Type 2 Diabetes
Principles and Practice
Second Edition
Edited by
Barry J. Goldstein
Dirk Müller-Wieland
Type 2 Diabetes
Type 2 Diabetes
Principles and Practice
Second Edition

Edited by
Barry J. Goldstein
Jefferson Medical College of Thomas Jefferson University
Philadelphia, Pennsylvania, USA

Dirk Müller-Wieland
Asklepios Clinic St. Georg
Hamburg, Germany
To C. Ronald Kahn, an extraordinary mentor, who fostered our career interests in the molecular pathogenesis of diabetes and its complications.

To our families for their love and support.

To our patients, who suffer with the restrictions imposed by diabetes on their daily lives, with the hope that this book will help alleviate their burden.
The incidence and prevalence of type 2 diabetes mellitus have increased dramatically in modernized and developing nations over the past few decades—and this “epidemic” shows no signs of abating. Physicians and other healthcare professionals worldwide are well aware of this growing burden. The pathogenesis and management of the hyperglycemia of diabetes and its associated risk factors and morbidities, especially involving cardiovascular and microvascular complications, must be fully understood by all of the many providers that care for patients with diabetes worldwide.

Patients are always asking, “Isn’t there anything new to help manage my diabetes?” This reflects the relative inadequacies of many of our attempts at lifestyle change, as well as some of the shortcomings of currently available medications for the long-term management of this disorder. Certainly, changes in lifestyle can be effective, but they are extremely difficult to implement over an extended period of time. Diabetes patient management is often implemented later in the course of the disease, since the disease can be asymptomatic and therefore can go unrecognized for many years. Recent studies have shown clearly that the onset of diabetes can be prevented or delayed and more aggressive, earlier treatment may also help to alter its course and, possibly, its chronic complications. Large clinical trials will help to answer these questions in the future.

In this second edition, we have thoroughly updated all existing chapters and developed new ones vital to the management of diabetes, while maintaining the international perspective and focus on clinical care found in the first edition. The entire clinical field is covered in succinct chapters written by recognized experts. The content spans from a current perspective on diabetes demographics and epidemiology, pathophysiology, disease monitoring, approaches to glucose control, and managing complications. New to this edition are chapters that expand on nonpharmacological management options; diabetes-related macrovascular conditions, including coronary heart disease and peripheral vascular disease; and discussions on rare forms of diabetes, polycystic ovarian syndrome, and non-alcoholic steatohepatitis. As before, this edition closes with a look at the future of new devices for glucose monitoring and diabetes management.

We hope this book will be used frequently and successfully in the management of this complex and widely prevalent disorder.

Barry J. Goldstein
Dirk Müller-Wieland
Contents

Preface
v
Contributors
ix

1. **Epidemiology of Type 2 Diabetes**
Markku Laakso

1. **Pathogenesis of Type 2 Diabetes**
Michael Stumvoll, Barry J. Goldstein, and Timon W. van Haeften

3. **Rationale and Goals for Glucose Control in Diabetes Mellitus and Glucose Monitoring**
Ramachandiran Cooppan

4. **The Role of the Diabetes Educator in the Education and Management of Diabetes Mellitus**
Carolé Mensing

5. **Nutrition in the Etiology and Management of Type 2 Diabetes**
Monika Toeller and Jim I. Mann

6. **Diabetes and Exercise**
Gerhard Schuler and Axel Linke

7. **Psychosocial Issues and Type 2 Diabetes**
Garry W. Welch, Alan M. Jacobson, and Katie Weinger

8. **Oral Hypoglycemic Agents: Sulfonylureas and Meglitinides**
Andreas F. H. Pfeiffer

9. **Metformin**
Michael Stumvoll, Hans-Ulrich Häring, and Stephan Matthaei

10. **Alpha-Glucosidase Inhibitors**
Markolf Hanefeld

11. **Thiazolidinediones**
Sunder Mudaliar and Robert R. Henry

12. **Treatment Strategies for Type 2 Diabetes Based on Incretin Action**
Baptist Gallwitz and Michael Nauck

13. **Pramlintide Acetate in the Treatment of Type 2 Diabetes**
Steven V. Edelman, Brock E. Schroeder, and Juan P. Frías

14. **Insulin Therapy in Type 2 Diabetes**
Kathleen L. Wyne and Pablo F. Mora

15. **Combination Therapy for Treatment of Type 2 Diabetes**
Anthony L. McCall

16. **Hypoglycemia in Type 2 Diabetes**
Philip E. Cryer

17. **Diabetic Coma: Current Therapy of Diabetic Ketoacidosis and Non-Ketoacidotic Hyperosmolar Coma**
Johannes Hensen
18. Diabetic Retinopathy and Ocular Complications 251
 Brett Rosenblatt, Carl D. Regillo, and William E. Benson

19. Renal Dysfunction and Hypertension 263
 Carl Erik Mogensen

20. Diabetic Peripheral Neuropathy and Sexual Dysfunction 277
 Dan Ziegler

21. Diabetic Foot Ulcers 313
 Michael Edmonds

22. Gastrointestinal and Autonomic Complications of Diabetes Mellitus 327
 Adrian Vella and Michael Camilleri

23. Gestational Diabetes 341
 Asha Thomas-Geevarghese and Robert E. Ratner

24. Epidemiology of Type 2 Diabetes in Children and Adolescents 357
 Arlan L. Rosenbloom

25. Insulin Resistance Syndrome and Its Vascular Complications 375
 Tina K. Thethi, Christina Bratcher, Tilak Mallik, and Vivian Fonseca

26. Obesity: Influence on Diabetes and Management 395
 Hans Hauner

27. Dyslipidemia and Diabetes 405
 Ioanna Gouni-Berthold, David John Betteridge, and Wilhelm Krone

28. Hypertension and Diabetes: Need for Combination Therapy 417
 Guntram Schernthaner and Gerit-Holger Schernthaner

29. The Evaluation of Cardiac and Peripheral Arterial Disease in Patients with Diabetes Mellitus 437
 Rhuna Shen, Susan E. Wiegers, and Ruchira Glaser

30. Acute Coronary Syndrome, Myocardial Infarction, Heart Failure, and Stable Coronary Artery Disease—Specific Considerations in Diabetes 463
 Christian A. Schneider and Erland Erdmann

31. Anesthesia and Surgery in the Diabetic Patient 475
 Jeffrey I. Joseph

32. Type 2 Diabetes: Geriatric Considerations 491
 Jill P. Crandall

33. Diabetes in High-Risk Ethnic Populations 501
 Ebenezer A. Nyenwe and Samuel Dagogo-Jack

34. Drug-Induced Hyperglycemia and Diabetes Mellitus 513
 Mary Kate McCullen and Intekhab Ahmed

35. MODY: Lessons from Monogenetic Diabetes Forms 529
 Birgit Knebel and Dirk Müller-Wieland

36. Polycystic Ovary Syndrome and the Metabolic Syndrome 537
 Onno E. Janssen, Susanne Tan, Tiina Dietz, and Susanne Hahn

37. Nonalcoholic Fatty Liver Disease and Diabetes Mellitus 553
 Leon A. Adams

38. Future Management Approaches: New Devices on the Horizon for Glucose Monitoring and Medication Delivery 561
 Jeffrey I. Joseph

Index 575
Contributors

Leon A. Adams School of Medicine, The University of Western Australia, Sir Charles Gairdner Hospital, Perth, Australia

Intekhab Ahmed Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A.

William E. Benson Retina Service, Wills Eye Hospital, Philadelphia, Pennsylvania, U.S.A.

