covered with a spray of liquid coating material in a temperature and humidity-controlled chamber of high velocity air where the coating material is atomized. The coating material must have an acceptable viscosity to enable pumping and atomizing and must be thermally stable and should be able to form a film over a particle surface. The rapid evaporation of the solvent helps in the formation of an outer layer on the particles. The particles to be coated by fluid bed should ideally be spherical and dense and should have a narrow particle size distribution and good flowability. The whole cycle of suspending, spraying, and cooling is continued and repeated as needed until the desired coating thickness and weight is obtained. The size of the core particle for this technique is usually large (~100 µm). This technique gives improved flexibility and control as compared to pan coating.

1.13 INTERFACIAL POLYMERIZATION

Most commercial processes use this type of polymerization to produce small uniform capsules in the range of 20–30 micron diameter; however, the process can be tuned to produce large microcapsules. The size of these microcapsules and the properties of the wall material/polymer matrix can be altered by using different monomers, utilizing additives, and adjusting reaction conditions. The encapsulation occurs by wall formation around the dispersed core material via the rapid polymerization of monomers at the surface of the droplets or particles. The solution of a multifunctional monomer in the core material is dispersed in an aqueous phase. The polymerization is commenced at the surfaces of the core droplets forming the capsule walls, by adding a reactant to the monomer dispersed in the aqueous phase. The polymerization is commenced at the surfaces of the core droplets forming the capsule walls, by adding a reactant to the monomer dispersed in the aqueous phase.

1.14 INCLUSION COMPLEXATION

Encapsulation via inclusion complexation (host–guest complexation) occurs at a molecular level. This is also known as molecular encapsulation process or host–guest complexation. Cyclodextrin is one of the most useful host molecules for a variety of encapsulation applications from food to pharma industries. There are generally three types of cyclodextrins such as α-cyclodextrin (made up of six glucopyranose units), β-cyclodextrin (made up of seven glucopyranose units), and γ-cyclodextrin (made up of eight glucopyranose units). They are prepared from partially hydrolyzed starch (maltodextrin) by an enzymatic process. The external part of the cyclodextrin molecule is hydrophilic, whereas the internal part is hydrophobic. The guest molecules, which are apolar, can be entrapped into the apolar internal cavity through a hydrophobic interaction. The size of the cavity varies depending on the cyclodextrin. Depending
on the type of cyclodextrin one or more molecules can be entrapped in the interior of the molecule.15 Cyclodextrin molecules form inclusion complexes with compounds that can fit dimensionally into their central cavity.

1.15 **IONIC GELATION (HYDROGEL MICROSPHERES)**

This is one of the simplest methods for making encapsulated material. Microspheres are microbeads composed of a biopolymer gel network entrapping an active. Calcium alginate gel is the best known gelling system used for the preparation of gel beads to encapsulate a wide variety of active agent, such as oil droplets containing aroma, cells, probiotics, yeast, enzymes, etc. Gelation of alginate in the presence of divalent or trivalent cations can be easily controlled. Microspheres made of gel-type polymers, such as alginate or pectinate are produced by dissolving the polymer in an aqueous solution then, suspending the active ingredient in the mixture followed by extruding through a precision device (the dripping tool can be simply a pipette, syringe, vibrating nozzle, spraying nozzle, jet cutter, atomizing disk, coaxial air-flow, or electric field) producing microdroplets. These microdroplets are hardened by cross-linking the wall material or polymer chain by using di- or multivalent metal ion (such as calcium chloride) aqueous solutions. There are several advantages of these methods that involve an all-aqueous system; the particle size of microspheres can be controlled by using various size extruders or by varying the polymer solution flow rates. Alternatively, the extrusion or dropping method can be used with a concentric nozzle (coextrusion), to prepare core–shell type of encapsulates with a lipophilic core and a shell of a gel network. Similarly, specially formulated emulsions can be used to make microspheres. Calcium chloride can be added to an emulsion of water droplets of an alginate solution and active ingredient in vegetable oil. This results in the “break-up” of the emulsion and microbeads are formed by the gelation of the alginate droplets. Alternatively, both alginate and calcium (in an insoluble form such as calcium carbonate) can already be present in the water phase of the emulsion. Upon addition of an oil-soluble acid (such as acetic acid) the pH decreases, liberating free calcium ions in the system and initiating the gel formation of alginate droplet with calcium.

1.16 **LIPOSOMES**

A liposome is a tiny vesicle generally made from phospholipids with diameter ranges from 25 nm to 10 μm capable of entrapping both hydrophobic and hydrophilic active ingredients. The liposomes consist of one or more layers of lipids and have been used for delivery of vaccines, hormones, enzymes, and vitamins.20 The properties such as permeability, stability, surface activity, and affinity can be varied through size and lipid composition variations. The capsules can range from 25 nm to several microns in diameter, are easy to make, and can be stored by freeze-drying. Kirby and Gregoriadis have devised a method to encapsulate at high efficiency, which is easy to scale-up and uses mild conditions appropriate for enzymes.30,31 The liposomes impart stability to water-soluble material in high water activity application. Another unique property of liposomes is the targeted delivery of the encapsulated ingredient their content at a specific and well-defined temperature in a specific location. The liposome bilayer is instantly broken down at the transition temperature of the phospholipids, typically around 50°C, at which temperature the content is immediately released.

1.17 **LYOPHILIZATION**

Lyophilization or freeze-drying is a simple technique that is suitable for the encapsulation of aromas, water-soluble essences, drugs, and importantly used for the dehydration of almost all heat-sensitive materials. It is a process that requires a long dehydration period. The retention of volatile compounds during lyophilization is dependent upon the chemical nature of the system.32
1.18 MELT EXTRUSION (MELT INJECTION)

Extrusion as applied for encapsulating flavor ingredient(s) is a relatively low-temperature entrapping method, which involves forcing a core material in a molten carbohydrate mass (composed of more than one ingredient, such as sucrose, maltodextrin, glucose syrup, glycerine, and glucose33) through a series of dies into a bath of dehydrating liquid. The process temperature and the pressure are around \~115°C or below and typically <100 psi, respectively.34 The coating material hardens on contacting the liquids, forming an encapsulating matrix to entrap the core material, which can then be separated from the liquid bath, dried, and sized.14 The polymer matrices and the plasticizers used can be modified to produce the capsules for controlled release application.35

1.19 PAN COATING

The pan coating process is amongst the oldest industrial techniques used particularly in the pharmaceutical industry for coating tablets or forming coated particles. The concept of the technology was initially patented by William E. Upjohn in the nineteenth century.36 It generally required large core particles and produces the coated tablets that we are familiar with. The tablets/particles are tumbled in a pan or other device while the coating material is sprayed/applied slowly. In another aspect solid particles are mixed with a dry coating material and the temperature is raised so that the coating material melts and encloses the core particles, and then is solidified by cooling. On the other hand, the coating material can be gradually applied to core particles tumbling in a vessel rather than being wholly mixed with the core particles from the start of encapsulation.

1.20 PHASE SEPARATION

Phase separation process takes advantage of the phenomenon called polymer–polymer incompatibility. The process utilizes two polymers that are soluble in a common solvent; yet do not mix with one another in the solution. The polymers form two separate phases; one polymer intended to form the capsule walls, the other incompatible polymer meant to induce the separation of the two phases, but not meant to be part of the capsule wall material. This process is somewhat related to the complex coacervation process. The phase separation process is considered as the oldest true encapsulation technology first developed by the National Cash Register Company for carbonless copy-paper. Microencapsulation by coacervation involves the phase separation of one or more hydrocolloids from the initial solution, and the subsequent deposition of the newly formed coacervate phase around the active ingredient suspended or emulsified in the same reaction media. The size of the microcapsules formed may be in the range of 10–250 \(\mu m \).

