About the editors:

ROBERT BARAN, MD, is a Dermatologist at the Nail Disease Center, Cannes, France. He is also the editor of Handbook of Cosmetic Skin Care 2E, The Nail in Differential Diagnosis, Onychomycosis 2E, and Text Atlas of Nail Disorders 3E, amongst many others.

HOWARD I. MAIBACH, MD, is Professor of Dermatology at the University of California School of Medicine, San Francisco, California, USA. He is also the editor of Handbook of Cosmetic Science and Technology 3E, Marzulli and Maibach's Dermatotoxicology 7E, and Cosmeceuticals and Active Cosmetics 2E, amongst many others.

About the book:

This text documents the science that lies behind the expanding field of cosmetic dermatology so that clinicians can practice with confidence and researchers can be fully aware of the clinical implications of their work. New chapters have been added on the latest modalities and topics of interest, such as mesotherapy and bioelectricity, to keep this at the forefront of work and practice.

From reviews of previous editions

“This is undoubtedly my dermatology "book of the year". I would recommend all to browse through it, but beware, you may still be reading two hours later.”

The Lancet
Textbook of Cosmetic Dermatology
SERIES IN COSMETIC AND LASER THERAPY

Series Editors
David J Goldberg, Nicholas J Lowe, and Gary P Lask
Published in association with the Journal of Cosmetic and Laser Therapy

C William Hanke, Gerhard Sattler, Boris Sommer, *Textbook of Liposuction*, ISBN 9781841845326
Neil Sadick, Diane Berson, Mary P Lupo, Zoe Diana Draelos, *Cosmeceutical Science in Clinical Practice*, ISBN 9780415471145
Textbook of Cosmetic Dermatology

Fourth Edition

Edited by

Robert Baran, MD
Nail Disease Center
Cannes, France

Howard I. Maibach, MD
Department of Dermatology
University of California San Francisco, School of Medicine
San Francisco, California, U.S.A.
Once again this book is dedicated to Nicole,
without whom it would not exist,
with appreciation, respect, admiration, and deep affection
Preface

The fourth edition of the *Textbook of Cosmetic Dermatology* focuses on the “evidence-based” approach to cosmetic skin, hair, and nail science. Preceding editions published contrasting observations; this edition benefits from the increasing numbers of individuals who have directed their work to controlled observations in cutaneous biology as it relates to skin care. Although this textbook was originally intended for the dermatologist, we are pleased that cosmetic scientists have found this view of cutaneous biology of value and have supported us in blending the traditional cosmetic science with skin biology.

We appreciate the hard work and suggestions of our authors and readers and welcome suggestions for a future edition.

The editorial wisdom of our publisher, Robert Peden, is greatly appreciated.

Robert Baran

Howard I. Maibach
Contents

Preface vi
Contributors xi

Section I: Influences on Skin

1. Skin physiology and gender .. 1
 Ethel Tur

2. A quantitative approach to anatomy and physiology of aging skin: barrier, dermal structure, and perfusion .. 14
 Jeannette M. Kamell and Howard I. Maibach

3. Climatic influence on cosmetic skin parameters 28
 Mathias Rohr and Andreas Schrader

4. Photodamage .. 41
 Karen Connolly, Camile L. Hexsel, and Henry W. Lim

Section II: Cutaneous Absorption and Cosmetology

5. Skin barrier cream efficacy: evidence based 47
 Hongbo Zhai, Heidi P. Chan, and Howard I. Maibach

6. Using the behind-the-knee (BTK) test to evaluate lotion transfer from products to skin .. 54
 Miranda A. Farage

7. Nail penetration .. 63
 Xiaoying Hui, Ronald C. Wester, and Howard I. Maibach

Section III: Pharmacology of Cosmetic Products and Ingredients

8. Sensitive skin: new findings yield new insights 73
 Miranda A. Farage and Howard I. Maibach

9. Hyaluronan (hyaluronic acid) ... 84
 Birgit A. Neudecker, Robert Stern, and Howard I. Maibach

10. Organic acids with novel functions, \(\alpha \)-hydroxy, aldobionic, \(N \)-acetylamino acids, and related compounds 91
 Ruey J. Yu and Eugene J. Van Scott

11. Retinyl propionate and related retinoids 106
 John E. Oblong

12. Idebenone (hydroxydecyl ubiquinone) .. 111
 Birgit A. Neudecker, Falko Diedrich, and Howard I. Maibach

13. Antioxidants .. 115
 Frank Dreher and Jens Thiele

14. Topical retinol: an efficacious solution for improvement of main photodamage signs ... 123
 Christiane Bertin and Thierry Oddos
viii CONTENTS

15. Applications of total soy in skin care .. 127
 Jue-Chen Liu, Jeff Wu, and Miri Seiberg

16. Kinetin ... 141
 Stanley B. Levy

17. Urokinase and dry skin ... 144
 Yuji Katsuta

18. Ceramides and the skin .. 150
 Clive R. Harding, David J. Moore, and Anthony V. Rawlings

19. Perfumes .. 165
 Jeanne Duus Johansen

20. Do consumer relevant exposures to geraniol cause clinical allergic contact dermatitis in man? .. 169
 Jurij J. Hostynsky and Howard I. Maibach

21. Survey of alternative and natural drugs in dermatology .. 176
 Cheryl Levin and Howard I. Maibach

Section IV: Cosmetology for Non-pathological Skin

22. Skin care products for normal, dry, and greasy skin ... 180
 Céline Try, Laurence Nicod, and Philippe Humbert

23. Self-tanning products ... 188
 Stanley B. Levy

24. Astringents, masks, and ancillary skin care products ... 192
 Zoe Diana Draelos

25. Cosmeceuticals .. 196
 Marianne Nelson O’Donoghue

26. Photodamage: prevention ... 200
 Camile L. Hexsel and Henry W. Lim

27. Photodamage: protection and reversal with topical antioxidants 206
 Karen E Burke

Section V: Cosmetology for Specific Locations and Conditions

28. Hair care .. 218
 John Gray and Jeni Thomas

29. Dandruff and seborrheic dermatitis .. 230
 James R. Schwartz, Caroline W. Cardin, Yoanne M. DeAngelis, and Thomas L. Dawson, Jr.