David John Betteridge Department of Medicine, University College Hospital, London, U.K.

Christina Bratcher Department of Medicine, Section of Endocrinology, Tulane University Health Sciences Center, New Orleans, Louisiana, U.S.A.

Michael Camilleri Enteric Neuroscience Program, Mayo Foundation, Rochester, Minnesota, U.S.A.

Ramachandiran Cooppan Joslin Diabetes Center, Boston, Massachusetts, U.S.A.

Jill P. Crandall Diabetes Research and Training Center, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, U.S.A.

Philip E. Cryer Washington University School of Medicine, St. Louis, Missouri, U.S.A.

Samuel Dagogo-Jack Division of Endocrinology, Diabetes, and Metabolism, University of Tennessee Health Science Center, Memphis, Tennessee, U.S.A.

Tiina Dietz Department of Medicine, Division of Endocrinology, University Hospital of Essen Medical School, University of Duisburg-Essen, Essen, Germany

Steven V. Edelman Division of Endocrinology and Metabolism, San Diego Veterans Affairs Medical Center, San Diego, California, U.S.A.

Michael Edmonds Diabetic Foot Clinic, Kings College Hospital, Denmark Hill, London, U.K.

Erland Erdmann Clinic III of Internal Medicine, University of Cologne, Cologne, Germany

Vivian Fonseca Department of Medicine, Section of Endocrinology, Tulane University Health Sciences Center, New Orleans, Louisiana, U.S.A.

Juan P. Frias Amylin Pharmaceuticals, Inc., San Diego, California, U.S.A.

Baptist Gallwitz Department of Medicine, Eberhard-Karls University, Tübingen, Germany

Ruchira Glaser Department of Medicine, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.

Barry J. Goldstein Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A.

Ioanna Gouni-Berthold Department of Internal Medicine, University of Cologne, Cologne, Germany

Susanne Hahn Endokrinologikum Ruhr, Center for Metabolic and Endocrine Diseases, Bochum-Wattenscheid, Germany
Markolf Hanefeld Center for Clinical Studies—Metabolism and Endocrinology, Technical University, Dresden, Germany

Hans-Ulrich Häring Department of Medicine, Division of Endocrinology, Metabolic and Vascular Medicine, University of Tübingen, Tübingen, Germany

Hans Hauner German Diabetes Research Institute, Heinrich-Heine Universität, Düsseldorf, Germany

Robert R. Henry Diabetes/Metabolism Section, VA San Diego Healthcare System and University of California at San Diego, San Diego, California, U.S.A.

Johannes Hensen Department of Medicine, Krankenhaus Nordstadt, Klinikum Region Hannover GmbH, Hannover, Germany

Alan M. Jacobson Behavioral and Mental Health Research, Joslin Diabetes Center, Boston, Massachusetts, U.S.A.

Onno E. Janssen Department of Medicine, Division of Endocrinology, University Hospital of Essen Medical School, University of Duisburg-Essen, Essen, Germany

Jeffrey I. Joseph Department of Anesthesiology, The Artificial Pancreas Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A.

Birgit Knebel Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich Heine University Düsseldorf and Leibniz Center for Diabetes Research, Düsseldorf, Germany

Wilhelm Krone Department of Medicine, University College Hospital, London, U.K.

Markku Laakso Department of Medicine, Kuopio University Hospital, Kuopio, Finland

Axel Linke Department of Internal Medicine/Cardiology, University of Leipzig, Leipzig, Germany

Tilak Mallik Department of Medicine, Section of Endocrinology, Tulane University Health Sciences Center, New Orleans, Louisiana, U.S.A.

Jim I. Mann Department of Human Nutrition, University of Otago, Dunedin, New Zealand

Stephan Matthaei Diabetes Center, Quackenbrück, Germany

Anthony L. McCall Center for Diabetes and Hormone Excellence, University of Virginia, Charlottesville, Virginia, U.S.A.

Mary Kate McCullen Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A.

Carole Mensing Diabetes Education Program, University of Connecticut Health Center, Farmington, Connecticut, U.S.A.

Carl Erik Mogensen Medical Department, Aarhus Sygehus, Aarhus University Hospital, Aarhus, Denmark

Pablo F. Mora Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, Texas, U.S.A.

Sunder Mudaliar Diabetes/Metabolism Section, VA San Diego Healthcare System and University of California at San Diego, San Diego, California, U.S.A.

Dirk Müller-Wieland Division of General Internal Medicine, Department of Endocrinology, Diabetes and Metabolism, Asklepios Clinic St. Georg and Teaching Hospital of the University of Hamburg, Hamburg, Germany

Michael Nauck Diabeteszentrum Bad Lauterberg, Bad Lauterberg, Germany

Ebenezer A. Nyenwe Division of Endocrinology, Diabetes, and Metabolism, University of Tennessee Health Science Center, Memphis, Tennessee, U.S.A.
Andreas F. H. Pfeiffer Department of Endocrinology, Diabetes and Nutrition, University of Berlin, Berlin, Germany

Carl D. Regillo Department of Ophthalmology, Thomas Jefferson University Hospital and Wills Eye Hospital, Philadelphia, Pennsylvania, U.S.A.

Brett Rosenblatt Long Island Vitreoretinal Consultants, Great Neck, New York, U.S.A.

Arlan L. Rosenbloom Department of Pediatrics, Division of Endocrinology, University of Florida College of Medicine, Gainesville, Florida, U.S.A.

Gerit-Holger Schernthaner Department of Medicine II, Medical University of Vienna, Vienna, Austria

Guntrum Schernthaner Department of Medicine I, Rudolfstiftung Hospital, Vienna, Austria

Christian A. Schneider Clinic III of Internal Medicine, University of Cologne, Cologne, Germany

Brock E. Schroeder Amylin Pharmaceuticals, Inc., San Diego, California, U.S.A.

Gerhard Schuler Department of Internal Medicine/Cardiology, University of Leipzig, Leipzig, Germany

Rhuna Shen Department of Medicine, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.

Michael Stumvoll Department of Medicine, University of Leipzig, Leipzig, Germany

Susanne Tan Department of Medicine, Division of Endocrinology, University Hospital of Essen Medical School, University of Duisburg-Essen, Essen, Germany

Tina K. Thethi Department of Medicine, Section of Endocrinology, Tulane University Health Sciences Center, New Orleans, Louisiana, U.S.A.

Monika Toeller German Diabetes Research Center, Heinrich-Heine University, Düsseldorf, Germany

Timon W. van Haeften Department of Internal Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands

Adrian Vella Endocrine Research Unit, Division of Endocrinology, Mayo Clinic, Rochester, Minnesota, U.S.A.

Katie Weinger Behavioral and Mental Health Research, Joslin Diabetes Center, Boston, Massachusetts, U.S.A.

Garry W. Welch Behavioral and Mental Health Research, Joslin Diabetes Center, Boston, Massachusetts, U.S.A.

Susan E. Wiegers Department of Medicine, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.

Kathleen L. Wyne Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A.