1.21 SPRAY DRYING

Microencapsulation by spray-drying is a low-cost commercial process, which is mostly used for the encapsulation of fragrances, oils, and flavors. Spray-drying encapsulation has been used in the food industry since the late 1950s to convert liquids to powders. The process is economical and flexible, in that it offers substantial variation in microencapsulation matrix, and produces particles of good quality. The flavor or ingredient to be encapsulated is added to the carrier and homogenized to create small droplets. The resultant emulsion is fed into the hot chamber of the spray dryer where it is atomized through a nozzle or spinning wheel. The size of the atomizing droplets depends on the surface tension and viscosity of the liquid, pressure drop across the nozzle, and the velocity of the spray. The size of the atomizing droplets also determines the drying time and particle size. Hot air contacts the atomized droplets; the shell material solidifies onto the core particles as the solvent evaporates, and leaving dried particles. It is immensely suitable for the continuous manufacture of dry solids as either powder, granulates, or agglomerates from liquid feeds. The microcapsules obtained are of polynuclear or matrix type.
1.22 SPRAY CONGEALING

The spray congealing is also known as spray chilling or spray cooling. In spray chilling and spray cooling, the core and wall mixtures are atomized into the cooled or chilled air, which causes the wall to solidify around the core. This technique can be accomplished with spray-drying equipment when the protective coating is applied as a melt. The process involves the dispersion of the core material in a coating material melt. Upon spraying, the hot mixture into a cool air stream the coating solidification (and microencapsulation) is accomplished. In spray cooling, the coating material can be some form of vegetable oil or its derivatives, fat (melting points of 45°C–122°C), as well as hard mono- and diacylglycerols (melting points of 45°C–65°C). In spray chilling, the coating material is typically a fractionated or hydrogenated vegetable oil with a melting point in the range of 32°C–42°C. Microcapsules prepared by spray chilling and spray cooling are insoluble in water due to the hydrophobic coating. Consequently, these techniques can be useful for encapsulating water-soluble core materials.

1.23 SPINNING DISK (CENTRIFUGAL SUSPENSION SEPARATION)

This technology is rapid, cost-effective, and relatively simple and has high production efficiencies. The technology was developed by Robert E. Sparks in 1980s. The suspensions of core particles in liquid shell material are poured into a rotating disk. Due to the spinning action of the disk, the core particles become coated with the shell material and the coated particles are then cast from the edge of the disc by centrifugal force. The shell material of the coated particles is solidified by external means (usually cooling). The microcapsules are then dried or chilled after removal from the disk, and the whole process can take between a few seconds to minutes. Solids, liquids, or suspensions of 30 µm to 2 mm can be encapsulated in this manner. Coatings can be 1–200 µm in thickness and include fats, PEG, diglycerides, and other meltable substances.

1.24 SOLVENT EVAPORATION

It is one of the most extensively used methods of microencapsulation. For example, the aqueous solution of the drug (may contain a viscosity building or stabilizing agent) is added to a water immiscible volatile organic phase consisting of the polymer solution in solvents like dichloromethane or chloroform with vigorous stirring to form the primary water in oil emulsion. The resulting emulsion is then added drop wise to a stirring aqueous solution containing an emulsifier/stabilizer like poly (vinyl alcohol) or poly (vinyl pyrrolidone) to form the multiple emulsion (w/o/w) forming small polymer droplets containing encapsulated material. Droplets hardened to produce the corresponding polymer microcapsules. This hardening process is accomplished by the removal of the solvent from the polymer droplets either by solvent evaporation (by heat or reduced pressure), or by solvent extraction. The microspheres can then be washed and dried.

1.25 SUPERCRITICAL FLUID ASSISTED ENCAPSULATION

Supercritical fluids are highly compressed gases that possess several properties of both liquids and gases. The supercritical CO₂ or N₂O are normally used for this type of encapsulation process. The microcapsules are formed when the supercritical fluid under high pressure containing the active ingredient and the shell material are released through a small nozzle at atmospheric pressure. The sudden drop in pressure causes desolvation of the shell material, which is then deposited around the active ingredient (core) and forms a coating layer. Different core materials such as pesticides, pigments, vitamins, flavors, and dyes are encapsulated using this method. Although there are some advantages of this process, one of the requirements is that both the active ingredient and the shell material should be soluble in supercritical fluids.
1.26 CONTROLLED RELEASE

Controlled release is a term referring to the presentation or delivery of compounds in response to stimuli (such as pH, enzymes, light, magnetic fields, temperature, ultrasonic, osmosis, and more recently electronic control) or time. It may be defined as a method by which one or more active ingredients are made available at a desired site and time at a specific rate. Various applications include in areas such as pharmaceuticals, agriculture, cosmetics, food sciences, and personal care. This terminology commonly refers to time dependant release, sustained release, pulse release, delayed release in oral dose formulations. There are many advantages as well as challenges (such as: biocompatibility, the fate of controlled release system if not biodegradable, cost of formulation, etc.) associated with designing a controlled release system/formulation. The science of controlled release originates from the development of oral sustained-release products in the late 1940s and early 1950s, the development of controlled release of marine anti-foulants in the 1950s and controlled release fertilizer in the 1970s. Delivery of active ingredient is usually effected by dissolution, degradation, or disintegration of the shell material. Other encapsulation technologies including enteric coatings can further modify release profiles. Microencapsulation is a technology that can control dissolution profiles. The dissolution rates can be further controlled by further coating and layering the microcapsule/microsphere with insoluble substances.

1.27 RELEASE MECHANISMS

A variety of release mechanisms have been proposed for microcapsules. The pathways are as follows:

- A force breaks open the capsule by mechanical means/shear force.
- The shell wall is dissolved away, melt away from around the core.
- The core/active ingredient diffuses through the shell wall.

The mechanism can be further classified and elaborated as follows:

- **Degradation-controlled monolithic system**: The active ingredient is distributed uniformly throughout in a matrix. The active is released on degradation of the matrix. The diffusion of the active is slow as compared with degradation of the matrix.
- **Diffusion-controlled monolithic system**: The active ingredient is released by diffusion prior to or concurrent with the degradation of the polymer matrix. Rate of release also depend upon where the polymer degrades by homogeneous or heterogeneous mechanism.
- **Diffusion-controlled mononuclear (core–shell) system**: The active ingredient is encapsulated by a rate-controlling membrane through which the active diffuses and the membrane erodes only after its delivery is completed.
- **Erosion**: Erosion of the coating due to pH and enzymatic hydrolysis causes the release of active ingredients.

1.28 RELEASE RATES

The release rates that are achievable from a single microcapsule are generally “zero order,” “half order,” or “first order.” Zero order occurs when the active ingredient/core is a pure material and releases through the wall of a mononuclear (core–shell) microcapsule as a pure material. Half-order release generally occurs with matrix particles. “First-order” release occurs when the core material is actually a solution. As the solute material releases from the capsule, the concentration of solute material in the solvent decreases and a first-order release is achieved. A mixture of microcapsules will include a distribution of capsules varying in size and wall thickness, and the release rate would
be different because of the ensemble of microcapsules. It is therefore very desirable to carefully examine on an experimental basis the release rate from an ensemble of microcapsules and to recognize that the deviation from theory is due to the distribution in size and wall thickness.

1.29 CONCLUSIONS

The use of microencapsulated active ingredients is a promising avenue for variety controlled-release applications in many different areas and industries. Lots of new techniques (hybrid processes) are being constantly developed for the encapsulation and controlled release formulations for active ingredients. The challenges are to select the appropriate microencapsulation technique and encapsulating material. Despite the wide range of encapsulated products that have been developed, manufactured, and successfully marketed in the pharmaceutical and cosmetic industries, microencapsulation has found a comparatively much smaller market in the food industry. Microencapsulation is gradually finding applications in many unconventional areas such as agriculture, energy storage and generation, catalysis, textiles, defense, etc.

In agriculture, one of the applications of microencapsulated products is in the area of crop protection. Another example is the utilization of encapsulated insect pheromones (instead of insecticides/pesticides) for controlling insect population. In energy-generation applications, hollow multilayered (inner layer being the polystyrene followed by polyvinyl alcohol and the outer layer being a cross-linked polymer of 2-butene) microspheres loaded with gaseous deuterium are used to harness nuclear fusion for producing electrical energy. Transition metal–based catalytic processes are of vital importance to a variety of industries, including pharmaceuticals, agrochemicals, etc. Palladium- and Osmium-based metal catalysts have been encapsulated in polyurea and used successfully as recoverable/reusable catalyst without much loss of activity. Similarly, the microencapsulation technology embedded in designing self-healing polymer and composites is finding applications in many advanced areas including defense. Microencapsulation is also used for designing special fabrics for protecting against chemical warfare for military applications. Some of the applications will be described in the subsequent chapters.

REFERENCES

References

1 Chapter 1 Overview of Encapsulation and Controlled Release

10. Andres, C. Encapsulation ingredients: I. Food

34. Reineccius, G.A. Flavor encapsulation. Food Reviews

2 Chapter 2 Process- Selection Criteria

20. Br inques, G.B. and Ayub, M.A.Z. Effect of microencapsulation on survival of Lactobacillus plantarum

31. Guzey, D. and McClements, D.J. Formation, stability and
Chapter 3 Microencapsulation by Spray Drying

21. Sch röder J, Kleinhans A, Serfert Y et al. (2012) Viscosity ratio: A key factor for control of oil droplet size distribution in effervescent atomization of

52. Keogh MK, O’Kennedy BT, Kelly J, Auty MA, Kelly PM,

4 Chapter 4 Spray Drying and Its Application in Food Processing

Papadakis, S. E. and King, C. J. 1988a. Air temperature and

Chambi HNM, Alvim ID, Barrera-Arellano D, Grosso CRF (2008) Solid lipid microparticles containing watersoluble
compounds of different molecular mass: Production, characterization and release profiles. Food Research International 41: 229-236.