30. The periorbital wrinkle .. 242
 Martin R. Green

31. Cosmetology for normal nails ... 247
 Robert Baran and Douglas Schoon

32. Cosmetics for abnormal and pathological nails .. 259
 Douglas Schoon and Robert Baran

33. Hand and body lotions ... 269
 F. Anthony Simion and David C. Story
34. Anticellulite products and therapies ... 290
 Enzo Berardesca and Manuela Carrera

35. Therapy of telangiectasia and varicose veins and their complications 294
 Robert A. Weiss and Margaret A. Weiss

36. Management of hirsutism and hypertrichosis ... 302
 Ralph M. Trüb

37. Pigmentation: dyschromia ... 311
 Thierry Passeron and Jean-Paul Ortonne

38. Introduction to practical, aesthetic, and social approaches to appearance restoration .. 330
 Victoria L. Rayner Alatorre

39. Treatment of keloids .. 341
 Joshua E. Lane, Tanda N. Lane, and John L. Ratz

40. Keratolytic treatment of acne ... 352
 Ali Alikhan and Howard I. Maibach

Section VI: Skin Care for Specific Groups

41. Cosmetics for men .. 365
 Robert Baran and Annick Pons-Guiraud

42. Ethnic cosmetics .. 379
 Enzo Berardesca, Grazia Primavera, Manuela Carrera, and Howard I. Maibach

43. Ethnic variation in hair .. 386
 Nina Otberg

44. Ethnic differences in skin properties .. 395
 Naissan O. Wesley, Lily Talakoub, and Howard I. Maibach

45. The menopause, skin, and cosmetology .. 405
 Michel Faure and Evelyne Drapier-Faure

Section VII: Cosmetological Treatments

46. Mesotherapy ... 410
 Evangeline B. Handog and Ma. Teresita G. Gabriel

47. Microneedles and cosmetics ... 417
 Raja K. Sivamani and Howard I. Maibach

48. Photodynamic therapy in dermatology ... 422
 Jacques Savary

49. Topical 5-fluorouracil formulations in actinic keratosis treatment 429
 Ravneet R. Kaur, Ali Alikhan, and Howard I. Maibach

50. Cosmetic cryosurgery ... 434
 Rodney D. Sinclair and Poorna Weerasinghe

51. Botulinum toxins ... 442
 Doris Maria Hexsel and Arnold W. Klein

52. Soft tissue augmentation .. 454
 Emily P. Tierney and C. William Hanke

53. Bioelectricity ... 466
 Ying Sun and Jue-Chen Liu
CONTENTS

54. Chemical peelings ... 482
 Philippe Deprez

55. Lasers and light sources for vascular and pigmented components
 of photoaging ... 494
 Corinne Erickson and Robert A. Weiss

Section VIII: Noninvasive Assessment Techniques

56. An easy method to assess the antioxidative capacity
 of topical formulations .. 503
 Hongbo Zhai and Howard I. Maibach

57. The antioxidative capacity of topical emulsion on ultraviolet exposure ... 505
 Hongbo Zhai and Howard I. Maibach

58. Treatment and noninvasive clinical assessment of
 androgenetic alopecia ... 510
 R. Scott Youngquist, Jeanette A. Richards, Caroline W. Cardin,
 and Thomas L. Dawson, Jr.

59. Assessing the efficacy of moisturizers .. 519
 Whitney Hannon

Index 543
Contributors

Ali Alikhan University of California Davis, School of Medicine, Davis, California, U.S.A.

Robert Baran Nail Disease Centre, Cannes, France

Enzo Berardesca San Gallicano Dermatological Institute, Rome, Italy

Christiane Bertin Skin Care Research Institute, Johnson & Johnson Group of Companies, Issy les Moulineaux, France

Karen E. Burke Department of Dermatology, Mount Sinai Medical Center, New York, New York, U.S.A.

Caroline W. Cardin P&G Beauty and Grooming, Cincinnati, Ohio, U.S.A.

Manuela Carrera San Gallicano Dermatological Institute, Rome, Italy

Heidi P. Chan Department of Dermatology, University of California San Francisco, School of Medicine, San Francisco, California, U.S.A.

Karen Connolly Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A.

Thomas L. Dawson, Jr. P&G Beauty and Grooming, Cincinnati, Ohio, U.S.A.

Yvonne M. DeAngelis P&G Beauty and Grooming, Cincinnati, Ohio, U.S.A.

Philippe Deprez Clinica HERA, Empuriabrava, Spain

Falko Diedrich München, Germany

Zoe Diana Draelos Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, U.S.A.

Evelyne Drapier-Faure Gynecology, Hopital Femmes Mères Enfants, Lyon, France

Frank Dreher Neocutis, San Francisco, California, U.S.A.

Corinne Erickson Department of Dermatology, University of Maryland, Baltimore, Maryland, U.S.A.

Miranda A. Farage The Procter & Gamble Company, Cincinnati, Ohio, U.S.A.

Michel Faure Hospital Edouard-Herriot, Lyon, France

Ma. Teresita G. Gabriel Department of Dermatology, Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines

John Gray Procter & Gamble Technical Centres Limited, Egham, U.K.

Martin R. Green Colworth Science Park, Unilever Research, Sharnbrook, U.K.

Evangeline B. Handog Department of Dermatology, Asian Hospital and Medical Center, Muntinlupa City, Philippines
Contributors

C. William Hanke Laser and Skin Surgery Center of Indiana, St. Vincent’s Hospital, Carmel, Indiana, U.S.A.

Whitney Hannon San Jose, California, U.S.A.

Clive R. Harding Unilever Research and Development Port Sunlight Laboratory, Wirral, U.K.

Jurij J. Hostynsek Department of Dermatology, University of California San Francisco, School of Medicine, San Francisco, California, U.S.A.

Camile L. Haxsel Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, U.S.A.

Doris Maria Haxsel Department of Dermatology, Pontificia Universidade Catolica do Rio Grande do Sul, and Brazilian Center for Studies in Dermatology, Porto Alegre, Brazil

Xiaoying Hui Department of Dermatology, University of California San Francisco, School of Medicine, San Francisco, California, U.S.A.

Philippe Humbert Department of Dermatology, University Hospital Saint-Jacques, Besançon, France

Jeanne Duus Johansen National Allergy Research Centre, Department of Dermato-Allergology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark

Jeanette M. Kamell Department of Dermatology, University of California San Francisco, School of Medicine, San Francisco, California, U.S.A.

Yuji Katsuta Shiseido Research Center, Yokohama, Japan

Ravneet R. Kaur University of California Los Angeles, School of Medicine, Los Angeles, California, U.S.A.

Arnold W. Klein Division of Dermatology, David Geffen School of Medicine, University of California at Los Angeles and Cedars-Sinai Medical Center, Los Angeles, California, U.S.A.

Joshua E. Lane Surgery and Internal Medicine, Mercer University School of Medicine, Macon; Section of Dermatology, Medical College of Georgia, Augusta; and Department of Dermatology, Emory University School of Medicine, Atlantà, Georgia, U.S.A.

Tanda N. Lane Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, U.S.A.

Cheryl Levin San Diego, California, U.S.A.

Stanley B. Levy Revlon Research Center, Edison, New Jersey and Chapel Hill Dermatology, Chapel Hill, North Carolina, U.S.A.

Henry W. Lim Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, U.S.A.

Jue-Chen Liu Johnson & Johnson Consumer Personal Group, Stillman, New Jersey, U.S.A.

Howard I. Maibach Department of Dermatology, University of California San Francisco, School of Medicine, San Francisco, California, U.S.A.

David J. Moore International Speciality Products, Wayne, New Jersey, U.S.A.

Birgit A. Neudecker Department of Dermatology, University of California San Francisco, School of Medicine, San Francisco, California, U.S.A.
Laurence Nicod Cellular Biology and Genetic Laboratory, University Hospital Saint-Jacques, Besançon, France

John E. Oblong The Procter & Gamble Company, Cincinnati, Ohio, U.S.A.

Thierry Oddos Department of Pharmacology, Johnson & Johnson Group of Companies, Val de Reuil, France

Marianne Nelson O’Donoghue Department of Dermatology, Rush University Medical Center, Chicago, Illinois, U.S.A.