Dan Ziegler Institute of Clinical Diabetes Research, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
DIAGNOSTIC CRITERIA FOR DIABETES AND OTHER CATEGORIES OF ABNORMAL GLUCOSE TOLERANCE

Diabetes mellitus (DM) refers to a number of disorders that share the common feature of elevated blood glucose levels. The classification accepted by the World Health Organization (WHO) (1,2) and the American Diabetes Association (ADA) (3,4) combines both clinical stages of hyperglycemia and the etiological types. Two main subtypes of diabetes are type 1, either autoimmune or idiopathic, and type 2, attributable to insulin resistance, insulin secretion defects, or both. Although diabetes has been known for centuries, our understanding of the etiology and pathogenesis of this disease is still incomplete. Type 1 is characterized by deficiency of insulin due to destructive lesions in pancreatic β-cells. It occurs typically in young subjects, but may affect people of any age. Type 2 diabetes comprises about 80% to 90% of all cases. Type 2 is a heterogeneous, polygenic disorder resulting from interaction between susceptibility genes and lifestyle/environmental factors.

Diabetes affects currently about 5% of the world’s population, and its prevalence is rapidly increasing, particularly in elderly subjects. There is a marked variation in the prevalence of diabetes among many national and ethnic populations. The spectrum ranges from very low prevalence of about 1% in tribes in Papua New Guinea, the Inuit, or the Chinese living in mainland China, to extremely high rates of 20% to 45% in Australian Aborigines, Nauruans of Micronesia, and Pima Indians of Arizona (5). Even within nations, the variation in the prevalence is marked. For example, in the United States, African Americans have a twofold, Mexican Americans a 2.5-fold and Native Americans a fivefold increase in the risk of the development of type 2 diabetes compared with Caucasians (6). Large variation in the prevalence of type 2 diabetes in different populations probably results from environmental as well as genetic determinants.

Type 2 diabetes is usually preceded by a long period of asymptomatic hyperglycemia that may last for years. In this prediabetic state, postprandial or postglucose levels are mildly elevated whereas fasting blood glucose can usually be maintained within the near-normal range. The elevation of postglucose levels is used for the definition of impaired glucose tolerance (IGT), a nonspecific reversible stage. About 30% of these subjects progress to overt diabetes within 10 years (7). Elevation of fasting glucose is used for the definition of impaired fasting glucose (IFG). In some individuals beta-cells compensate for insulin resistance by increased insulin secretion, and type 2 diabetes does not develop. However, in a large number of prediabetic individuals multiple defects in insulin action and/or insulin secretion gradually lead to sustained hyperglycemia. As a consequence of insulin resistance, the beta-cell produces increased amounts of insulin, and compensatory hyperinsulinemia maintains normoglycemia. When beta-cell compensation to insulin resistance fails, decompensated hyperglycemic state develops. Thus, type 2 diabetic subjects have relative (rather than absolute) insulin deficiency. Usually these individuals do not need insulin treatment to survive.

Criteria for diagnosis of diabetes and other categories of glucose tolerance have changed considerably during the last 20 years (8,9). Table 1 shows the current criteria for normal glucose tolerance (NGT), IFG, IGT, and diabetes. Criteria proposed by the WHO (1,2) and the ADA (3,4) are different. The main difference between these new criteria is that the ADA does not recommend the use of an oral glucose tolerance test. The WHO defined a new subcategory of glucose tolerance, IGT, to describe subjects whose fasting glucose levels were normal but whose 2-hour postglucose challenge levels were elevated, although not diabetic. The 2 hour 75 g oral glucose tolerance test was recommended as the international standard for diabetes diagnosis. The cutoff point between IGT and diabetes was based on an increased risk of developing diabetic complications, primarily retinopathy, for these subjects with diabetes.

The ADA (but not the WHO) recommended that in epidemiological studies, estimates of diabetes prevalence and incidence should be based only on fasting glucose criteria. The fasting
glucose criteria for diagnosis were considered by the ADA to have good reproducibility, small variability, and easy application in clinical practice. IGT is defined by the WHO as a 2-hour plasma glucose concentration between 7.8 and 11.0 mmol/L. The ADA (3) also introduced a category of IFG, defined as fasting plasma glucose between 5.6 and 6.9 mmol/L, to replace IGT. IFG and IGT were considered to be metabolic stages intermediate between normal glucose homeostasis and diabetes. However, it is possible that IFG differs from IGT with respect to the relative contribution of insulin secretion defect and hepatic and peripheral insulin resistance. IFG and IGT are not clinical entities, but rather risk categories for future diabetes and/or cardiovascular disease. Normoglycemia is defined as plasma fasting glucose < 6.1 (WHO) (1) and < 5.6 mmol/L (ADA) (3) and a 2-hour glucose < 7.8 mmol/L in an oral glucose tolerance test. The changes in diagnostic criteria for diabetes recognized results of epidemiological studies indicating that the risks of both retinopathy and cardiovascular disease start to increase at fasting plasma glucose values of about 6.0 mmol/L (10).

Both the ADA and WHO recommend a fasting plasma glucose concentration of 7.0 mmol/L for the diagnosis of diabetes, but according to the WHO criteria (1), diabetes can be also diagnosed if the 2-h glucose concentration is at least 11.1 mmol/L. For the asymptomatic person, at least one additional glucose test result with a value in the diabetic range is essential, from a random (casual) sample, or from the oral glucose tolerance test.

A number of studies summarized by Shawn et al. (11) have compared the WHO and ADA criteria for DM using fasting and 2-h definitions. These studies demonstrate both an increase and a decrease in people as having nearly diagnosed diabetes depending on the population studied. Compared to the WHO criteria, fasting glucose-based ADA criteria may underestimate glucose abnormalities more in older age than in younger age (12). Also the Cardiovascular Health Study demonstrated a 50% underestimation of diabetes prevalence in older adults (> 65 years) comparing the ADA criteria with the WHO criteria (13). Furthermore, IGT may have higher sensitivity over IFG for predicting progression to type 2 diabetes (14).

In general the fasting criterion identifies different people as being diabetic compared to those identified by the 2-h criterion (15). In subjects without previously diagnosed diabetes, the DECODE study group from 16 different European populations (16) found that all subjects diagnosed by either the fasting or 2-h criteria, only 29% qualified as diabetic according to both criteria. This result was confirmed in the DECODA study group (17) including existing epidemiological data from 11 population-based studies collected from Asian people ($n=17,666$) between 30 and 89 years of age. The authors concluded that it would be inappropriate to use the ADA criteria alone for screening diabetes in Asian populations.

“EPIDEMIC” OF TYPE 2 DIABETES

Epidemiological studies had already identified “diabetes epidemic” in 1970s. The extraordinarily high prevalence of type 2 diabetes was reported in Pima Indians (18) and also in

TABLE 1 Criteria for Classification of Glucose Tolerance Status According to World Health Organization and the American Diabetes Association Criteria

<table>
<thead>
<tr>
<th>Glucose tolerance status</th>
<th>Definition</th>
<th>Classification criteria (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal glucose tolerance (NGT)</td>
<td>WHO (1999)</td>
<td>FPG < 6.1 and 2 h PG < 7.8</td>
</tr>
<tr>
<td></td>
<td>ADA (1997)</td>
<td>FPG < 6.1</td>
</tr>
<tr>
<td></td>
<td>ADA (2003)</td>
<td>FPG < 5.6</td>
</tr>
<tr>
<td>Impaired fasting glucose (IFG)</td>
<td>WHO (1999)</td>
<td>FPG ≥ 6.1 and 2 h PG < 7.8</td>
</tr>
<tr>
<td></td>
<td>ADA (1997)</td>
<td>FPG ≥ 6.1 and 7.0</td>
</tr>
<tr>
<td></td>
<td>ADA (2003)</td>
<td>FPG ≥ 5.6 and 7.0</td>
</tr>
<tr>
<td>Impaired glucose tolerance (IGT)</td>
<td>WHO (1999)</td>
<td>FPG < 7.0 and 2 h PG ≥ 7.8 and < 11.1</td>
</tr>
<tr>
<td></td>
<td>ADA (1997)</td>
<td>FPG ≥ 7.0 or 2 h PG ≥ 11.1</td>
</tr>
<tr>
<td></td>
<td>ADA (2003)</td>
<td>FPG ≥ 7.0</td>
</tr>
</tbody>
</table>

Abbreviations: DM, diabetes mellitus; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; NGT, normal glucose tolerance. Source: From Refs. 1, 3, and 4.
the Micronesian Nauruans in the Pacific (19), and subsequently in other Pacific and Asian island populations (20). These studies showed that transition from traditional lifestyle to Western way of life resulted in obesity, lack of exercise, profound changes in the diet, and finally to type 2 diabetes. Potential for a future global epidemic of diabetes were highlighted. Since the 1970s several other studies have shown that type 2 diabetes has reached epidemic proportions in several developing countries as well as in Australian Aboriginals (21), African-Americans, and Mexican Americans (22).