Okuro PK, Baliero JCC, Liberal RDCO, Favaro-Trindade CS (2013a) Co-encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Research International 53: 96-103.

Oxley JD (2012) Chapter 5—Spray cooling and spray chilling for food ingredient and nutraceutical encapsulation. In: Garti, N., McClements, D.J. Encapsulation Technologies and

Ribeiro APB, Basso RC, Grimaldi R, Gioielli LA, Dos Santos AO, Cardoso LP, Guaraldo Gonçalves LA (2009) Influence of chemical interesterification on thermal behavior, microstructure, polymorphism and crystallization
properties of canola oil and fully hydrogenated cottonseed oil blends. Food Research International 42(8): 1153-1162.

Chapter 6 Encapsulation via Spinning Disk Technology

31. E. Teunou and D. Poncelet. Rotary disc atomisation for microencapsulation applications: Prediction of the particle

Chapter 7 Encapsulation via Fluidized Bed Coating Technology

TABLE 7.8
Fluid Bed Coating Is Commonly Used to Achieve a Controlled-Release Property for an Ingredient in the Core or Coating

Application Description

Enteric delivery Intestinal delivery using acidic polymer coatings that dissolve at near-neutral and basic conditions, but are relatively insoluble at acidic conditions. Coatings are applied to drug-containing particles, tablets, or capsules. There are regulatory limitations on the use of many enteric materials for food or nutritional work. There may also be daily intake considerations for some in pharmaceutical applications.

Sustained release Sustained release may be achieved by coating an active core particle with a controlled-release layer. Various release mechanisms including the following can potentially be employed: 1. Slowly dissolving coat 2. Slowly eroding coat 3. Insoluble coat with controlled porosity and thickness. It is also possible to incorporate active into one of these coating approaches to realize a sustained-release profile from the coating.
Taste-masking or taste concealing Taste masking often involves coating bad tasting ingredients to minimize exposure to taste receptors on the tongue in chewable or orally dissolving product. These coatings must also release appropriately in the gut. Depending on release needs, the coatings could have enteric or limited sustained-release properties, or could contain a reverse enteric, acid-soluble coating that is relatively insoluble in the mouth, but dissolves in the stomach.

Delayed or pulsatile release Coating is designed to begin releasing active after a delay period. Delayed-release coatings include the following: 1. Enteric coatings that dissolve after the stomach as the pH increases 2. Taste-concealing coatings composed of acid-soluble polymers that release contents upon exposure to stomach acidity 3. Waxy coatings that fail when a desired temperature is reached 4. Insoluble brittle coatings that fracture as osmotic pressures build in a particle 5. Coatings that break down due to enzymatic cleavage in the gut or other enzymatic environment

Drug loading Drug loading on nonpareil or other support particles offers a means to either a consistent particle size for application of controlled-release coatings or a uniform low dosing formulation need.

Stability Coatings can shield formulation components from heat, oxygen, moisture, or other incompatible components.

Granulation or agglomeration Particles can be accreted and join with binders to create larger particle masses for improved handling and/or uniformity.

Notes: Common coating properties or functions are listed above. Applications can potentially incorporate multiple delivery or release mechanisms to achieve a desired delivery profile. Although controlled-release fluid bed coatings are commonly used in oral pharmaceutical applications, the same release mechanisms can be employed in other applications including nutraceutical, nutritional, food, household, agricultural, industrial, and other product areas.

Chapter 8 Encapsulation via Pan-Coating

Chapter 9: Microencapsulation by Dripping and Jet Break-Up

48. D. Stark. Extractive bioconversion of 2-phenylethanol

Chapter 10 Microencapsulation by Annular Jet Process

5,070,019.

Chapter 11 Encapsulation via Hot-Melt Extrusion

22. Ndindayino, F., Vervaet, C., VandenMooter, G., and

82. Gryczke, A., Schminke, S., Maniruzzaman, M., Beck, J.,

12 Chapter 12 Microencapsulation with Coacervation

12. Thies, C., Microencapsulation of Flavors by complex coacervation. In Encapsulation and Controlled Release

23. Bhattacharyya, A. and J.-F. Argillier,

37. Soper, J. C., Method of encapsulating food or flavor particles using warm water fish gelatin and capsules produced therefrom. US patent 5,603,952 (February 18, 1997).

43. Mendanha, D. V., S. E. M. Ortiz, C. S. Favaro-Trindade, A. Mauri, E. S. Monterrey-Quintero, and M. Thomazini,

13 Chapter 13 Encapsulation via Microemulsion

44. Junyaprasert VB, Boonme P, Wurster DE, and Rades T.

Methods and Findings in Experimental and Clinical Pharmacology, 30, 277-285.

Chapter 14 Ionotropic Gelation and Polyelectrolyte Complexation Technique

22. Vandenberg, G. W. and Noue, J. D. L. Evaluation of

32. Sar rtori, C., Finch, D. S., and Ralph, A. B.

improved hemostatic and antimicrobial properties.

107. Gan, Q. and Wang, T. Chitosan nanoparticle as protein
delivery carrier-systematic examination of fabrication
conditions for efficient loading and release. Coll. Surf. B:

108. Rao, K. S. V. K, Rao, K. M., Kumar, P. V. N., and
Chung, I. D. Novel chitosan-based pH sensitive
micronetworks for the controlled release of 5-Fluorouracil.

109. Padimitriou, S., Bikiaris, D., Avgoustakis, K.,
Karavas, E., and Georgarakis, M. Chitosan nanoparticles

Preparation and antibacterial activity of chitosan

111. Xiong, W. W., Wang, W., Zhao, L., Song, Q., and
Yuan, L. M. Chiral separation of (R,S)-2-phenyl-1-
propanol through glutaraldehyde-crosslinked chitosan

112. Liu, H. and Gao, C. Preparation and properties of

of ionic-crosslinked chitosan-based gel beads and effect
of reaction conditions on drug release behaviors. Int. J.

114. Zhong, Z., Li, P., Xing, R., and Liu, S.
Antimicrobial activity of hydroxybenzenesulfonailides
derivatives of chitosan, chitosan sulfates and
carboxymethyl chitosan. Int. J. Biolog. Macromol. 45

115. Gupta, K. C. and Jabrail, F. H. Ontrolled-release
formulations for hydroxy urea and rifampicin using
polyphosphate-anion-crosslinked chitosan microspheres. J.

116. Rayment, P. and Butler, M. F. Investigation of
ionically crosslinked chitosan and chitosan-bovine serum
albumin beads for novel gastrointestinal functionality. J.

353–358.

146. Kwok, K. K., Groves, M. J., and Burgess, D. J.
Production of 5-15 μm diameter alginate-polylysine
microcapsules by an air-atomization technique. Pharm. Res.
Chapter 15 Microencapsulation via Interfacial Polymerization

FIGURE 15.2 Microscope image of the polyurea microcapsules.

22. Li m, F.; Moss, R. D. Microcapsules with walls of which the upper limit of permeability is in a chosen range. Belg. BE 878004, 1979.

43. Suda, H. Microcapsules containing isocyanates, their manufacture, and coating compositions, adhesive compositions, and plastic modifiers containing them. JP

93. Duan, B. Lab study observations.

16 Chapter 16 Microencapsulation via In Situ Polymerization

18. Chang, H.; Lu, T.; Xu, Q.; Sun, Q.; Han, G. Preparation and characterization of microencapsulated red phosphorus with phenol-formaldehyde resin as shell material. Zhongguo Suliao (2010), 24(6), 72-75.

22. Wang, L.-X.; Su, J.-F.; Ren, L. Preparation of thermal energy storage microcapsule by phase change. Gaofenzi

33. Yuan, Y.; Zhang, M.; Rong, M. Polythiol microcapsule

50. Chang, H.; Lu, T.; Xu, Q.; Sun, Q.; Han, G. Preparation and characterization of microencapsulated red phosphorus with phenol-formaldehyde resin as shell material. Zhongguo Suliao (2010), 24(6), 72-75.

64. Rochmadi, A. P.; Hasokowati, W. Mechanism of
microencapsulation with urea-formaldehyde polymer.

75. Greene, J. T. Formaldehyde scavenging process useful in

78. Duan, B. Lab study works.
Chapter 17 Microencapsulation with Miniemulsion Technology

18 Chapter 18 Silica-Based Sol-Gel Microencapsulation and Applications

20. D. Avnir, The long route from basic science to an exporting company, Asian Science Camp 2012, The Hebrew University of Jerusalem, 26-30 August 2012. The lecture can be visualized at the URL: http://www.youtube.com/watch?v=PsCGY8zAjLY.