Jean-Paul Ortonne Department of Dermatology, University Hospital of Nice, France

Grazia Primavera San Gallicano Dermatological Institute, Rome, Italy

Nina Otberg Skin and Laser Center Potsdam, Hair Clinic, Potsdam and Hair Transplant Center Berlin—Potsdam, Berlin, Germany

Thierry Passeron Department of Dermatology & INSERM U895 Team 1, University Hospital of Nice, France

Annick Pons-Guiraud Paris, France

John L. Ratz Tifton, Georgia, U.S.A.

Anthony V. Rawlings AVR Consulting Ltd., Cheshire, U.K.

Victoria L. Rayner Alatorre Aesthetic Advocates for America, Orlando, Florida, U.S.A.

Jeanette A. Richards P&G Beauty and Grooming, Cincinnati, Ohio, U.S.A.

Mathias Rohr Institut Dr. Schrader Hautphysiologie, Holzminden, Germany

Jacques Savary Galderma International, La Défense, Paris, France

Douglas Schoon Science and Technology, Creative Nail Design Inc., Vista, California, U.S.A.

Andreas Schrader Institut Dr. Schrader, Hautphysiologie, Holzminden, Germany

James R. Schwartz P&G Beauty and Grooming, Cincinnati, Ohio, U.S.A.

Miri Seiberg Johnson & Johnson Consumer Personal Group, Stillman, New Jersey, U.S.A.

F. Anthony Simion Kao Brands Co., Cincinnati, Ohio, U.S.A.

Rodney D. Sinclair Department of Dermatology, University of Melbourne and St. Vincent’s Hospital, Melbourne, Victoria, Australia

Raja K. Sivamani Department of Dermatology, University of California Davis, School of Medicine, Davis, California, U.S.A.

Robert Stern Pathology, Division of Basic Medical Sciences, Touro College of Osteopathic Medicine, New York, New York, U.S.A.

David C. Story Kao Brands Co., Cincinnati, Ohio, U.S.A.

Ying Sun Johnson & Johnson Consumer Personal Group, Skillman, New Jersey, U.S.A.

Lily Talakoub Center for Dermatology and Dermatologic Surgery, Washington, D.C., U.S.A.
xiv CONTRIBUTORS

Jen Thiele Dermatology Specialists, Inc., Oceanside, California, U.S.A.

Jeni Thomas P&G Beauty and Grooming, Cincinnati, Ohio, U.S.A.

Emily P. Tierney Laser and Skin Surgery Center of Indiana, St. Vincent’s Hospital, Carmel, Indiana, U.S.A.

Ralph M. Trüeb Center for Dermatology and Hair Diseases, Zurich, Switzerland

Céline Try Department of Dermatology, University Hospital Saint-Jacques, Besançon, France

Ethel Tur Department of Dermatology, Tel Aviv University Sackler School of Medicine, Tel Aviv, Israel

Eugene J. Van Scott Abington, Pennsylvania, U.S.A.

Poorna Weerasinghe Department of Dermatology, University of Melbourne, Melbourne, Victoria, Australia

Margaret A. Weiss Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, and Laser Skin and Vein Institute, Hunt Valley, Maryland, U.S.A.

Robert A. Weiss Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, and Laser Skin and Vein Institute, Hunt Valley, Maryland, U.S.A.

Naissan O. Wesley Skin Care and Laser Physicians of Beverly Hills, Los Angeles, California, U.S.A.

Ronald C. Wester Department of Dermatology, University of California San Francisco, School of Medicine, San Francisco, California, U.S.A.

Jeff Wu Johnson & Johnson Consumer Personal Group, Stillman, New Jersey, U.S.A.

R. Scott Youngquist P&G Beauty and Grooming, Cincinnati, Ohio, U.S.A.

Ruey J. Yu Chalfont, Pennsylvania, U.S.A.

Hongbo Zhai Department of Dermatology, University of California San Francisco, School of Medicine, San Francisco, California, U.S.A.
INTRODUCTION
Many characteristics of the body are reflected in the skin, gender being a prominent one. Genetic and hormonal differences affect skin structure and function, resulting in variations between women and men and causing these gender variations to change with age. In addition, exogenous factors differ according to differences in lifestyle between the sexes.

During the last few decades, methodologies used in dermatological research have improved substantially, providing means of objective evaluation of skin function and characteristics. The number of studies addressing various aspects of differences between women and men has increased in the past few years along with the growing interest in studying gender-related differences of physiological and disease processes (1). However, the subject has not yet been systematically studied, so much of the data are by-products of studies with a different focus. This chapter outlines the various aspects of physiological differences between the skin of women and men, on the basis of the available data.

STRUCTURAL AND ANATOMICAL CHARACTERISTICS (TABLE 1.1)
The skin of female frogs is thicker than that of males in all body regions (2) [whereas the opposite is true for rat skin (3)]. In humans, skin thickness (epidermis and dermis) is greater in men than in women (4), up to 1.428 times (5), whereas the subcutaneous fat thickness is greater in women (6). The skin of men is thicker across the entire age range of 5 to 90 years (7). Hormonal influence on skin thickness was demonstrated when conjugated estrogens were given to postmenopausal women (8). Following 12 months therapy, the dermis was significantly thicker, and histological improvement in the previously atrophic epidermis was noted. Epidermal thickness alone, as measured by optical coherence tomography, does not differ between men and women, except for the forehead epidermis that is thinner in women (9).

Skin collagen and collagen density were measured in addition to dermal thickness (10). The skin of men demonstrated a gradual thinning with advancing age (12-93 years), whereas the thickness of women’s skin remained constant up until the fifth decade, after which it decreased with age. The male forearm skin contained more collagen at all ages in the range 15 to 93 years. In both sexes there was a linear decrease in skin collagen with age. Collagen density calculated as the ratio of skin collagen to thickness was lower in women at all ages. The rate of collagen loss was similar in both sexes. Women start with lower collagen content; therefore, they seem to age earlier than men. Collagen density, representing the packing of fibrils in the dermis, is lower in women than in men. This may be due to androgen, since skin collagen density is increased in patients with virilism.

Forearm skinfold thickness, as measured by a caliper, decreases starting at age 35 for women and 45 for men. Starting at age 35, it is thinner in women than in men (11). In younger subjects: 17 to 24 years, forearm, thigh, and calf skinfold thickness in women is lower than in men (12).

Heel pad thickness, an indicator of soft tissue thickness in the body, was greater in Ethiopian men than in women (13). Skinfold compressibility in Japanese students was greater in women than in men at the pectoral site, and smaller at nuchal, submental, biceps, thigh, suprapatellar, and medial calf sites (6). The changes in the distribution of fat between the ages of 6 to 18 years were studied in 2300 subjects (14). Up to 12 years of age, there was no difference between the two sexes: the mass of the subcutaneous fat increased more than threefold, while that of the internal mass increased less than twice. After the age of 12, the relative mass of the subcutaneous fat continued to increase in girls but not in boys.