Table 2 shows the trends in the number of diabetic patients worldwide (23). Significant increase in the number of type 1 diabetic patients is expected, but the doubling of the number of diabetic subjects in the following 20 years is due to a huge increase in the number of type 2 diabetic patients. According to the estimation of the International Diabetes Federation (IDF) about 194 million people worldwide, or 5.1%, were estimated to have diabetes in the age group 20 to 79 years in 2003 (23). This estimate is expected to increase to some 333 million by 2025, or 6.3% of the adult population. Thus, the increase in the number of diabetic subjects will be almost twofold in the forthcoming 20 years. South East Asia has the most of the increase considering the size of the population (705 million in 2003 and 1081 million in 2025). People in Asia tend to develop diabetes with a lesser degree of obesity at younger ages. Similarly, childhood diabetes has increased substantially (24). The highest prevalence of diabetes was in 2003 in North America, and in 2025 about 10% of the people will have diabetes in this area of the world. Southeast Asia had the highest prevalence of IGT in 2003, and the percentage of people having IGT will be 13.5% in 2025. About 15% to 20% of people in different regions will have either DM or IGT in 2025.

The United States has the highest increase in the prevalence of DM on the basis of several follow-up studies. In the National Health and Nutrition Surveys (NHANES) II (1976–1980) the prevalence of diagnosed plus undiagnosed diabetes was 8.9%, but in the NHANES III (1988–1994) the prevalence was already 12.3% in the population 40 to 74 years of age (25). Prevalence of IFG increased from 6.5% to 9.7%. Figure 1 demonstrates a large difference between ethnic groups in diabetes prevalence in the U.S. population ≥20 years of age. The prevalence of diabetes (known plus undiagnosed) was particularly high in Mexican American men (13.1%) and women (14.5%). IFG or diabetes was present in about 20% of Mexican Americans. Diabetes has become one of the most common chronic diseases in the United States, where in subjects ≥60 years of age the prevalence is already 18.8%.

Until recently, type 2 diabetes was regarded as a disease of the middle-aged and elderly. However, evidence is accumulating that onset in subjects aged under 30 years is increasing. Even children and adolescent are diagnosed to have type 2 diabetes (26). For example, among children in Japan type 2 diabetes is already more common than type 1 and accounts for 80% of childhood diabetes (27). Between 8% and 45% of newly presenting children and adolescents in the United States have type 2 diabetes.

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>Estimates of the Prevalence (%) of Diabetes Mellitus and Impaired Glucose Tolerance in the Age Group 20 to 79 Years in Different Regions of the World in 2003 and 2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td>2003 DM</td>
</tr>
<tr>
<td>Africa</td>
<td>2.4</td>
</tr>
<tr>
<td>Eastern Mediterranean and Middle East</td>
<td>7.0</td>
</tr>
<tr>
<td>Europe</td>
<td>7.8</td>
</tr>
<tr>
<td>North America</td>
<td>7.9</td>
</tr>
<tr>
<td>South and Central America</td>
<td>5.6</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>5.6</td>
</tr>
<tr>
<td>Western Pacific</td>
<td>3.1</td>
</tr>
<tr>
<td>Total</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Abbreviations: DM, diabetes mellitus; IGT, impaired glucose tolerance.

Source: From Ref. 23.
Epidemic of type 2 diabetes is determined not only by an increase in the incidence but also by mortality rates. Although cardiovascular complications in nondiabetic subjects have significantly reduced in the United States during the last decades this is not the case in diabetic patients, particularly among women, as shown recently by Gu et al. (28). No reliable data on mortality rates are available from populations living in developing countries.

CRITERIA FOR TYPE 2 DIABETES AND CARDIOVASCULAR DISEASE

The chronic hyperglycemia of diabetes is associated with long-term complications, especially in the eyes, kidneys, nerves, heart, and blood vessels. Individuals with undiagnosed type 2 diabetes are at high risk of coronary heart disease, stroke, and peripheral vascular disease. More than half of type 2 diabetic patients die of cardiovascular causes (29).

From the perspective of cardiovascular complications of DM the diagnostic criteria have been too high. Already the Whitehall study showed an increased risk of cardiovascular disease when the 2-hour level exceeded 5.5 mmol/L, albeit after a 50 g glucose load (30). This study and several other population-based studies indicated that the risk for macrovascular complications starts at considerably lower levels of glycemia than has been included in the definition of diabetes.

Early diagnosis of diabetes aims to prevent long-term complications. Because cardiovascular disease is the main complication of type 2 diabetes recent studies have investigated the capability of new criteria to predict these complications. The association of hyperglycemia and cardiovascular disease is a crucial one on which to test the validity of the new criteria. The DECODE Study (31) showed that the 2-h criteria more accurately identifies people who are at increased risk of total and cardiovascular mortality compared to the ADA fasting criteria.

The DECODE study (31) analyzed 10 prospective European cohort studies including 15,388 men and 7,126 women, aged 30 to 89 years, who all had undergone a 2-h oral glucose tolerance test. The median follow-up was 8.8 years, and hazard ratios for deaths from all causes, cardiovascular disease, coronary heart disease, and stroke were estimated. Multivariate Cox regression analyses showed that the inclusion of fasting glucose did not add significant information on the prediction of 2-h glucose alone, whereas the addition of 2-h glucose to fasting glucose criteria significantly improved the prediction. Table 3 reports adjusted hazard ratios for deaths from cardiovascular disease, coronary heart disease, stroke,
and all causes with fasting and 2-h categories. IFG did not predict mortality. Diabetes based on fasting criteria predicted total mortality, but 2-h glucose criteria predicted mortality much better than fasting glucose criteria. IGT and diabetes predicted cardiovascular and coronary heart disease mortality as well as coronary heart disease mortality and total mortality. The highest hazard ratios for all categories of death were observed in known diabetic patients. The largest number of excess cardiovascular deaths was found in subjects with IGT who had a normal fasting glucose level, supporting the notion that IGT has prognostic importance. Also the Funaka Diabetes Study in Japan demonstrated that subjects with IGT had higher cardiovascular disease mortality than subjects with IFG (32). In contrast to these findings the Hoorn Study reported no clear differences in mortality risks for subjects classified as IGT, IFG, or newly diagnosed diabetes according to either set of criteria (33).