36. US 20100143422.

38. US 4428869 A.

42. T. Abraham, Sol-Gel Processing of Ceramics and Glass, BCC Research, Norwalk, CT, 2006.

19 Chapter 19 Microencapsulation by Phase Inversion Precipitation

8. Altena FW, Smolders CA. Calculation of liquid-Phase separation in ternary-system of a polymer in a mixture of a solvent and a nonsolvent. Macromolecules. 1982;15(6):1491-1497. 30 40 50 Vanillin release t (h) 60 70 80 90 100 0 5 10 m g V / g m c s 15 20 25 30 35 10 20

FIGURE 19.8 Vanillin release versus time for polysulfone/vanillin microcapsules.

Chapter 20 Microfluidic Encapsulation Process

10. S. D. Seiffert, Controlled fabrication of polymer

32. M. De Menech, Modeling of droplet breakup in a

43. W. Lee, L. Walker, and S. Anna, Role of geometry and

78. Y. Ho, C. Grigsby, F. Zhao, and K. Leong, Tuning physical properties of nanocomplexes through microfluidics-assisted confinement, Nano Letters, 11, 2178-2182, 2011.

79. S. Huang, B. Lin, and J. Qin, Microfluidic synthesis of tunable poly-(N-isopropylacrylamide) microparticles via PEG adjustment, Electrophoresis, 32, 3364-3370, 2011.

100. J. B ustillo, R. Howe, and R. Muller, Surface micromachining for microelectromechanical systems, Proceedings of the IEEE, 86(8), 1552-1574, 1998.

103. J. J udy, Microelectromechanical systems (MEMS): Fabrication, design and applications, Smart Materials and Structures, 10(6), 1115-1134, 2001.

104. W. L ang, Silicon microstructuring technology, Materials Science and Engineering: Reports, 17(1), 1-55, 1996.

108. M. B urns et al., An integrated nanoliter DNA analysis

118. L. A. Tse, P. J. Hesketh, D. W. Rosen, and J. L. Gole,

129. F. H ua, A. Gaur, Y. Sun, M. Word, N. Jin, I. Adesida,

21 Chapter 21 Encapsulation Process in Granulation Technology

40. Gerhardt AH. Moisture effects on solid dosage forms formulation, processing and stability. J. GXP Compliance (Winter 2009); 13(1); 50-66.

42. www.vectorcorporation.com/technology/granurex.asp.

Chapter 22 Encapsulation via Electrohydrodynamic Atomization Spray Technology (Electrospray)

FIGURE 22.28 β-Estradiol release profile of PCL particles prepared from different concentrations: τ, PCL 10 wt%; ν, PCL 5 wt%; and *, PCL 2 wt%. (Adapted from Enayati, M., Ahmad, Z., Stride, E., and Edirisinghe, M., Size mapping of electric field-assisted production of polycaprolactone particles, J. R. Soc. Interface, 7(Suppl. 4), S409, Figure 9, 2010, The Royal Society.)

27. Rayleigh, L. XX. On the equilibrium of liquid conducting masses charged with electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

37. Labbaf, S., S. Deb, G. Cama, E. Stride, and M. Edirisinghe. Preparation of multicompartment submicron

85. Barzin, J., S.S. Madaeni, H. Mirzadeh, and M. Mehrabzadeh. Effect of polyvinylpyrrolidone on morphology and performance of hemodialysis membranes prepared from

FIGURE 23.8 Thermal efficiency calculated for a trial run spanning over 2 days.
24 Chapter 24 Supercritical Fluid Technology for Encapsulation

11. Santos, D.T. and Meireles, M.A.A. Micronization and

37. U zun, İ.N., Sipahigil, O., and Dinçer, S. Coprecipitation of cefuroxime Axetil-PVP composite

45. Campardelli, R., Della Porta, G., Reverchon, E. Solvent elimination from polymer nanoparticle suspensions by continuous supercritical extraction. Journal of Supercritical Fluids 70 (2012): 100-105.

55. Chattopadhyay, P., Shekunov, B.Y., Yim, D., Cipolla, D., Boyd, B., and Farr, S. Production of solid lipid

65. de Paz, E., Martin, A., Duarte, C.M.M., and Cocero,

81. Munuklu, P. and Jansens, P.J. Particle formation of an edible fat (rapeseed 70) using the supercritical melt micronization (ScMM) process. The Journal of Supercritical Fluids, 40 (2007): 439-442.

25 Chapter 25 Melt- Dispersion Technique for Encapsulation

39. Kheradmandnia, S., Vasheghani-Farahani, E., Nosrati, M., and F. Atyabi. Preparation and characterization of

57. European Food Safety Authority (EFSA). Scientific opinion on the re-evaluation of candelilla wax (E 902) as a food additive. EFSA J, 10(11) (2012): 2946.

10. Huiquera-Ciapara, I., Felix-Valenzuela, L., Goycoolea,

31. Reineccius, T.A., Reineccius, G.A., Peppard, T.L.,

42. Sanchez, C., Renard, D., Robert, P., Schmitt, C.,

54. Orozco-Villafuerte, J., Cruz-Sosa, F., Ponce-Alquicira,

emulsions and gels. Food Res. Int. 42, 925-932.

Chapter 27: Cellulose Ethers: Applications

13. Trehan, A., Arora, V.K., Madan, S., Malik, R.
14. Trehan, A., Arora, V.K., Madan, S., Malik, R.
Pharmaceutical compositions containing a biguanide-glitazone

15. Yoneyama, S., Bando, H.
Drug composition having active
ingredient adhered at high concentration to spherical

16. Ikemoto, K. et al.
Enteric-coated stable omeprazole
tablets and their manufacture.

17. Nguyen, C., Christensen, J.M., Ayres James, W.
Novel mesalamine-loaded beads in tablets for delayed release of
drug to the colon.

18. USP 35—NF 30. The United States Pharmacopeial
Convention, 2012.

19. Podczek, F., Jones, B.E.
Pharmaceutical Capsules,

20. Chiba, T., Muto, H., Tanioka, S., Nishyama, Y., Hoshi,
N., Onda, Y.
Cellulose ether composition and a hard
medicinal capsule prepared Therefrom.

21. Matsuura, S., Yamamoto, T.
New hard capsules prepared
from water-soluble cellulose derivative.
Yakuzaigaku 1993, 53(2), 135-140.

22. Nagata, S.
Cellulose capsules—An alternative to
gelatin: Structural, functional and community aspects.

23. Ogura, T., Furuya, Y., Matsuura, S.
HPMC capsules. An
alternative to gelatin.
Pharm. Technol. Eur. 1998, 10(11),
32, 34, 36, 40, 42.

24. Tengroth, C., Gasslander, U., Andersson, F.O.,
Jacobsson, S.P.
Cross-linking of gelatin capsules with
formaldehyde and other aldehydes: An FTIR spectroscopy
study.

25. Yong, C.-S., Li, D.X., Oh, D.H., Kim, J.A., Yoo, B.K.,
Woo, J.S., Rhee, J.D., Choi, H.S.
Retarded dissolution of
ibuprofen in gelatin microcapsule by cross-linking with
glutaraldehyde.
Arch. Pharm. Res. 2006, 29(6), 520-524.

35. Choudary, K.P.R., Babu, K. Dissolution,

52. Hurter, P. Solid forms of

53. Yamada, T., Saito, N., Imai, T., Otagiri, M. Effect of

100. Sheskey, P.J., Keary, C.M. In situ, liquid-activated lm-coated tablets and a process for making the same, EP 2164343 A1, March 24, 2009, 3pp.

107. Kumar, A., Sharma, P.K., Kumar, P. Formulation of

127. Re, R. Presentation at Vitafoods, Geneva,
Switzerland, May 2011.
28 Chapter 28 Cellulose-Based Biopolymers: Formulation and Delivery Applications

21. Yuasa, H.; Ozeki, T; Kanaya, Y.; Oishi, K. Application of the solid dispersion method to the controlled release of medicine. II. Sustained release tablet using solid
dispersion granule and the medicine release mechanism.

22. Ozeki, T.; Yuasa, H.; Kanaya, Y.; Oishi, K.
Application of the solid dispersion method to the
controlled release of medicine. V. Suppression mechanism
of the medicine release rate in the three-component solid
337-343.

23. Ozeki, T.; Yuasa, H.; Kanaya, Y.; Oishi, K.
Application of the solid dispersion method to the
controlled release of medicine. VII. Release mechanism of
a highly water-soluble medicine from solid dispersion with

Application of the solid dispersion method to the
controlled release of medicine. VIII. Medicine release and
viscosity of the hydrogel of a water-soluble polymer in a
1995, 43 (9), 1574-1579.