The distribution of fat over the body is different in men and women (15). In men, an increase in fat tends to accumulate in the abdominal region and upper parts of the body, whereas in women it is located in the lower body, particularly in the gluteal and femoral regions. In addition, the proportion of body fat is higher in nonobese women than in nonobese men. The characteristic difference in body fat distribution between the sexes exists both in nonobese subjects and obese ones. Lipoprotein lipase activity and mRNA levels were higher in women in both the gluteal and the abdominal regions. In women, higher enzyme activity was found in the gluteus than in the abdomen, whereas in men it was higher in the abdomen. These regional and sex differences in lipoprotein lipase activity might underlie the difference in fat distribution and total fat content. Variation is both at the mRNA level and posttranslational level.

BIOCHEMICAL COMPOSITION (TABLE 1.2)
Significant age-related differences in the stratum corneum sphingolipid composition were found in women, but not in men (16). From prepubertal age to adulthood there was a significant increase in ceramide 1 and 2 accompanied by a decrease in ceramide 3 and 6. After maturity there was a decrease in ceramide 2 and an increase in ceramide 3. These findings indicate an influence of female hormones on the composition of stratum corneum sphingolipids. These lipids play an important role in the water permeability barrier function of the human epidermis, and thus endocrinological factors may influence this barrier.
Structural and Anatomical Characteristics

<table>
<thead>
<tr>
<th>Reference</th>
<th>Finding</th>
<th>Obtained by</th>
<th>Subjects</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Significant differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Forehead epidermis thinner in women</td>
<td>Optical coherence tomography</td>
<td>83 Caucasians; Young: 20–40 yr Old: 60–80 yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other sites: epidermal thickness does not differ between men and women</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Skin thickness in humans greater in men than in women, except for lower back in young subjects</td>
<td>Echographic evaluation</td>
<td>24 women, 24 men; half 27–31 yr, half 60–90 yr</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Men's skin thicker than women's across the entire age range of 5–90 yr</td>
<td>Ultrasonic echography; forearm</td>
<td>69 women, 54 men; 5–80 yr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Men's skin thicker than women's, up to 1.438 times</td>
<td>12.0 MHz in B-mode</td>
<td>112 healthy; 43 women, 69 men; 19–28 yr</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Thickening of dermis following 12 months estrogen therapy</td>
<td>Conjugated estrogen therapy; ultrasonic measurement</td>
<td>28 estrogen; 26 placebo; women: 51–71 yr</td>
<td>Estrogens affect skin thickness</td>
</tr>
<tr>
<td>10</td>
<td>Men: gradual thinning of skin with advancing age. Women: thickness constant up to 5th decade, then decreasing with age</td>
<td>Skin collagen, skin thickness and collagen density, measured chemically and histologically</td>
<td>Collagen: 80 women, 79 men; 15–93 yr Thickness: 107 women, 90 men; 12–93 yr Density: 26 women, 27 men; 15–93 yr</td>
<td>Rate of collagen loss same in men and women, although total skin collagen content is less in women than men at all ages</td>
</tr>
<tr>
<td>11</td>
<td>Forearm skinfold thickness decreases starting at age 35 for women and 45 for men. Starting at age 35 it is thinner in women than in men</td>
<td>Caliper; forearm</td>
<td>145 women and men; 8–89 yr</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Skinfold thickness lower in women</td>
<td>Caliper; forearm, thigh, and calf</td>
<td>42 women, 37 men; 17–24 yr</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Subcutaneous fat thickness greater in women</td>
<td>Caliper and ultrasound</td>
<td>45 women, 41 men; Japanese; 18–22 yr</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Heel pad thickness greater in men than in women; correlation with body weight</td>
<td>Ankle X ray</td>
<td>113 women, 125 men; Ethiopian; 10–70 yr</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Skinfold compression in women is greater in the trunk and lower in the limbs</td>
<td>Caliper and ultrasound</td>
<td>45 women, 41 men; Japanese; 18–22 yr</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Up to 12 yr of age no difference between the sexes. Subcutaneous fat increases more than threefold, while internal fat mass increases less than twice. After 12 yr, the relative mass of the subcutaneous fat increased in girls but not in boys</td>
<td>Caliper</td>
<td>1292 women, 1008 men; ages 6, 8, 10, 18 yr</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Lipoprotein lipase activity higher in women. Women: higher values in gluteus than abdomen. Men: higher in abdomen</td>
<td>Lipoprotein lipase activity and mRNA levels measured; hybridization, Northern blot</td>
<td>8 women, 11 men; 37 ± 4 yr</td>
<td>Regional and sex differences in lipoprotein lipase activity might underlie the difference in fat distribution and total fat content. Variation is both at mRNA and posttranslational levels.</td>
</tr>
</tbody>
</table>

(B) No significant differences

Reference	Finding	Obtained by	Subjects	
-----------	---------	-------------	----------	
14	Up to 12 yr: the mass of the subcutaneous fat increases more than threefold, while that of the internal mass increases less than twice in both sexes	Caliper	1292 women, 1008 men; ages 6, 8, 10, 18 yr	
not differ with age in men, whereas an increase in concentration of copper did not differ between men and women: higher concentrations of copper did not differ with age in men, whereas in women they increased with age.

Differences in the metal content of human hair were noted in women but not in men. Concentrations of copper did not differ with age in men, whereas in women they increased with age (17).

Differences in the metal content of human hair were noted in women but not in men. Concentrations of copper did not differ with age in men, whereas in women they increased with age (18).

MECHANICAL PROPERTIES (TABLE 1.3)

Clinical assessment, as well as objective measurements of stratum corneum hydration, and grading of scaling (by adhesive tape stripings followed by densitometry readings) showed no differences between men and women (19). A positive effect of estrogens on stratum corneum hydration and wrinkles was demonstrated when estriol or estradiol cream was applied on the face of perimenopausal women (20).

Epidermal hydration affects the friction between the skin and textiles. Friction of women showed higher moisture sensitivity than men, when measured at different hydration states, when forearm skin was rubbed with dry to completely wet textile. Higher skin hydration caused gender-specific changes in its mechanical properties and surface properties, leading to softening and increased contact area (21).

Other studies showed no difference of frictional properties of the skin, as well as stratum corneum hydration, between men and women, in both young and old subjects (22–24). In addition, transepidermal water loss showed no difference between the two sexes. In contrast, another study (25) found lower basal transepidermal water loss values in women compared with men aged 18 to 39 years.

The adhesion of the stratum corneum, measured in vitro in skin biopsy samples, did not differ between men and women in several body regions (26). But age (and probably hormonal) related differences were demonstrated in vivo by measuring the speed of dermal-epidermal separation utilizing the time required for blisters to form by controlled suction (27). From 15 up to 69 years of age, women exhibited longer blistering times than men in both antecubital and abdominal sites. The difference was more pronounced in the age range 15 to 39 years than 40 to 69 years, and disappeared in older ages.

Skin elasticity did not differ between the sexes, as measured utilizing two suction cup methods (21,28). Similarly, torsional extensibility of the skin, as measured by a twistometer, did not differ between the sexes (7).

Cutaneous extensibility was identical in men and women, but after hydration it increased only in women (29). Hydration changes the properties of the stratum corneum, softening it, and thus allowing the difference in dermal thickness to express itself as a difference in extensibility. Since the dermis is thinner in women, elimination of the stratum corneum factor allows a rapid extensibility of the skin in women.

Plasticity was found to be greater in women than in men in three sites of the foot in one study (30).