INSULIN RESISTANCE AND IMPAIRED INSULIN SECRETION AS PREDICTORS OF TYPE 2 DIABETES

Type 2 diabetes is caused by impaired insulin action (insulin resistance) and/or impaired insulin secretion. Insulin resistance is a characteristic metabolic defect in the great majority of patients, and it also precedes the development of frank hyperglycemia. Impaired insulin action is observed in several tissues, e.g., skeletal muscle, adipose tissue, and the liver. It leads to increased insulin secretion from the pancreas to overcome impaired insulin action. Compensatory hyperinsulinemia maintains glucose levels within the normal range but in individuals destined to develop diabetes, beta-cell function eventually declines and leads to hyperglycaemic diabetic state. In a minority of subjects diabetes develops as a consequence of a primary defect in insulin secretion. Between 2% and 14% (on average about 5%) of people with IGT progress to type 2 diabetes each year (34). The progression rate is influenced by age, ethnicity, and the degree of glucose intolerance.

The degree of insulin resistance varies between different ethnic groups. For example, in the Insulin Resistance Atherosclerosis Study (35) including 1100 healthy subjects African-Americans and Mexican Americans had a lower insulin sensitivity than non-Hispanic whites. The first study to demonstrate that a combination of insulin resistance and impaired insulin secretion predicts type 2 diabetes was published on Pima Indians. Lillioja et al. (36) showed that low insulin secretory response and increased insulin resistance were both predictors of type 2 diabetes. Furthermore, both impaired insulin secretion and insulin resistance acted as an independent risk factor. Quite similar results were published on Mexican Americans. During the 7-year follow-up baseline high-fasting insulin level (indicator of insulin resistance) predicted the conversion to diabetes (37). Furthermore, low insulin secretion assessed by insulin response (30 min insulin minus fasting insulin divided by 30 min glucose minus fasting glucose) also predicted the development of diabetes. When these two parameters were combined they had an additive effect on the risk of developing diabetes. High degree of

TABLE 3	Adjusted Hazard Ratios from Cardiovascular Disease, Coronary Heart Disease, Stroke, and All Causes with Fasting and Two-Hour Glucose Categories in the Same Model: The DECODE Studya			
	CVD	CHD	Stroke	All causes
Fasting glucose criteria				
IFG	1.01 (0.84–1.22)	1.01 (0.77–1.31)	1.00 (0.66–1.59)	1.03 (0.93–1.14)
Diabetes	1.20 (0.88–1.64)	1.09 (0.71–1.67)	1.64 (0.88–3.07)	1.21 (1.01–1.44)
2-h glucose criteriab				
IGT	1.32 (1.12–1.56)	1.27 (1.01–1.58)	1.21 (0.84–1.74)	1.37 (1.25–1.51)
Diabetes	1.40 (1.02–1.92)	1.56 (1.03–2.36)	1.29 (0.66–2.54)	1.73 (1.45–2.06)
Known diabetesc	1.96 (1.62–2.37)	1.94 (1.51–2.50)	1.73 (1.12–2.68)	1.82 (1.60–2.06)

a Adjusted for age, sex, center, total cholesterol, body mass index, systolic blood pressure, and smoking.

b Using fasting plasma glucose < 6.1 mmol/L as reference group.

c Using 2-h plasma glucose < 7.8 mmol/L as reference group.

Abbreviations: CHD, coronary heart disease; CVD, cardiovascular disease; IFG, impaired fasting glucose; IGT, impaired glucose tolerance.
insulin resistance and normal insulin secretion increased the risk by 4.5-fold, and high insulin sensitivity but low insulin secretion increased the risk by 5.4-fold, whereas the combination of these two increased the risk by 13.9-fold (Fig. 2).

RISK FACTORS FOR TYPE 2 DIABETES

The identification of risk factors is essential for the successful implementation of primary prevention programs. Risk factors for type 2 diabetes can be classified as modifiable and nonmodifiable (Table 4). Subjects who subsequently develop diabetes have multiple adverse changes in risk factor levels. A good example is our study of 892 elderly Finnish subjects followed for 3.5 years (38). As shown in Figure 3 the highest risk of developing diabetes was associated with IGT and hyperinsulinemia. Furthermore, hypertriglyceridemia, central obesity, low high-density lipoprotein (HDL) cholesterol, high body mass index, hypertension, and a family history of diabetes were risk factors for diabetes.

Modifiable Risk Factors

Hu et al. (39) published results from the Nurses’ Health Study including 84,941 female nurses followed from 1980 to 1996, and who were free of diagnosed cardiovascular disease and diabetes at baseline. During the 16 years follow-up 3300 new cases of type 2 diabetes were diagnosed. As shown in Figure 4 obesity was the single most important predictor of diabetes. Women whose body mass index was at least 35.0 kg/m² had almost 40-fold risk of becoming diabetic compared to women whose body mass index was <23.0 kg/m². Weekly exercised at least 7 h/wk reduced the risk of type 2 diabetes by 39% compared to women who exercise <0.5 h/wk. Smoking of >14 cigarettes/day increased the diabetes risk by 39%, but alcohol intake >10 g/day reduced the risk by 41%. The study also indicated that a diet high in cereal fiber and polyunsaturated fat and low in saturated and trans fats and glycemic load reduced the risk of developing diabetes. A combination of several lifestyle factors, including low body mass index (<25 kg/m²), a diet high in cereal fiber and polyunsaturated fat and low in saturated fat and trans fats and glycemic load, regular exercise, abstinence from smoking and moderate alcohol intake, was associated with a reduction of type 2 diabetes incidence by 90% compared to women without these factors.

![Figure 2](image-url)

FIGURE 2 The risk of developing type 2 diabetes by fasting insulin concentration and insulin secretion (change in insulin divided by change in glucose concentrations over the first 30 minutes of an oral glucose tolerance test [ΔI/ΔG₃₀]). *Source:* From Ref. 35.
Visceral adiposity precedes the development of type 2 diabetes. Boyko et al. (40) showed in their study of Japanese Americans that intra-abdominal fat area measured by computed tomography (CT) remained a significant predictor of diabetes incidence even after adjustment for body mass index, total body fat area, and subcutaneous fat area and other risk factors for diabetes. Interestingly, high insulin resistance and low insulin secretion predicted diabetes independently of directly measured visceral adiposity suggesting that visceral adiposity could contribute to the development of diabetes through actions independent of its effect on insulin sensitivity. Van Dam et al. (41) showed that in Dutch subjects the association between abdominal obesity (waist circumference) and hyperglycemia was stronger in the presence of a parental history of diabetes.

Physical inactivity is a major risk factor for the development of type 2 diabetes. For example, sedentary lifestyle, indicated by television viewing time, worsens glucose tolerance (42). Physical activity reduces insulin resistance and total and visceral fat mass (43). In contrast, the association of total dietary fat with type 2 diabetes or insulin sensitivity is less

TABLE 4 Risk Factors for Type 2 Diabetes

<table>
<thead>
<tr>
<th>Modifiable</th>
<th>Nonmodifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity</td>
<td>Ethnicity</td>
</tr>
<tr>
<td>Central obesity</td>
<td>Age</td>
</tr>
<tr>
<td>Lack of physical activity</td>
<td>Sex</td>
</tr>
<tr>
<td>Smoking</td>
<td>Genetic factors</td>
</tr>
<tr>
<td>Alcohol abstinence</td>
<td>Family history of type 2 diabetes</td>
</tr>
<tr>
<td>Low fiber in the diet</td>
<td>Prior gestational diabetes</td>
</tr>
<tr>
<td>High saturated fat in the diet</td>
<td>Prior glucose intolerance</td>
</tr>
<tr>
<td></td>
<td>History of cardiovascular disease</td>
</tr>
<tr>
<td></td>
<td>History of hypertension</td>
</tr>
<tr>
<td></td>
<td>History of dyslipidemia</td>
</tr>
<tr>
<td></td>
<td>Low birth weight</td>
</tr>
</tbody>
</table>

Visceral adiposity precedes the development of type 2 diabetes. Boyko et al. (40) showed in their study of Japanese Americans that intra-abdominal fat area measured by computed tomography (CT) remained a significant predictor of diabetes incidence even after adjustment for body mass index, total body fat area, and subcutaneous fat area and other risk factors for diabetes. Interestingly, high insulin resistance and low insulin secretion predicted diabetes independently of directly measured visceral adiposity suggesting that visceral adiposity could contribute to the development of diabetes through actions independent of its effect on insulin sensitivity. Van Dam et al. (41) showed that in Dutch subjects the association between abdominal obesity (waist circumference) and hyperglycemia was stronger in the presence of a parental history of diabetes.