25. Yuasa, H.; Takahashi, H.; Ozeki, T.; Kanaya, Y.; Ueno,
M. Application of the solid dispersion method to the
controlled release of medicine. III. Control of the release
rate of slightly water soluble medicine from solid
397-399.

M. Application of the solid dispersion method to the
controlled release of medicine. VI. Release mechanism of
slightly water soluble medicine and interaction between
urbiprofen and hydroxypropyl cellulose in solid dispersion.

27. Ozeki, T.; Yuasa, H.; Kanaya, Y. Application of the
solid dispersion method to the controlled release of
medicine. IX. Difference in the release of urubiprofen from
solid dispersions with poly(ethylene oxide) and
hydroxypropylcellulose and interaction between medicine and

mechanism behind matrix sustained release (SR) tablets
prepared with hydroxypropylmethyl cellulose. J. Control.

60. Agrawal, R.; Saxena, N.S.; Sharma, K.B.; Thomas, S.; Sreekala, M.S. Activation energy and crystallization

73. Sch omburg, D.; Salzmann, M. Enzyme Handbook; Springer: Berlin, Germany, 1991; p. 3.2.1.3.18.

86. Xi e, X.; Liu, Q.; Cui, S.W. Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates. Food Res. Int. 2006, 39 (3), 332–341.

112. Sem sarilar, M.L.; Vincent-Ferrier, S. Synthesis of a cellulose supported chain transfer agent and its

122. Huang, R.-C.; Peck, G.R. A systematic evaluation of

180. Ma khija, S.N.; Vavia, P.R. Controlled porosity osmotic pump-based controlled release systems of pseudoephedrine. I. Cellulose acetate as a semipermeable

190. Lee, M.; Kim, S. Polyethylene glycol-conjugated

201. Wegnar, T.H.; Jones, P.E. Advancing cellulose-based

29 Chapter 29 Starch- Based Polymeric Biomaterial: Drug Delivery

11. Adebayo, S.A.; Brown-Myrie, E.; Itiola, A.O. Comparative disintegrant activities of breadfruit starch

22. Alebiowu, G.; Itiola, O.A. The influence of
pregelatinized starch disintegrants on interacting variables that act on disintegrant properties. Pharm. Tech. 2003, 27 (8) 28–32.

44. Silva, I.; Gurruchaga, M.; Goni, I. Drug release from microstructured grafted starch monolithic tablets. Starch/Starke 2011, 63 (12), 806-819.

Chapter 30: Biodegradable Polymers: Drug Delivery Applications

13. Isabelle, V.; Lan, T. Biodegradable polymers.

18. Ne lson, D.M.; Baraniak, P.R.; Ma, Z.; Guan, J.; Mason, N.S.; Wagner, W.R.; Controlled release of IGF-1 and HGF from a biodegradable polyurethane scaffold. Pharm. Res. 2011, 28 (6), 1282-1293.

56. Chen, L.; Li, S.; Wang, Z.; Chang, R.; Su, J.; Han, B.

92. Huynh, D.P.; Nguyen, M.K.; Pi, B.S. Functionalized injectable hydrogels for controlled insulin delivery.

113. Rastogi, R.; Anand, S.; Koul, V. Polymerosomes of PCL and PEG demonstrate enhanced therapeutic efficacy of

34. Fahs, A.; Brogly, M.; Bistac, S.; Schmitt, M.

43. Nunez-Santiago, M.C.; Tecante, A.; Garnier, C.; Doublier, J.L. Rheology and microstructure of κ-carrageenan under different conformations induced by several concentrations of potassium ion. Food Hydrocolloids 2011, 25 (1), 32-41.

45. Me dina-Torres, L.; Brito-De La Fuente, E.;

55. Kumar, M.N.V.R. A review of chitin and chitosan

32 Chapter 32 Encapsulation Technologies for Modifying Food Performance

by emulsification/thermal gelation using a static mixer.

Favaro-Trindade, C.S. and Grosso, C.R.F. 2002. Microencapsulation of L-acidophilus (La-05) and B-lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile. J. Microencapsul. 19:485-494.

Siro, I., Kálpona, E., Kálpona, B., and Lugasi, A. 2008. Functional food. Product development, marketing and

Thijssen, H.A.C. 1971. Flavour retention in drying

Chapter 33 Microencapsulation:
Probiotics

3. Daly, C.; Davis, R. The biotechnology of lactic acid bacteria with emphasis on application in food safety and human health/agricultural and food science in Finland. Agric. Food Sci. 1998, 7 (2), 251-265.

32. Joki, T.; Machluf, M.; Atala, A.; Zhu, J.; Seyfried, N.T.; Dunn, I.F.; Abe, T.; Carroll, R.S.; Black, P.M.

39. Vodnar, D.C.; Socaciu, C.; Rotar, A.M.; Stănilea, A. Morphology, FTIR fingerprint and survivability of encapsulated lactic bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) in simulated gastric juice and intestinal juice. Int. J. Food Sci. Technol. 2010, 45 (11), 2345-2351.

41. Mater, D.D.; Bretigny, L.; Firmesse, O.; Flores, M.J.; Mogenet, R.; Bresson, J.L.; Corthier, G. Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy

60. Kitajima, H.; Sumida, Y.; Tanakab, R.; Yukib, N.;
34 Chapter 34 Organogels as Food Delivery Systems

43. Yebra-Pimentel I, Martinez-Carballo E, Regueiro J, Siman-Gandara J. The potential of solventminimized extraction methods in the determination of polycyclic...

52. O’ Sullivan S, Arrigan DW. Impact of a surfactant on the electroactivity of proteins at an aqueousorganogel
53. Ma s A, Lopez ML, Alvarez-Serrano I, Pico C, Veiga ML. Electrochemical performance of Li\(^{(4-x)/3}\)Mn\(^{(5-2x)/3}\)Fe\(^x\)O \(_4\) \((x = 0.5\) and \(x = 0.7\)\) spinels: Effect of microstructure and composition. Dalton Trans. 42(27) (2013):9990-9999.

93. Woerly S, Doan VN, Sosa N, de Vellis J, Espinosa A. Reconstruction of the transected cat spinal cord following

104. Garg T, Singh D, Arora S, Murthy R. Scaffold: A novel...

136. van Mechelen JB, Peschar R, Schenk H. Structures of

Chapter 35 B-Lactoglobulin: Bioactive Nutrients Delivery

β-lactoglobulin in the presence of dodecyltrimethyl ammonium bromide. Colloid Surface B 2010, 75 (1), 268-274.

53. Shimoyamada, M.; Yoshimura, H.; Tomida, K.; Watanabe, K. Stabilities of bovine β-lactoglobulin/retinol or retinoic acid complexes against tryptic hydrolysis, heating

50–56.

Chapter 36 Encapsulation of Polyphenolics

13. Van Acker SABE, Van Den Berg D-J, Tromp MNJL, Griffioen

23. Ki m HP, Mani I, Iversen L, Ziboh VA. Effects of naturally-occurring flavonoids and bi-flavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs.

46. Zhang L, Mou D, Du Y. Procyanidins: Extraction and

85. Sanna V, Roggio AM, Siliani S, Piccinini M, Marceddu S, Mariani A et al. Development of novel cationic chitosan-and

115. Mandal AK, Das N. Sugar coated liposomal flavonoid: A unique formulation in combating carbon tetrachloride induced

125. Seguin J, Brullé L, Boyer R, Lu YM, Ramos Romano M,

Chapter 37 Encapsulation of Bioactive Compounds

20. Wang, X.; Jiang, Y.; Huang, Q., Encapsulation

30. Sharma, D.; Sukumar, S., Big punches come in nanosizes

78. Li u, J.; Bao, W.; Jiang, M.; Zhang, Y.; Zhang, X.;

111. Shah, N. P.; Ding, W. K.; Fallourd, M. J.; Leyer, G.,

139. Rinaudo, M., Main properties and current applications of some polysaccharides as biomaterials. Polymer International (2008): 57, 397-430.

188. Shaw, L. A.; McClements, D. J.; Decker, E. A., Spray-dried multilayered emulsions as a delivery method for omega-3 fatty acids into food systems. Journal of

209. Donsi, F.; Sessa, M.; Ferrari, G., Effect of emulsifier

Chapter 38 - Encapsulation of Flavors, Nutraceuticals, and Antibacterials

Burdock, G.A. 2007. Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food and Chemical...
Toxicology, 45(12): 2341–2351.