FUNCTIONAL DIFFERENCES (TABLE 1.4)

Following pilocarpine iontophoresis, sweat secretion rates were higher in men than in women in both healthy and chronic renal failure subjects (23).

Body sweat distribution over the upper body in nine clothed male and female runners of equal fitness while running at 65% and subsequent 15-minute rest in a moderate climate (25°C, 53% RH) was investigated using technical absorbent materials to collect the sweat produced. Local sweat rates were higher in men for the mid-front, sides, and mid lateral back compared with women. Both sexes showed similar sweat distribution patterns over the upper body with some exceptions. Men showed higher relative (local to overall) sweat rates than women for the mid lateral back, while it was lower for the upper arm, lateral lower back, and upper central back. Sweating in both sexes was highest along the spine, and higher on the back as a whole than the chest as a whole. Upper arm sweat rate was lowest. Men showed a higher ratio of highest to lowest local sweat rates (31).

The fatty acid composition of sebum is affected by androgens in both sexes (32).

Sex-related differences in the metabolism in the skin of topically applied compounds were found in guinea pig skin (33).

DIFFERENCES IN RESPONSE TO IRRITANTS (TABLE 1.5)

The incidence of irritant dermatitis is higher in women than in men, but experimental irritant dermatitis does not differ between men and women (34,35). Occupational factors leading to a greater exposure to irritants by women may provide an explanation of this discrepancy. In a study of skin irritability by sodium lauryl sulfate, women showed lower baseline transepidermal water loss compared with men, but after irritation both sexes gave similar transepidermal water loss values (25).

The importance of interpretation of the results, and the lack of a standardized way of analyzing them, is illustrated in the latter
Table 1.3 Mechanical Properties

<table>
<thead>
<tr>
<th>Reference</th>
<th>Finding</th>
<th>Obtained by</th>
<th>Subjects</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Significant differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>From 15 to 69 yr of age women exhibited longer blistering times than men. The difference was more pronounced in the age range 15–39 yr than in 40–69 yr, and disappeared in older ages</td>
<td>Measuring the speed of dermal-epidermal separation utilizing the time required for blisters to form by controlled suction; antecubital and abdominal sites</td>
<td>178 women, 15–101 yr; 209 men, 16–96 yr</td>
<td>Higher skin hydration causes gender-specific changes in its mechanical properties, leading to softening and increased contact area</td>
</tr>
<tr>
<td>21</td>
<td>Friction of women showed higher moisture sensitivity than men</td>
<td>Corneometry; forearm skin; rubbing with various hydration states, dry to wet textile</td>
<td>11 women, 11 men</td>
<td></td>
</tr>
<tr>
<td>(B) No significant differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Stratum corneum hydration, and grading of scaling showed no differences between men and women</td>
<td>Clinical assessment and bioengineering measurement</td>
<td>50 women, 22 men; 21–61 yr</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>A positive effect of estrogens on facial skin: moisture increased, wrinkles decreased</td>
<td>Stratum corneum hydration and wrinkles—profilometry of skin replicas</td>
<td>18 women (8 applied estriol, 10 estradiol); 46–66 yr</td>
<td>Topical treatment with estrogen seems promising</td>
</tr>
<tr>
<td>22</td>
<td>No difference between men and women in friction, moisture, transdermal water loss</td>
<td>Bioengineering measurement</td>
<td>7 women, 25 yr (mean); 7 men, 29 yr; 7 women, 75 yr; 8 men, 74 yr</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>No difference in moisture</td>
<td>Bioengineering; healthy and chronic renal failure subjects</td>
<td>Healthy: 24 women, 21 men. Patients: 30 women, 50 men</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Skin elasticity did not differ between the sexes, as measured by suction devices</td>
<td>In vivo suction device (bioengineering)</td>
<td>Young: 8 women (26 yr); 8 men (28 yr); Old: 9 women (75 yr); 8 men (75 yr)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Skin viscoelasticity comparable for women and men</td>
<td>Suction chamber; forearm skin; rubbing with various hydration states, dry to wet textile</td>
<td>11 women, 11 men</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Torsional extensibility did not differ between men and women</td>
<td>Twisterometer</td>
<td>69 women, 54 men; 5–90 yr</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>The adhesion of the stratum corneum did not differ between men and women</td>
<td>Biopsy; in vitro measurement of the force needed to separate cells</td>
<td>9–34 women and men (number varied with site studied); 20–40 yr</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.4 Functional Differences

<table>
<thead>
<tr>
<th>Reference</th>
<th>Finding</th>
<th>Obtained by</th>
<th>Subjects</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Men sweat more than women</td>
<td>Pilocarpine iontophoresis—healthy and chronic renal failure subjects</td>
<td>Healthy: 24 women, 21 men. CRF patients: 30 women, 50 men; 18–75 yr</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Local sweat rates higher in men for the mid-front, sides, and mid lateral back. Men showed higher relative (local to overall) sweat rates than women for the mid lateral back, while it was lower for the upper arm, lateral lower back, and upper central back.</td>
<td>Technical absorbent materials to collect the sweat produced in a moderate climate (25°C, 53% RH)</td>
<td>9 Clothed male and female runners while running at 65% and subsequent 15-min rest</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Cutaneous extensibility increased only in women after hydration</td>
<td>Bioengineering methods</td>
<td>15 women, 14 men; 23–49 yr and 60–93 yr</td>
<td>Hydration allows the effect of thinner dermis in women to be reflected in extensibility</td>
</tr>
</tbody>
</table>

Abbreviation: CRF, chronic renal failure.
study. The authors define an irritation index as the ratio of the difference between the values for irritated and nonirritated skin to the value for nonirritated skin. Although the value for irritated skin did not differ between men and women, this index was higher in women, since the value for nonirritated skin was lower in men, and so the authors conclude that women's skin is more irritable. A review article considering the absolute values following irritation interpreted the same results as indicating no sex-related differences in sodium lauryl sulfate irritation (34). Until a universal way of interpreting the results is established, contradictory conclusions may be reached by different analyses of the same set of data. In another study, baseline transepidermal water loss did not differ between men and women (36). This study found no significant differences between men and women in developing cumulative irritant dermatitis, when visual scoring, transepidermal water loss, skin blood flow, and dielectric water content were assessed. Changes during the menstrual cycle, however, were demonstrated by measuring baseline transepidermal water loss (37).

CUTANEOUS MICROVASCULATURE (TABLE 1.6)

Hormonal factors affect the skin blood flow: differences between men and women were found during the reproductive years, and differences were found within different phases of the menstrual cycle (38). Moreover, vasospastic diseases, such as Raynaud's phenomenon, are more common in women, more prevalent in the reproductive years, and improve during pregnancy, suggesting an influence of female sex hormones (39). Skin circulation varied during the menstrual cycle. There might be a direct influence of sex hormones on the blood vessel wall, or an indirect systemic hormonal action causing a cyclic pattern in women. Estrogens influence the sympathetic nervous system, inducing an upregulation of (vasoconstrictive) \(\alpha_2 \)-adrenoceptors. Thus, blood flow measurements utilizing laser Doppler flowmetry revealed a reduction of basal cutaneous blood flow in women compared with men (39–41), but these differences existed only in young women and not in women over 50 years (42). This reduction was due to a basal increase in sympathetic tone rather than to a local structural or functional difference in the cutaneous circulation. The vasodilation induced by local heating occurred at a lower skin temperature in women (43). However, the maximum skin blood flow following heating of the skin was not different between men and women, and neither was the postocclusive reactive hyperemia response in a study including a group of women aged 20 to 59 years (39). In contrast, in a study that divided women according to age, the reactive hyperemia response was lower in young women compared both with women over 50 years and with young men (42). The latter study also measured the response to cooling, which was prolonged in young women compared with the other two groups.