Physical inactivity is a major risk factor for the development of type 2 diabetes. For example, sedentary lifestyle, indicated by television viewing time, worsens glucose tolerance (42). Physical activity reduces insulin resistance and total and visceral fat mass (43). In contrast, the association of total dietary fat with type 2 diabetes or insulin sensitivity is less

FIGURE 3 Odds ratio of developing type 2 diabetes in elderly Finnish subjects. Source: From Ref. 38.
consistent. Meyer et al. (44) studied the relation between dietary fatty acids and diabetes in a prospective cohort study of 35,988 older women who initially did not have diabetes. Altogether 1890 new cases of diabetes occurred during 11 years of follow-up. Diabetes risk was negatively associated with dietary polysaturated fatty acids, vegetable fat, and trans fatty acids. Even after adjustment for confounding factors vegetable fat remained a significant predictor of new diabetes. Many studies show that high coffee consumption may protect from type 2 diabetes (45).

Nonmodifiable Risk Factors

The prevalence and incidence of type 2 diabetes are strongly related to age. In fact, about 50% of all type 2 diabetic patients are over 60 years old. Ethnicity is a strong determinant of diabetes occurrence. In Chinese the prevalence of type 2 diabetes is 1% whereas in Pima Indians it is >50% in adult population probably due to genetic influence or due to interaction between genes and environment. No systematic effect of gender on the prevalence and incidence of type 2 diabetes is observed but in some ethnic groups the occurrence of diabetes might depend on gender. Previous abnormality of glucose tolerance, a history of gestational diabetes and a family history of type 2 diabetes are all strong predictors of type 2 diabetes. Interestingly, also the presence of other disease states or conditions, for example hypertension and dyslipidemia increase the risk of type 2 diabetes. In recent years interest has been focused also on low birth weight as a risk factor for type 2 diabetes. Associations between low birth weight and increased risk of type 2 diabetes in adult life have been reported in various populations (46). Several explanations for this relationship have been presented. Long-term effects of nutritional deprivation in utero could affect fetal growth and the development of the endocrine pancreas. Genetic factors could cause both low birth weight and later abnormalities of insulin secretion or insulin sensitivity. Whether the relationship between diabetes and low birth weight is mediated through impaired insulin sensitivity or impaired insulin secretion remains to be determined.
PREVENTION OF TYPE 2 DIABETES: IMPLICATIONS FOR SCREENING

Screening for diabetes may be appropriate under certain circumstances because early detection and prompt treatment may reduce the burden of type 2 diabetes and its complications. However, widespread screening for asymptomatic individuals for type 2 diabetes cannot be recommended. Screening may be appropriate if the subjects have one or more of the risk factors listed in Table 4.

The rationale for screening of type 2 diabetes must be based on the presence of factors having a significant effect on the risk of developing diabetes. Second, screening for diabetes is rational only if diabetes can be prevented by normalizing modifiable risk factors. Clinical trials have demonstrated the efficacy of lifestyle–intervention programs in the prevention of type 2 diabetes. Da Qing study from China (47) showed that exercise and diet resulted in a decrease of 42% to 46% an incidence of type 2 diabetes among 577 subjects with IGT. The Finnish Diabetes Prevention Program demonstrated that weight loss and regular exercise reduced the incidence of type 2 diabetes by 58% (48), and this preventive effect was observed even 3 years after the stopping the intervention (49). Similarly, the Diabetes Prevention Study in the United States showed that diet and regular exercise reduced the incidence of type 2 diabetes by 58% among 3234 subjects with IGT (50). Lifestyle intervention works as well in men and women and in all ethnic groups. Lifestyle was also effective in the Japanese (51) and Indian (52) trials. Accumulating evidence implies that lifestyle intervention is highly successful and screening should be targeted to subjects with high risk of developing diabetes.

The ADA has recommended the plasma fasting glucose measurements as a screening test because it is easier and faster to perform, more convenient and acceptable to patients, and less expensive (53). In contrast, the WHO criteria for diabetes still include a 2-h oral glucose tolerance test, which might be used in the screening of high-risk individuals. Recent studies indicating that 2-h glucose identifies better than fasting glucose values individuals with high risk of cardiovascular disease favors the use of a 2-h oral glucose tolerance test. However, the 2-h glucose tolerance test has the high within-test variability up to 25%. According to different studies when subjects were retested after an interval of up to 3 months 35% to 75% of the subjects who were IGT an the first test had reverted to normal when retested (54).

CONCLUDING REMARKS

In the next 20 years we will face a global epidemic of type 2 diabetes. Although the new cases of diabetes depend somewhat on the glucose criteria used to define diabetes, there has already been a true increase in the incidence and prevalence of type 2 diabetes. With increasing prevalence of obesity worldwide the epidemic of type 2 has emerged, and an “epidemic” of diabetes-related cardiovascular disease will follow (55). Incidence of diabetes in a population is tightly linked to the average weight of that population. Type 2 diabetes does not only cause micro- and macrovascular complications, excess mortality and morbidity, but it is also an expensive health problem. Therefore, socioeconomic, behavioral, nutritional, and public health issues relating to the epidemic of obesity and type 2 diabetes should be addressed. Furthermore, more funds are needed for continuing research aiming to reveal the unsolved issues in the pathophysiology and genetics of type 2 diabetes. Extremely important areas of research will be the identification of the genes responsible for the predisposition to type 2 diabetes, and the identification of environmental factors, which bring out this predisposition. Once these issues have been solved we will better understand the “epidemic” of type 2 diabetes, and target our nonpharmacological and pharmacological treatment modalities more effectively to prevent this continuously growing health problem and its devastating complications.

REFERENCES

References

1 Chapter 1. Epidemiology of Type 2 Diabetes

15. Shaw JE, de Courten M, Boyko E, Zimmet PZ. Impact of new diagnostic criteria for diabetes on different

43. Kay SJ, Fiatarone Singh MA. The influence of physical

54. Alberti KGMM. Impaired glucose tolerance—fact or
2 Chapter 2. Pathogenesis of Type 2 Diabetes

6. Weyer C, Bogardus C, Pratley RE. Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 1999; 48:2197-203.

23. Griffin ME, Marcucci MJ, Cline GW, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the

66. Pierce M, Keen H, Bradley C. Risk of diabetes in

Chapter 3. Rationale and Goals for Glucose Control in Diabetes Mellitus and Glucose Monitoring

21. The DECODE study group on behalf of the European diabetes epidemiology group. Glucose tolerance and

4 Chapter 4. The Role of the Diabetes Educator in the Education and Management of Diabetes Mellitus

26. Fox CH,
processes for competitive advantage: business process
quality management Wilton, CT: Juran Institute, 1994. 45.
US Department of Health and Human Services, Agency for
publication 95-0045. 46. Anderson RM, Fitzgerald JT, Wisdom
quality of life measures in patients with diabetes.
Diabetes Care 1997; 20:299-305. 47. Ware JEJ, Sherbourne
CD. The MDS 36-item short-form health survey (SF-36):
Conceptual framework and item changes. Med Care 1992;
30:479-83. 48. Polonsky WH, Welch GM. Listening to our
patient’s concerns: understanding and addressing
diabetes-specific emotional distress. Diabetes Spectrum
The conceptual framework on the National Diabetes Outcomes

50. Mulcahy KA, Peeples M, Tomky D, et al. National
diabetes education outcomes system: application to

51. American Association of Diabetes Educators. Diabetes
educational and behavioral research summit. Diabetes Ed
1999; 25(Suppl).