Gómez-Estaca, J., Montero, P., Giménez, B., Gómez-Guillén, M.C. 2007. Effect of functional edible films and high pressure processing on microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchardus). Food Chemistry,

Laohakunjit, N., Kerdchoechuen, O. 2007. Aroma enrichment and the change during storage of non-aromatic milled rice

van Ruth, S.M., King, C., Giannouli, P. 2002. Influence of lipid fraction, emulsifier fraction, and mean particle

Chapter 39 Encapsulation of Aroma

Krishnan S., Kshirsagar A.C., and Singhal R.S., 2005. The

Penbunditkul P., Yoshii H., Ruktanonchau U., Charinpanitkul

40 Chapter 40 Molecular (Cyclodextrin) Encapsulation of Volatiles and Essential Oils

Lopez, M. D., Maudhuit, A., Pascual-Villalobos, M. J., and

Matura, M., Sköld, M., Börje, A., Andersen, K. E., Bruze, M., Frosch, P., Goossens, A. et al. (2005). Selected oxidized fragrance terpenes are common contact allergens.
Contact Dermatitis, 52, 320–328.

Lippia grata leaf essential oil reduces orofacial nociception in mice—evidence of possible involvement of descending inhibitory pain modulation pathway. Basic and Clinical Pharmacology and Toxicology, 114(2), 188–196.

Chapter 41 Microencapsulation: Artificial Cells

24. Wong, H., Chang, T.M.S. The microencapsulation of cells within alginate poly-L-lysine microcapsules prepared with the standard single step drop technique: Histologically

34. Prakash, S., Chang, T.M.S. Genetically engineered E. coli cells containing K. aerogenes gene, microencapsulated

39. Smidsrod, O. Molecular basis for some physical

57. Martens, P. J., Bryant, S. J., Anseth, K. S. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules. 2003, 4, 283-292.

59. Lowman, A. M., Peppas, N. A., Hydrogels, in

64. West, J. L., Hubbell, J. A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules. 1999, 32, 241-244.

97. Tomihata, K., Ikada, Y. In vitro and in vivo degradation of films of chitin and its deacetylated

128. Sun, H., Qu, Z., Guo, Y., Zang, G., Yang, B. In vitro and in vivo effects of rat kidney vascular endothelial cells on osteogenesis of rat bone marrow mesenchymal stem cells growing on polylactide-glycolic acid (PLGA) scaffolds. Biomedical Engineering Online. 2007, 6, 41.

Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method.
43 Chapter 43 Cell Immobilization
Technologies for Applications in Alcoholic Beverages

30. Le beau T., Jouenne T. and Junter G.-A. Simultaneous

40. Bekatorou A., Soupioni M.J., Koutinas A.A. and

70. Tsakiris A., Kandylis P., Bekatorou A., Kourkoutas Y.

98. Aaron R.T., Davis R.C., Hamdy M.K. and Toledo R.T. Continuous alcohol/malolactic fermentation of grape must in a bioreactor system using immobilized cells. Journal of

107. Dragone G., Mussatto S.I. and Almeida e Silva J.B. High gravity brewing by continuous process using immobilised yeast: Effect of wort original gravity on

126. La opaiboon L. and Laopaiboon P. Ethanol production from sweet sorghum juice in repeated-batch fermentation by Saccharomyces cerevisiae immobilized on corncob. World Journal of Microbiology and Biotechnology 28 (2) (2012): 559-566.

134. Du Le H., Pornthap T. and Van Viet M.L. Impact of high temperature on ethanol fermentation by Kluyveromyces marxianus immobilized on banana leaf sheath pieces. Applied

12. Ke llems, R.E. et al., Adenosine deaminase deficiency and severe combined immunodeficiencies, TIG, October, 278,

26. Brewerton, L.J. et al., Polyethylene glycol-conjugated

37. Reclos, G.J. et al., Evaluation of glucose-6-phosphate dehydrogenase activity in two different ethnic groups

49. Pillwein, K. et al., Hyaluronidase additional to

55. Liu, L.S. et al., Biological-activity of urokinase immobilized to cross-linked poly(2-hydroxyethyl methacrylate), Biomaterials, 12, 545, 1991.

68. Puleo, D.A. et al., A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy, Biomaterials, 23, 2079, 2002.

74. Solas, M.T. et al., Ionic adsorption of catalase on

97. Sakiyama, S.E. et al., Incorporation of heparin-binding

102. Fuchs, H.L. et al., Influence of gelatin matrices cross-linked with transglutaminase on the properties of an enclosed bioactive material using beta-galactosidase as model system, Biomaterials, 17, 1481, 1996.

107. Beque, R. et al., Enzymatic modification of plasma

108. Zhu, Y.B. et al., Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility, Biomaterials, 23, 4809, 2002.

130. Yang, X.R., Measurements of dissolved-oxygen in batch solution and with flow-injection analysis using an enzyme

20. Okada H, Heya T, Ogawa Y, Shimamoto T. One-month release injectable microcapsules of a luteinizing

39. Shiga K, Muramatsu N, Kondo T. Preparation of

56. Fundueanu G, Constantin M, Ascenzi P, Simionescu BC. An intelligent multicompartamental system based on thermo-sensitive starch microspheres for

77. Morris NJ, Warburton B. Three-ply walled w/o/w microcapsules formed by a multiple emulsion technique. The

126. Ra fati H, Coombes AG, Adler J, Holland J, Davis SS. Protein-loaded poly(DL-lactide-co-glycolide) microparticles for oral administration: Formulation,

137. Be ck LR, Pope VZ, Flowers CE, Jr., Cowser DR, Tice
TR, Lewis DH et al. Poly(DL-lactide-co-glycolide)/
norethisterone microcapsules: An injectable biodegradable
contraceptive. Biology of Reproduction. February

Evaluation of biodegradable microspheres prepared by a
solvent evaporation process using sodium olate as

139. Cavalier M, Benoit JP, Thies C. The formation and
characterization of hydrocortisone-loaded poly((+/-)
-lactide) microspheres. The Journal of Pharmacy and
2872287.

140. Cong H, Beck LR. Preparation and pharmacokinetic
evaluation of a modified long-acting injectable
norethisterone microsphere. Advances in Contraception: The
Official Journal of the Society for the Advancement of
PMID: 1950722.

141. Kino S, Mizuta H, Osajima T. Sustained release
microsphere preparation containing antipsychotic drug and

142. Shenderova A, Burke TG, Schwendeman SP. Stabilization
of 10-hydroxycamptothecin in poly(lactide-co-glycolide)
microsphere delivery vehicles. Pharmaceutical Research.

143. Shenderova A, Burke TG, Schwendeman SP. The acidic
microclimate in poly(lactide-co-glycolide) microspheres
stabilizes camptothecins. Pharmaceutical Research. February

144. Er tl B, Platzer P, Wirth M, Gabor F.
Poly(D,L-lactic-co-glycolic acid) microspheres for
sustained delivery and stabilization of camptothecin.
Journal of Controlled Release. September 20,

et al. Controlled release of levonorgestrel from
biodegradable poly(D,L-lactide-co-glycolide) microspheres:
In vitro and in vivo studies. International Journal of
PMID: 16040213.

212. Izumikawa S, Yoshioka S, Aso Y, Takeda Y. Preparation of poly(l-lactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug

232. Ramtoola Z. Controlled release biodegradable micro- and nanospheres containing cyclosporin. US patent 5641745,
1997.

244. El kharraz K, Ahmed AR, Dashevsky A, Bodmeier R.

274. Iwasa S, Nakagawa Y, Takada S. Substained release microcapsule of physiologically active compound which is slightly water soluble at pH 6 to 8. US patent 6113941, 2000.

293. Squillante E, Morshed G, Bagchi S, Mehta KA. Microencapsulation of beta-galactosidase with Eudragit

304. Garso MR. Pharmaceutical composition in form of solid
lipidic microparticles suitable to parenteral
administration. EU patent 0988031, 2003.

305. Rozier A. Fluid ophthalmic composition based on lipid
microparticles containing at least one active principle.

306. Do mb AJ. Liposphere carriers of vaccines. US patent

307. He dley M, Lunsford L, Putnam D. Microparticles for

308. Bl agdon PA, Morgan R. Methods of encapsulating
liquids in fatty matrices, and products thereof. US patent
5204029, 1993.

309. Coyne B, Faragher J, Gouin S, Hansen CB, Ingram R,

310. Be rnstein H, Mathiowitz E, Morrel E, Schwaller K.
Method for producing protein microspheres. US patent
5271961, 1993.

311. Ma thiowitz E, Bernstein H, Morrel E, Schwaller K.
Method for producing protein microspheres. EU patent
0499619, 1996.