Skin microvascular response to vasodilators was evaluated by laser Doppler perfusion imager, and instrument that
maps the skin blood perfusion. The substances used were acetylcholine (an endothelium-dependent vasodilator) and nitroprusside and isoprenaline (two endothelium-independent vasodilators with different modes of action). The substances were iontophoresed into the skin. The response to nitroprusside, and to a lesser extent to acetylcholine, was higher in women before menopause than after (44), reflecting functional and structural changes in skin vasculature with aging.
The cutaneous blood flow response to topical and intradermal administration of histamine was comparable in men and women at three anatomical sites: the back, volar side of the forearm, and ankle (45). These observations indicate that there are no functional differences between men and women in the skin microvascular response to histamine. However, histamine administered by iontophoresis produced bigger wheals in women, as measured by laser Doppler flowmetry (33). The bigger wheals were attributed to differences in the stratum corneum layer, which is the main obstacle to penetration.

Transcutaneous oxygen pressure is a method that measures changes in oxygen pressure at the skin surface that are mainly determined by changes in skin blood flow. During skin surface measurement, significantly higher values of transcutaneous oxygen pressure were noted in women (46,47). The difference might be explained by the thinner epidermis of women. Age-related sex differences were noted in measuring transcutaneous oxygen pressure during postocclusive reactive hyperemia. Greater values were found in adult women than in men, but no differences between boys and girls (48).

The contribution of endothelin-B receptors to resting cutaneous vascular tone differs between men and women. In men, endothelin-B receptors mediate vasoconstriction, whereas in women, endothelin-B receptors mediate vasodilation. Blockade of endothelin-B receptors by a competitive antagonist (BQ-788) in men caused skin vasodilation consistent with removal of a tonic vasoconstrictor effect of endothelin-B. In women, it caused a vasoconstriction, demonstrating release of tonic vasodilator activity (49).

SENSORY FUNCTIONS (TABLE 1.7)

Thermoregulatory Response

Studies of human thermoregulation were conducted by exposing subjects to various thermal environments. The importance of taking into account all the possible variables is demonstrated in studies of the physiological responses to heat stress (50): data showed differences between women and men. But when taking into consideration the differences in the percentage of fat in the body and the ratio between the body surface and mass, the effect of gender disappeared.

In contrast to these results of heat stress, the response to cold stress of Japanese young subjects differed with gender, although ratios of body surface area to mass were similar (51). Subjects were exposed to cold (12°C) for one hour at rest in summer and in winter. In winter, tolerance to cold in women was higher to that in men, whereas no significant differences between the sexes were found in summer. The differences in cold tolerance may be caused by differences in the distribution of fat over the body, although ratios of body surface area to mass were similar in the two sexes.

The thermal sensitivity distribution (topographical mapping) over the glabrous skin of the hand in men and in women was assessed by measuring warm and cold thresholds in 25 healthy volunteers (12 women, 13 men), applying a multisite test of 23 locations on the volar part of the hand. The palm area was more sensitive than the fingers to both warm and cold stimuli. On the palm itself, the proximal part was the most sensitive. Women were more sensitive than men to both warm and cold sensations (52).

Cold-induced vasomotor response was measured by laser Doppler flowmetry in 12 healthy men and 12 healthy women. Both direct response (at the site of cooling) and indirect response (at a site remote from the cooling site) were measured (53). The women were tested twice, once in the follicular and once in the luteal phase of the menstrual cycle. Blood flow was measured before and during local cooling of one hand at 15°C. Local cooling evoked a significantly greater decrease in cutaneous blood flow in women than in men in direct as well as in indirect response conditions. Direct response to local cooling was significantly greater in the luteal phase than in the follicular phase. In contrast, there was no menstrual-cycle-dependent difference in the indirect response to cold. Thus, sympathetic neural reactivity, as assessed by way of an indirect response to a cold stimulus, significantly contributes to gender differences in the response to local cooling. In contrast, the variation in microvascular responsiveness to cold exposure due to the menstrual cycle is most probably caused by local vascular mechanisms rather than by variation in sympathetic neural reactivity to local cooling.

Sex-related differences in thermoregulatory responses while wearing protective clothing were found (54). Women were at a thermoregulatory disadvantage compared with men when wearing protective clothing and exercising in a hot environment. This disadvantage can be attributed to the lower specific heat of adipose versus nonadipose tissue and higher percentage of body fatness.

Thermal Response to Stimulation

The decrease in finger temperature as a response to musical stimulus was greater in women (55). This may be due to differences between men and women in vascular autonomic sensitivity to music, or to differences in sensitivity or density of peripheral vascular adrenergic receptors.

Electrodermal Responses

Electrodermal asymmetry has been considered as an index of hemispheric specialization. A study recorded the magnitude and frequency of the skin conductance responses when subjects listened to tones (56). Subjects were right-handed to control the effects of handedness. Men displayed more asymmetry between hands, with larger skin conductance responses on the left hand. In women, asymmetry was less marked, and larger skin conductance responses were found on the right hand. These results indicate a possible hemispheric difference in response to auditory stimuli.

Thermal and Pain Sensation, Pressure Sensitivity

Sensation in the skin can be studied in relation to pain. Pain can be induced by mechanical, electrical, chemical, or thermal stimulus. Pain sensation is best determined by the threshold at which pain begins, and the stimulus required to produce it can be quantified. Thermal and pain sensations are mediated by cutaneous receptors and travel through myelinated (Aβ) and unmyelinated (C) nerve fibers. Women were more sensitive to small temperature changes and to pain caused by either heat or cold (57). Another study measured the threshold of the pricking sensation provoked by heat projected to the skin from a lamp (58). The pricking pain threshold increased with age in both sexes. In addition, the threshold of women was lower at all ages in the range 18 to 90 years. Possible explanations to the difference between the sexes are as follows:

1. Anatomical differences in skin thickness
2. Differences in blood flow and blood vessels that absorb part of the heat transmitted to the skin
3. Differences in nervous structure or function
Unlike the forearm lower pricking pain sensation threshold in women, pressure threshold was lower in women than in men on the palm and sole, but not on the forearm (59).

Autonomic Function

Skin conductance measures one aspect of the autonomic function. Neonate girls manifested a significantly higher conductance than boys (60). These differences may represent differences in maturation.

Both acute muscle and skin pain evoked a measurable sympathetic activity in awake human subjects. Sweat release was increased to the same level in men and women, but dissimilar changes in skin blood flow were recorded: skin blood flow increased in women whereas it decreased in men (61).