53. Glasgow RE, Strycker LA. Preventive care practices for
diabetes management in two primary care samples. Am J Prev

54. Peyrot M. Evaluation of patient education programs: how
to do it and how to use it. Diabetes Spectrum 1996;
9:86-93.

55. Brown SA. Predicting metabolic control in diabetes: a
pilot study using meta-analysis to estimate a linear model.

56. Glasgow R. Evaluating diabetes education. Diabetes Care

57. McGlynn E. Choosing and evaluating clinical performance

58. Peyrot M, Rubin R. Modeling the effect of diabetes

59. Horn SD, Hopkins DSP. Clinical practice improvement a
new technology for developing costeffective quality care.

60. Pronk N, Goodman M, O’Connor PJ, Martinson B:
Relationship between modifiable risks and shortterm health

61. American Diabetes Association. Annual review of

62. Babcock D, Miller M. Client education, theory and

63. Pender NJ. Health promotion in nursing practice.

64. Redman BK. The practice of patient education. 8th edn.
Mosby, 1997. and Management of
5 Chapter 5. Nutrition in the Etiology and Management of Type 2 Diabetes

6 Chapter 6. Diabetes and Exercise

33. Weinsier RL, Hunter GR, Desmond RA, Byrne NM, Zuckerman PA, Darnell BE. Free-living activity energy expenditure in

45. Physical Activity/Exercise and Diabetes Mellitus.

Chapter 7. Psychosocial Issues and Type 2 Diabetes

8 Chapter 8. Oral Hypoglycemic Agents: Sulfonylureas and Meglitinides

9 Chapter 9. Metformin

56. Puhakainen I, Yki-Ja¨rvinen H. Inhibition of lipolysis decreases lipid oxidation and gluconeogenesis from lactate
but not fasting hyperglycemia or total hepatic glucose production. Diabetes 1993; 42: 1694–9.

TABLE 6 Advice to Patients to Overcome Difficulties with AGIs

Start low, go slow

Prefer nutrients with complex carbohydrates (rice, pasta, full bread, vegetables, fruits)
Avoid refined carbohydrates (sugar, sweets). Take only three meals per day.

Avoid laxatives, such as sugar alcohols (sorbitol).

Control your postprandial blood glucose to experience the efficacy of treatment.

In most cases gastrointestinal side effects are transient.

44. Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients.

11 Chapter 11. Thiazolidinediones

12 Chapter 12. Treatment Strategies for Type 2 Diabetes Based on Incretin Action

86. Villhauer EB, Brinkman JA, Naderi GB, et al.

2004; 89:2078-84. Incretin Action
Chapter 13. Pramlintide Acetate in the Treatment of Type 2 Diabetes

45. Weyer C, Fineman MS, Strobel S, et al. Properties of

32. Executive summary of the third report of The National

121. Hausmann M, Dellweg S, Osborn C, et al. Inhaled insulin as adjunctive therapy in subjects with type 2

131. Johansen K. Efficacy of metformin in the treatment of

143. Riddle MC, Hart JS, Bouma DJ, Phillipson BE, Youker G. Efficacy of bedtime NPH insulin with daytime sulfonylurea

15 Chapter 15. Combination Therapy for Treatment of Type 2 Diabetes

10. DeFronzo RA. Pharmacologic therapy for type 2 diabetes

16 Chapter 16. Hypoglycaemia in Type 2 Diabetes

Chapter 17. Diabetic Coma: Current Therapy of Diabetic Ketoacidosis and Non-Ketoacidotic Hyperosmolar Coma

12. Klein R, Klein BE. Epidemiology of proliferative

19 Chapter 19. Renal Dysfunction and Hypertension

43. Heart Protection Study Collaborative Group. MRC:BHF heart protection study of cholesterol lowering with

20 Chapter 20. Diabetic Peripheral Neuropathy and Sexual Dysfunction

54. Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the

64. Ekberg K, Brismar T, Johansson BL, et al. C-Peptide

130. Sellam R, Ziegler D, Boulton AJM. Sildenafil citrate is effective and well tolerated for the treatment of erectile dysfunction in men with Type 1 or Type 2 diabetes mellitus. Diabetologia 2000; 43(Suppl. 1):A253.

65. Morrison WB, Schweitzer ME, Batte WG, et al. Osteomyelitis of the foot: relative importance of primary

22 Chapter 22. Gastrointestinal and Autonomic Complications of Diabetes Mellitus

32. Camilleri M, Malagelada JR. Abnormal intestinal

Chapter 23. Gestational Diabetes

17. Sermer M, Naylor CD, Gare DJ, et al. Impact of increasing carbohydrate intolerance on material fetal outcomes in 3637 women without gestation diabetes: the

29. Hormes PJ, Kuhl C, Lauritsa KB. Gastro-enteral-pancreatic hormone in gestational diabetes:

85. Nachum A, Ben-Shlomo I, Weiner E, Shalev E. Twice daily

24 Chapter 24. Epidemiology of Type 2 Diabetes in Children and Adolescents

12. Kitagawa T, Owada M, Urakami T, Yamauchi K. Increased incidence of non-insulin dependent diabetes mellitus among

27. The Expert Committee on the Diagnosis and Classification of Diabetes

58. Vuguin P, Linder B, Rosenfeld RG, et al. The roles of

Chapter 25. Insulin Resistance Syndrome and Its Vascular Complications

57. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel

68. Matsushita K, Yatsuya H, Tamakoshi K, et al. Comparison

17. Hauner H, Bender M, Haastert B, Hube F. Plasma

TABLE 2 Guideline Target Levels for LDL Cholesterol, HDL Cholesterol, and Triglycerides for Patients with Diabetes

<table>
<thead>
<tr>
<th>European Joint Societies (62)</th>
<th>LDL cholesterol (mg/dL)</th>
<th>HDL cholesterol</th>
<th>Triglycerides (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Joint Societies (62)</td>
<td><100</td>
<td>Not a goal</td>
<td>Not a goal</td>
</tr>
<tr>
<td>International Atherosclerosis Society (57)</td>
<td><100</td>
<td>Not a goal</td>
<td>Not a goal</td>
</tr>
<tr>
<td>ADA (1)</td>
<td><100</td>
<td>>40</td>
<td><150</td>
</tr>
</tbody>
</table>

a. Goal of 70mg/dL (1.8mmol/L) is considered a therapeutic option in those with established CVD.

b. According to some authorities if the patient with diabetes has an estimated 10-year risk for CHD <20%, an LDL-C goal <130mg/dL (3.3mmol/L) is acceptable.

c. Current NCEP/ATP III guidelines suggest that in patients with triglycerides $200mg/dL (2.2mmol/L), the "non-HDL cholesterol" (total cholesterol minus HDL) be utilized. The goal is £ 130mg/dL.

d. For women it has been suggested that the HDL goal be
increased by 10mg/dL.