312. Be ck T, Bernstein H, Mathiowitz E, Morrel E,
Schwaller K. Protein microspheres and methods of using

313. Su slick KS, Toublan FJ, Boppart SA, Marks DL. Surface

MR, Underdown BJ. Microparticle delivery system with a
functionalized silicone bonded to the matrix. US patent
5571531, 1996.

315. Gu stafsson NO, Jönsson M, Laakso T, Larsson K, Reslow
M. Vaccine composition comprising an immunologically
active substance embedded in microparticles consisting of

316. Re slow M, Björn S, Drusstrup J, Gustafsson NO, Jönsson
M, Laakso T. A controlled-release, parenterally
adminstrable microparticle preparation. EU patent 1328258,
2008.

353. Al-Azzam W, Pastrana EA, Griebenow K. Co-lyophilization of bovine serum albumin (BSA) with

397. Mi yazaki Y, Yakou S, Takayama K. Comparison of gastroretentive microspheres and sustained-release

423. Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y.

Chapter 46 Organogels in Controlled Drug Delivery

11. Sun, T.L. et al., Physical hydrogels composed of

33. Tung, S.-H., Y.-E. Huang, and S.R. Raghavan,

55. Da stidar, P., Supramolecular gelling agents: Can they

80. To ro-Vazquez, J.F. et al., Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (R)-12-hydroxystearic acid in vegetable oil. Langmuir, 2013. 29: 7642-7654.

127. Vaughan, D.F., Pharmacokinetics of Albuterol and Butorphanol Administered Intravenously and via a Buccal Patch. 2003, Texas A&M University, College Station, TX.

130. Hoffman, S.B., A.R. Yoder, and L.A. Trepanier,

141. Hall, S.D. et al., Molecular and physical mechanisms

Chapter 47 Microparticulate Drug Delivery Systems

11. Sergio F., Hans P.M., and Bruno G. Microencapsulation by solvent extraction/evaporation: Reviewing the state of

32. Qi ngxing X., Yujie X., Chi-Hwa W., and Daniel W.P. Monodisperse double-walled microspheres loaded with

41. Pr iya P., Sivabalan M., Balaji M., Rajashree S., and

51. Haixia W., Haifeng S., Agnes C.C., and John H.X. Microencapsulation of vitamin C by interfacial/ emulsion reaction: Characterization of release properties of

Chapter 48 Colloid Drug Delivery Systems

11. Taratula, O.; Garbuzenko, O.B.; Kirkpatrick, P.; Pandya, I.; Savla, R.; Pozharov, V.P.; He, H.; Minko, T.

41. Rapoport, N.Y.; Kennedy, A.M.; Shea, J.E.; Scaife, C.L.; Nam, K.H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J.

13. Rauwendaal, C. Polymer Extrusion, Revised 4th ed.;

14. Tamgor, Z.; Gogos, C.G. Principles of Polymer
Processing, 2nd edn.; Wiley-Interscience: Hoboken, NJ,
2006, p. 961.

15. Serajuddin, A.T.M. Solid dispersion of poorly
water-soluble drugs: Early promises, subsequent problems,
and recent breakthroughs. J. Pharm. Sci. 1999, 88(10),
1058-1066.

16. Breitenbach, J.; Mägerlin, M. Melt-extruded solid
dispersions. In Pharmaceutical Extrusion Technology;
Ghebre-Sellassie, I., Martin, C., Eds.; Informa Healthcare:

Hot-melt extrusion technology. In Encyclopedia of
Pharmaceutical Technology; Swarbrick, J., Boylan, J.C.,

18. McGinity, J.W.; Zhang, F. Melt-extruded
controlled-release dosage forms. In Pharmaceutical
Extrusion Technology; Ghebre-Sellassie, I., Martin, C.,

19. Leuner, C.; Dressman, J. Improving drug solubility for
2000, 50(1), 47-60.

20. Di Nunzio, J.C.; Brough, C.; Hughey, J.R.; Miller,
D.A.; Williams, R.O., III; McGinity, J.W. Fusion
production of solid dispersions containing a heat-sensitive
active ingredient by hot melt extrusion and Kinetisol

Kachrimanis, K. Preparation of carbamazepine-Soluplus solid
dispersions by hot-melt extrusion, prediction of
drug-polymer miscibility by thermodynamic model fitting.

58. Mi ller, D.A. Improved oral absorption of poorly water-soluble drugs by advanced solid dispersion systems. In Division of Pharmaceutics; The University of Texas at Austin: Austin, TX, 2007, p. 312.

59. Mi ller, D.A.; DiNunzio, J.C.; Yang, W.; McGinity, J.W.; Williams, R.O., III. Targeted intestinal delivery of
supersaturated itraconazole for improved oral absorption.

60. Baird, J.A.; Van Eerdenbrugh, B.; Taylor, L.S. A
classification system to assess the crystallization tendency
of organic molecules from undercooled melts. J. Pharm. Sci.
2010, 99(9), 3787-3805.

61. Miller, D.A.; DiNunzio, J.C.; Yang, W.; McGinity,
J.W.; Williams, R.O., III. Enhanced in vivo absorption of
itraconazole via stabilization of supersaturation following
acidic-to-neutral pH transition. Drug Dev. Ind. Pharm.
2008, 34(8), 890-902.

62. Wu, C.; McGinity, J.W. Influence of methylparaben as a
solid-state plasticizer on the physicochemical properties
Biopharm. 2003, 56(1), 95-100.

63. Crowley, M.M.; Zhang, F.; Koleng, J.J.; McGinity, J.W.
Stability of polyethylene oxide in matrix tablets prepared
by hot-melt extrusion. Biomaterials 2002, 23(21),
4241-4248.

64. Schenck, L.; Troup, G.M.; Lowinger, M.; Li, L.;
McKelvey, C. Achieving a hot melt extrusion design space
for the production of solid solutions. In Chemical
Engineering in the Pharmaceutical Industry: R&D to
Manufacturing; am Ende, D.J., Ed.; John Wiley & Sons, Inc.:
New York, 2011.

65. Bessemer, B. Shape extrusion. In Pharmaceutical
Extrusion Technology; Ghebre-Sellassie, I., Martin, C.,

66. Doetsch, W. Material handling and feeder technology. In
Pharmaceutical Extrusion Technology; Ghebre-Sellassie, I.,
11-134.

Extrusion Technology; Ghebre-Sellassie, I., Martin, C.

68. Breitenbach, J. Melt extrusion can bring new benefits to
HIV therapy: The example of Kaletra tablets. Am. J. Drug
Deliv. 2006, 4(2), 61-64.

69. Bauer, J.; Spanton, S.; Henry, R.; Quick, J.; Dziki,
W.; Porter, W.; Morris, J. Ritonavir: An extraordinary

88. Debenedetti, P.G.; Stillinger, F.H. Supercooled liquids

97. Nagy, Z.K.; Sauceau, M.; Nyúl, K.; Rodier, E.; Vajna, B.; Marosi, G.; Fages, J. Use of supercritical CO 2 aided and conventional melt extrusion for enhancing the

50 Chapter 50 Nanoparticles: Biomaterials for Drug Delivery

34. Cai, S., Yang, Q., Taryn, R., Bagby, M., Forrest, L.

66. Wong, A., DeWit, M.A., Gillies, E. Amplified release

126. We sterhout, D. The Combination lens and therapeutic uses of soft lenses. Contact Lens J. 1973, 4, 3-10.

146. Sellergren, B.; Hall, A.J. Fundamental aspects on the synthesis and characterization of imprinted network

156. Wh ite, C.J.; Byrne, M.E. Molecularly imprinted therapeutic contact lenses. Expert Opin. Drug Deliv. 2010, 7 (6), 765-780.

191. Chetoni, P.; Rossi, S.; Burgalassi, S.; Monti, D.; Mariotti, S.; Saettone, M.F. Comparison of

202. Muller, R.H.; Gohla, S.; Dingler, A.; Schneppe, T.

108. Gujarathi, N.A.; Rane, B.R.; Patel, J.K. pH sensitive polyelectrolyte complex of O-carboxymethyl chitosan and

115. Gu m, J.R., Jr, Hicks, J.W.; Toribara, N.W.; Rothe, E.M.; Lagace, R.E.; Kim, Y.S. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J. Biol. Chem. 1992, 267 (30), 21375-21383.

118. Be rnkop-Schnürch, A.; Gilge, B. Anionic mucoadhesive polymers as auxiliary agents for the peroral administration of poly peptide drugs: Influence of the

53 Chapter 53 Polymeric Biomaterials for Controlled Drug Delivery

37. Lloyd, L.L.; Kennedy, J.F.; Methacanon, P.; Paterson,

Chapter 54: Nanogels: Chemical Approaches to Preparation

10. Vinogradov, S.V.; Bronich, T.K.; Kabanov, A.V.

22. Ha midi, M.; Azadi, A.; Raeei, P. Hydrogel

68. Duong, H.T.T.; Marquis, C.P.; Whittaker, M.; Davis, T.P.; Boyer, C. Acid degradable and biocompatible polymeric nanoparticles for the potential codelivery of therapeutic agents. Macromolecules 2011, 44 (20), 8008-8019.