SKIN COLOR (TABLE 1.8)

An article by Tegner (62) gives several examples of artists depicting their female models as lighter skinned than males. Such differences were indeed found utilizing spectrophotometric measurements, in various ethnic populations. A lighter skin in women was demonstrated in studies from Iran (63),
India (64), and Australia (65). In addition to hormonal influences, differences in melanin, hemoglobin, and carotene might be involved, as well as differences in sun exposure. Skin reflectance spectroscopy was measured in 10 anatomical sites in 20 healthy Caucasian babies (mean age 5 months, range 1 to 10 months). The level of skin pigmentation was the same in all the 10 measured sites and there were no gender differences in pigmentation for any site (66). In general, both sexes darken as age increases (65). But the changes are more intricate (64): from the end of infancy to the onset of puberty there is a progressive skin darkening in both sexes. During adolescence they both lighten, but women lighten more. Simple hormonal effects cannot explain this difference, since both testosterone and estrogen provoke darkening rather than lightening of the skin. These changes might be partly attributed to differences in exposure to sunlight, since UV radiation increases the number of melanocytes in both exposed and unexposed skin. Another study assessed skin color in adolescents (67). The forehead (sun-exposed) pigmentation of boys was darker than that of girls. But the medial upper arm (less sun exposure) pigmentation varied among the different phases of adolescence: girls were darker than boys during early adolescence, during middle adolescence the pigmentation was similar in the two sexes, and during late adolescence girls were significantly lighter than boys.

The lighter skin color of women was attributed to differences in melanin, hemoglobin (variations in vascularity), and carotene (68). Natural selection might give an explanation of the overall visual effect of lighter skin. In addition, women are more homogenous in color than men, since regional variations in reflectance spectrophotometry were smaller in women than in men (68). Colorimetric measurements revealed a darker and redder skin in elderly men (65–88 years) compared with elderly women, but such differences were not found in young subjects (18–26 years) (69). Another study of 461 women and 346 men aged 20 to 69 years found that both sexes darken with age (65). Yet another study did not find difference between men and women in epidermal melanocytes counts (70).

HORMONAL INFLUENCE (TABLE 1.9)
Any of the above-mentioned differences between women and men might be related to hormonal effects. Some evidence for hormonal influence on the skin has already been mentioned earlier, like the increase of skin thickness following conjugated estrogens treatment of postmenopausal women (8), or the positive effect of estrogens on stratum corneum hydration and wrinkles of the face of perimenopausal women (20), or the changes during the menstrual cycle demonstrated by measuring

Table 1.8 Skin Color

<table>
<thead>
<tr>
<th>Reference</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Women’s skin lighter</td>
</tr>
<tr>
<td>63</td>
<td>Women’s skin lighter</td>
</tr>
<tr>
<td>64</td>
<td>Women’s skin lighter</td>
</tr>
<tr>
<td>67</td>
<td>Forehead: boys darker than girls. Medial upper arm: girls darker than boys during early adolescence, not different from boys during middle adolescence, and during late adolescence girls lighter than boys</td>
</tr>
<tr>
<td>65</td>
<td>Women’s skin lighter. Both sexes darken with age</td>
</tr>
<tr>
<td>69</td>
<td>In the elderly: skin of men darker and redder compared with women, but not in the young</td>
</tr>
</tbody>
</table>

Table 1.9 Hormonal Influence

<table>
<thead>
<tr>
<th>Reference</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Women’s skin lighter</td>
</tr>
<tr>
<td>63</td>
<td>Women’s skin lighter</td>
</tr>
<tr>
<td>64</td>
<td>Women’s skin lighter</td>
</tr>
<tr>
<td>67</td>
<td>Forehead: boys darker than girls. Medial upper arm: girls darker than boys during early adolescence, not different from boys during middle adolescence, and during late adolescence girls lighter than boys</td>
</tr>
<tr>
<td>65</td>
<td>Women’s skin lighter. Both sexes darken with age</td>
</tr>
<tr>
<td>69</td>
<td>In the elderly: skin of men darker and redder compared with women, but not in the young</td>
</tr>
</tbody>
</table>

Abbreviation: MSH, melanocyte-stimulating hormone.
baseline transepidermal water loss (37) and skin blood flow (38). Hormone replacement therapy for menopause had an effect on skin extensibility (71): in untreated women a steep increase in skin extensibility was evidenced during the menopause. Hormone replacement treatment limited this age-related increase in skin extensibility, thus having a preventive effect on skin slackness. Other parameters of skin viscoelasticity were not affected.

After menopause, the skin becomes thinner, associated with loss in skin collagen content. Collagen content increased by 48% with hormone replacement therapy compared with nontreated subjects (72). Moreover, the ratio of type III to type I collagen in the skin is reduced with age. Postmenopausal women receiving hormone replacement therapy showed an increased proportion of type III collagen in the skin (73). In the future, further hormonal manipulation might change the skin of both men and women in ways we cannot yet predict.

PILOSEBACEOUS UNIT (TABLE 1.10)
The sebaceous glands are hormone dependent. The increase in their activity during puberty can be stimulated by the administration of the appropriate hormone. Androgenic steroids, of either gonadal or adrenal origin, have a direct stimulatory effect on sebaceous gland activity. Most of the hormones [thyroid-stimulating hormone (TSH), adrenocorticotrophic hormone (ACTH), follicle-stimulating hormone (FSH), luteinizing hormone (LH)] act indirectly by stimulating their respective endocrine tissues. In other cases, the hormones [for instance, growth hormone (GH)] act synergistically with another hormone to which the sebaceous gland is sensitive. Average values for sebum secretion were significantly higher in men than in women for age ranges 20 to over 69 years, but not for the 15 to 19 years (74). This difference in sebaceous gland activity becomes more apparent in the 50 to 70 years age range, when the secretion in men remains unaltered, whereas in women there is a significant decrease in sebum output, probably a result of decreased ovarian activity.

Beginning in young adulthood there is an age-related decline in wax ester secretion—thus hormones also affect the composition of sebum.

Obviously, the distribution of hair over the body differs between men and women. The hair follicles possess individual mechanisms controlling the evolution and triggering of successive phases, but systemic factors like hormones and external

Table 1.9 Hormonal Influence

<table>
<thead>
<tr>
<th>Reference</th>
<th>Finding</th>
<th>Obtained by</th>
<th>Subjects</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>Hormone replacement treatment limited the age-related increase in skin extensibility: Other parameters of skin viscoelasticity were not affected</td>
<td>Computerized suction device measuring skin deformability and viscoelasticity; inner forearm</td>
<td>Women: 43 nonmenopausal (19–50 yr); 25 menopausal not treated (46–76 yr); 46 on hormone replacement therapy since onset of menopause (38–73 yr)</td>
<td>Hormone replacement therapy has a preventive effect on skin slackness</td>
</tr>
<tr>
<td>72</td>
<td>Collagen content increased by 48% with hormone replacement therapy compared with nontreated subjects</td>
<td>Hydroxyproline and collagen content; biopsies of right thigh below the greater trochanter</td>
<td>Postmenopausal women (35–62 yr); 29 untreated; 26 estradiol + testosterone</td>
<td>Estrogen, or testosterone, or both prevent the decrease in skin collagen content that occurs with aging</td>
</tr>
<tr>
<td>73</td>
<td>Increased proportion of type III collagen in the skin of postmenopausal women receiving hormone replacement therapy</td>
<td>Analysis of collagen types; biopsies of lateral thigh</td>
<td>Postmenopausal women (41–66 yr); 14 untreated, 11 estradiol + testosterone</td>
<td>The clinical improvement in the skin following hormone replacement therapy is due not only to increase in total collagen but also to changes in the ratio of type III to type I</td>
</tr>
</tbody>
</table>