44. Davidson MH. Combination therapy for dyslipidemia: safety and regulatory considerations. Am J Cardiol 2002; 90:50K-60K.

Chapter 28. Hypertension and Diabetes: Need for Combination Therapy

27. Brown MJ, Palmer CR, Castaigne A et al. Morbidity and

80. Ryden L, Standl E, Bartnik M, et al. Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC); European Association for the Study of Diabetes (EASD). Therapy Guidelines on diabetes,

29 Chapter 29. The Evaluation of Cardiac and Peripheral Arterial Disease in Patients with Diabetes Mellitus

35. Umans JG, Levi R. Nitric oxide in the regulation of blood flow and

60. Riggs TW, Transue D. Doppler echocardiographic

98. Kannel WB. Lipids, diabetes, and coronary heart disease.

162. Murabito JM, D’Agostino. RB, Silbershatz H, Wilson WF.

aspirin and dipyridamole on atherosclerotic vascular
JA. Aspirin therapy in diabetes. Diabetes Care 2003; 26
mellitus and peripheral vascular disease: is aspirin
effective in preventing vascular events? Diabetologia 1996;
39:1402–4. 191. Peripheral arterial disease in people with
randomized, blinded, trial of clopidogrel versus aspirin in
patients at risk of ischaemic events (CAPRIE). CAPRIE
DL, Marso SP, Hirsch AT, Ringleb PA, Hacke W, Topol EJ.
Amplified benefit of clopidogrel versus aspirin in patients
Angelkort B, Spurk P, Habbaba A, Mahder M. Blood flow
properties and walking performance in chronic arterial
MR, Clagett GP. Antithrombotic therapy in peripheral
cilostazol on walking distances in patients with
intermittent claudication caused by peripheral vascular
cilostazol and pentoxifylline for treating intermittent
Chalmers TC, Dormandy JA. A meta-analysis of randomized
placebo control trials in Fontaine stages III and IV
peripheral occlusive arterial disease. Int Angiol 1994;
13:139–42. 199. Mohler ER 3rd, Hiatt WR, Olin JW, Wade M,
Jeffs R, Hirsch AT. Treatment of intermittent claudication
with beraprost sodium, an orally active prostaglandin I2
analogue: a double-blinded, randomized, controlled trial. J
Am Coll Cardiol 2003; 41:1679–86.

200. Reiter M, Bucek RA, Stumpfien A, Minar E. Prostanoids
for intermittent claudication. Cochrane Database Syst Rev
2004:CD000986.

Understanding trends in inpatient surgical volume: vascular

202. Dormandy JA, Rutherford RB. Management of peripheral
arterial disease (PAD). TASC Working Group. TransAtlantic
Inter-Society Concensus (TASC). J Vasc Surg 2000;
31:S1–S296.

203. Sullivan TM, Childs MB, Bacharach JM, Gray BH,
Piedmonte MR. Percutaneous transluminal angioplasty and

treatment with a high loading dose of clopidogrel.

Chapter 31. Anesthesia and Surgery in the Diabetic Patients

59. Genuth SM. The automatic (regular insulin) sliding scale or 2, 4, 6, 8 call HO. Clin Diabetes 1994; 12: 40-2.

degrading enzyme regulates the levels of insulin, amyloid b-protein and the b-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003; 100:4162-7.

37. Chelliah A, Burge MR. Hypoglycemia in elderly patients

33 Chapter 33. Diabetes in High-Risk Ethnic Populations

27. Curtsinger JW, Service PM, Prout T. Antagonistic pleiotropy, reversal of dominance, and genetic

Chapter 34. Drug-Induced Hyperglycemia and Diabetes Mellitus

42. Henkin Y, Oberman A, Hurst DC, Segrest JP. Niacin revisited: clinical observation on an important but

35 Chapter 35. MODY: Lessons from Monogenetic Diabetes Forms

36 Chapter 36. Polycystic Ovary Syndrome and the Metabolic Syndrome

45. Norman RJ, Masters L, Milner CR, Wang JX, Davies MJ. Relative risk of
conversion from normoglycaemia to impaired glucose
tolerance or non-insulin dependent diabetes mellitus in
46. Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC.
Obesity, fat distribution, and weight gain as risk factors
for clinical diabetes in men. Diabetes Care 1994;
17(9):961–9. 47. Colditz GA, Willett WC, Rotnitzky A,
Manson JE. Weight gain as a risk factor for clinical
composition, fat distribution and metabolic characteristics
in lean and obese women with polycystic ovary syndrome. J
RS, Stamets K, Lowell J, Lobo RA. Difference in body weight
between American and Italian women with polycystic ovary
syndrome: influence of the diet. Hum Reprod 2003; 18
Clin Endocrinol (Oxf) 1980; 12(7):177–207. 51. Azziz R,
Ehrmann D, Legro RS, et al. Troglitazone improves ovulation
and hirsutism in the polycystic ovary syndrome: a
multicenter, double blind, placebo-controlled trial. J Clin
Endocrinol Metab 2001; 86(4):1626–32. 52. Balen AH, Conway
spectrum of the disorder in 1741 patients. Hum Reprod 1995;
10(8):2107–11. 53. Taponen S, Martikainen H, Jarvelin MR,
et al. Metabolic cardiovascular disease risk factors in
women with self-reported symptoms of oligomenorrhea and/or
Endocrinol Metab 2004; 90(5):2114–8. 54. Carmina E, Chu MC,
Longo RA, Rini GB, Lobo RA. Phenotypic variation in
hyperandrogenic women influences the findings of abnormal
metabolic and cardiovascular risk parameters. J Clin
Endocrinol Metab 2005; 90(5):2545–9. 55. Laitinen J,
Taponen S, Martikainen H, et al. Body size from birth to
adulthood as a predictor of self-reported polycystic ovary
syndrome symptoms. Int J Obes Relat Metab Disord 2003;
57. Mannucci E, Ricca V, Bacciulli E, et al. Quality of
life and overweight: the obesity related well-being (Orwell
97) questionnaire. Addict Behav 1999; 24(3):345–57. 58.
Swallen KC, Reither EN, Haas SA, Meier AM. Overweight,
obesity, and health-related quality of life among
adolescents: the National Longitudinal Study of Adolescent
Schmid J, Martins FM, et al. The impact of the weight
status on subjective symptomatology of the polycystic ovary
syndrome: a cross-cultural comparison between Brazilian and
McCook JG, Reame NE, Thatcher SS. Health-related quality of

65. Legro RS, Finegood D, Dunaif A. A fasting glucose to insulin ratio is a useful measure of insulin sensitivity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 1998; 83(8):2694–8.

71. Ehrmann DA, Kasza K, Azziz R, Legro RS, Ghazzi MN. Effects of race and family history of type 2 diabetes on metabolic status of women with polycystic ovary syndrome. J

128. Diamanti-Kandarakis E, Alexandraki K, Protogerou A, et al. Metformin administration improves endothelial function in women with polycystic ovary syndrome. Eur J Endocrinol

37 Chapter 37. Nonalcoholic Fatty Liver Disease and Diabetes Mellitus

25. Wigg AJ, Roberts-Thomson IC, Dymock RB, et al. The role of small intestinal bacterial overgrowth, intestinal

Chapter 38. Future Management Approaches: New Devices on the Horizon for Glucose Monitoring and Medication Delivery