72. Sumerlin, B.S.; Tsarevsky, N.V.; Louche, G.; Lee, R.Y.; Matyjaszewski, K. Highly efficient “click” functionalization of poly(3-azidopropyl methacrylate)

91. He , J.; Tong, X.; Zhao, Y. Photoresponsive nanogels
based on photocontrollable cross-links. Macromolecules 2009, 42 (13), 4845-4852.

101. Bai, F.; Yang, X.; Zhao, Y.; Huang, W. Synthesis of

112. Landfester, K.; Willert, M.; Antonietti, M.

120. Lovell, P.; El-Aasser, M.S. Emulsion Polymerization and Emulsion Polymers; John Wiley & Sons Ltd; West Sussex, U.K., 1997, p. 723.

122. Brun, O.; Selb, J.; Candau, F. Synthesis in microemulsion and characterization of stimuli-responsive
polyelectrolytes and polyampholytes based on N-isopropylacrylamide. Polymer 2001, 42 (21), 8499-8510.

142. Mad, G.; Rizzardo, E.; Thang, S.H. Living radical

152. Oh, J.K.; Siegwart, D.J.; Lee, H.I.; Sherwood, G.; Peteanu, L.; Hollinger, J.O.; Kataoka, K.; Matyjaszewski, K. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers:

161. Oh, J.K.; Siegwart, D.J.; Matyjaszewski, K. Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs. Biomacromolecules 2007, 8 (11),

181. Scales, C.W.; Convertine, A.J.; McCormick, C.L.

183. York, A.W.; Scales, C.W.; Huang, F.; McCormick, C.L. Facile synthetic procedure for ω, primary amine functionalization directly in water for subsequent fluorescent labeling and potential bioconjugation of RAFT-synthesized (co)polymers. Biomacromolecules 2007, 8 (8), 2337-2341.

190. Lansalot, M.; Davis, T.P.; Heuts, J.P.A. RAFT

217. Zong, M.M.; Thurecht, K.J.; Howdle, S.M. Dispersion polymerisation in supercritical CO2 using macroRAFT

227. Schmitt, F.; Lagopoulos, L.; Kauper, P.; Rossi, N.; Busso, N.; Barge, J.; Wagnieres, G.; Laue, C.; Wandrey,

55 Chapter 55 Electrospinning Technology

11. Ke, R.; Bowlin, G.L.; Mansfield, K.; Layman, J.; Simpson, D.G.; Sanders, E.H. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend.

41. Ma, Z.W.; He, W.; Yong, T.; Ramakrishna, S. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng. 2005, 11 (7-8), 1149-1158.

42. Joung, Y.K.; Bae, J.W.; Park, K.D. Controlled release of heparin-binding growth factors using heparin-containing particulate systems for tissue regeneration. Expert Opin.

52. Li, W.; Tuli, R.; Okafor, C.; Derfoul, A.; Danielson, K.G.; Hall, D.J.; Tuan, R.S. A three-dimensional

56 Chapter 56 Polyelectrolyte Complexes

34. Van Leeuwen, H.P., Cleven, R.F.M.J., Valenta, P.
Conductometric analysis of polyelectrolytes in solution.

46. Ts uboi, A., Izumi, T., Hirata, M., Xia, J.L., Dubin, P.L., Kokufuta, E. Complexation of proteins with a strong

67. Patrick, J.S. Ed. Martin’s Physical Pharmacy and Pharmaceutical Sciences, 5th edn., Indian Reprint,

101. Siu, Z.J., Schlenoff, J.B. Phase separations in pH-responsive polyelectrolyte multilayers: Charge extrusion

Gradient cross-linked biodegradable polyelectrolyte nanocapsules for intracellular protein drug delivery. Biomaterials 2010, 31 (23), 6039-6049.

141. Pirogov, A.V., Shpak, A.V., Shpigun, O.A. Application of polyelectrolyte complexes as novel pseudostationary

Chapter 57 Polymeric Nano/Microparticles for Oral Delivery of Proteins and Peptides

12. Zhou, X.H. Overcoming enzymatic and absorption barriers to non-parentally administrated protein and

24. Katre, N.V. The conjugation of proteins with poly(ethylene glycol) and other polymers altering properties of proteins to enhance their therapeutic

37. Hussain, N. et al. Recent advances in the understanding

60. Watnasirichaikul, S., Rades, T., Tucker, I.G., Davies, N.M. In-vitro release and oral bioactivity of insulin in diabetic rats using nanocapsules dispersed in biocompatible

58 Chapter 58 Vegetable Oil–Based Formulations for Controlled Drug Delivery

11. Ra ne SS, Anderson BD. What determines drug solubility

84. Oscutini E, Kamaras P, Weiss RG. Novel X-ray Method for in situ determination of gelator strand structure:

94. Pal K, Singh VK, Anis A, Thakur G, Bhattacharya MK. Hydrogel-based controlled release formulations: Designing considerations, characterization techniques and

104. Suzuki M, Hanabusa K. Polymer organogelators that make supramolecular organogels through physical cross-linking

146. Blank D, Biergans P, Bongartz N, Tessendorf R, Stubenrauch C. New speciality surfactants with natural

166. Torchilin VP. Passive and Active Drug Targeting: Drug Delivery to Tumors as an Example. Drug Delivery.

196. Špiclin P, Homar M, Zupančič-Valant A, Gašperlin M.

magnetic nanoparticles into polysaccharide-based hydrogels

220. O’Connor CJ, Buisson YSL, Li S, Banerjee S,
Premchandran R, Baumgartner T et al., editors. Ferrite
synthesis in microstructured media: Template effects and
magnetic properties. AIP, Atlanta, GA, 1997.

221. Huang R, Kostanski LK, Filipe CDM, Ghosh R.
Environment-responsive hydrogel-based ultrafiltration
membranes for protein bioseparation. Journal of Membrane

222. Kumar A, Srivastava A, Galaev IY, Mattiasson B. Smart
polymers: Physical forms and bioengineering applications.

224. Hunt NC, Grover LM. Cell encapsulation using
biopolymer gels for regenerative medicine. Biotechnology

225. Maltais A, Remondetto GE, Subirade M. Soy protein
cold-set hydrogels as controlled delivery devices for
nutraceutical compounds. Food Hydrocolloids.
2009;23(7):1647-1653.

226. Bromberg LE, Ron ES. Temperature-responsive gels and
thermogelling polymer matrices for protein and peptide
1998;31(3):197-221.

227. Ferreira L, Vidal M, Gil M. Evaluation of poly
(2-hydroxyethyl methacrylate) gels as drug delivery
systems at different pH values. International Journal of

mattices for controlled drug delivery: Gel-layer
behaviour, mechanisms and optimal performance.
Pharmaceutical Science and Technology Today.

266. Groll AH and Walsh TJ. Caspofungin: Pharmacology,

2. NCR-brochure, Encapsulation, Research and Development Facilities, p. 1, 2, 1966. Cross section: closed microcapsule Cross section: open microcapsule Lubricant layer Microcapsules Anti-friction coating layer Coated component Touch dry Fig. 2b Lubricant layer Friction partner Fig. 2a Anti-friction coating layer Coated component Lubrication on demand

FIGURE 60.20 Lubricant filled microcapsule varnish in action. (From Bechem GmbH, Brochure, 2010.)

Decreasing temperature
Increasing temperature Encapsulated phase change materials
Solid Phase changing Liquid Without Micronal PCM Micronal
PCM With Comfort region

FIGURE 60.21 PCM principle. (From BASF, Brochure, 2008.)

42. Ayala-Zavala, J.F. and Gonzalez-Aguilar, G.A. 2010. Optimizing the use of garlic oil as antimicrobial agent on fresh-cut tomato through a controlled release system. J.

Chapter 62 Microencapsulation of Phase Change Materials

46. Mochane, M.J. Polymer encapsulated paraffin wax to be used as phase change material for energy storage. Thesis, Master of Science, 2011.

62. Castellón, C.; Medrano, M.; Roca, J.; Cabeza, L.F.; Navarro, M.E.; Fernández, A.I.; Lázaro, A.; Zalba, B. Effect of microencapsulated phase change material in

122. Sarı, A.; Biçer, A. Thermal energy storage properties and thermal reliability of some fatty acid esters/ building material composites as novel form-stable PCMs. Sol Energ