Table 1.10 Pilosebaceous Unit

<table>
<thead>
<tr>
<th>Reference</th>
<th>Finding</th>
<th>Obtained by</th>
<th>Subjects</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>Higher sebum secretion in men than in women for age ranges 20 to over 69 yr, but not for the 15–19 yr age range. In the 50–70 yr age range, the secretion in men remains unaltered, whereas in women there is a significant decrease in sebum output, probably as a result of decreased ovarian activity</td>
<td>Sebum production</td>
<td>330 women, 458 men; 15 yr to over 69 yr</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>No correlation between sebum production and plasma testosterone</td>
<td>Sebum production and plasma androgen levels</td>
<td>8 women, 28 men</td>
<td></td>
</tr>
</tbody>
</table>
SKIN PHYSIOLOGY AND GENDER

CONCLUSIONS
Maintaining skin health is an intricate orchestration of many variables. The need for hard data is paramount, not only for gaining knowledge about the anatomy and biology of human skin but also for the assessment of pathophysiological processes and for clinical management of skin diseases. New and improved instrumentation will allow for more studies, leading to a detailed description of physiological differences between men and women.

We hope that this chapter will trigger further investigations of the subject.

REFERENCES
12 TEXTBOOK OF COSMETIC DERMATOLOGY

papilla cells cultured from human and red deer (*Cervus Elaphus*) hair follicles. J Invest Dermatol 1993; 101:114S–120S.

A quantitative approach to anatomy and physiology of aging skin: barrier, dermal structure, and perfusion

Jeanette M. Kamell and Howard I. Maibach

INTRODUCTION
The anatomic facets of skin are infinite, making a complete review of age-related changes in skin structure problematic. This overview, therefore, focuses on certain readily quantifiable aspects of skin as related to structure and function. This review focuses specifically on aspects of barrier structure and function, dermal structural support, and cutaneous perfusion. Where possible, we address differences between intrinsic, physiological aging, and extrinsic aging due to photoexposure, wind, relative humidity, and other environmental factors, although we acknowledge that this distinction is not always easily made. Ultimately, we hope to unify each topic and the general understanding of skin structure and pathophysiology with respect to the aging process.

BARRIER STRUCTURE AND FUNCTION
Much of the pathophysiology of skin aging relates to changes in barrier structure and function. Many of these changes relate to altered homeostasis of stratum corneum (SC) lipid content and SC pH. While studies of aged barrier function through quantitative measures such as transepidermal water loss (TEWL) are variable and often conflicting, altered barrier function clinically manifests in increased xerosis and altered permeability of topical agents in aged skin.

SC Lipid Content and Homeostasis
The “brick and mortar” model is often employed to describe the SC’s protein-rich corneocytes embedded in a matrix of ceramides, cholesterol, and fatty acids, and smaller amounts of cholesterol sulfate, glucosylceramides, and phospholipids. These lipids form multilamellar sheets amidst the intercellular spaces of the SC, and are critical to the SC’s mechanical and cohesive properties, enabling it to function as an effective barrier (1). Changes in SC lipid content have been inextricably linked to xerosis and altered permeability of topical agents in aged skin.

Skin Surface pH
While study of changes in lipid structure of the SC with age are limited by both inter- and intraindividual variation (13), and may not completely account for changes in barrier function with age, SC acidity is more readily studied and is at least equally influential in the affecting the barrier status of aged skin (14). Indeed, lipid processing is directly dependent on maintenance of optimally acidic pH via activation of pH-sensitive b-glucocerbroside (14). Furthermore, elevated pH leads to activation of serine proteases which prematurely degrade corneodesmosomes, another essential SC barrier component (14). pH increases may be related to decreased expression of...
an Na/H antiporter channel (NHE1) in aged skin (14). Of note, skin’s acidity is also an important part of the skin surface ecosystem and a contributor to defense against microbiological or chemical insults (15), though further discussion of immunity of aged skin is beyond the scope of this chapter.

Table 2.2 summarizes data pertaining to the relation between skin pH and age.

PH appears relatively constant, at least from childhood through age 70 (16–18). However, skin surface pH rises significantly in adults near or older than 70 years of age. Some have noticed that this effect is especially marked in lower limbs, and therefore have attributed the increased pH to stasis and reduced oxygen supply frequently observed on the lower limbs in older individuals (19). Furthermore, pH measurements taken from the skin surface should be interpreted cautiously as “apparent pH;” typical pH measurements are actually measuring extracted material of SC diffusing into water applied at the SC surface, where hydrogen ions are not in solution (20).
Wilhelm et al., weight of the dermis, is primarily responsible for skin’s tensile resilience. Aside from the changes in SC barrier function in aged skin, one might expect to be straightforward reflections of barrier complexity of skin physiology. Parameters of hydration, which comprises approximately 70% to 80% of the dry weight of the dermis, is primarily responsible for skin’s tensile strength. In chronologically aged skin, the rate of collagen synthesis, activity of enzymes that act in the posttranslational modification, collagen solubility, and thickness of collagen fiber bundles in the skin all decrease (48,49). Also, the ratio of type III to type I collagen increases with increasing age (42,49).

In photoaged skin, collagen fibers are fragmented, thickened, and more soluble (48). The increased fragmentation of collagen especially in photoaged skin is secondary to upregulation of collagen-degrading matrix metalloproteinases (MMP) by UV radiation (48-50). UV exposure acutely activates MMP via formation of reactive oxygen species including peroxynitrite (51), as well as by paracrine release of cytokines such as IL6 by keratinocytes (52,53), and more slowly via activation of multiple signaling pathways including MAP kinase pathways, ultimately stimulating increased transcription of MMP (54,55). MMP are also similarly, though more gradually, upregulated in chronologically aged photoprotected skin (51,54).

From a biochemical standpoint, chronological aging induces increased markers of oxidation, glycoxidation, lipoxidation, and glycation in skin collagen (56). In particular, skin collagen’s cross-linking lysine residues undergo significant oxidative changes with age. Lysine oxidase, a copper-dependent enzyme, converts lysine to allysine at all ages. Recently it has been shown that allysine is further oxidized to a stable end product, 2-aminoadipic acid. This oxidative change results in significant accumulation of 2-aminoadipic acid in collagen of aged skin; increased oxidative end product is also seen in diabetes, renal failure, and sepsis (56).

Aside from increased degradation and fragmentation, aged skin exhibits decreased fibroblast function resulting in reduced collagen synthesis and replacement (57). At least one proposed mechanism involves UV-induced mitochondrial damage from reactive oxygen species triggering apoptosis of fibroblasts (54,58).

Table 2.2 Data: pH

<table>
<thead>
<tr>
<th>Source</th>
<th>Methods</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluhr et al., 2000 (16)</td>
<td>Measured the volar forearm of 44 adults, aged 21–44 (mean 34.6), and 44 of the adults’ children, aged 1–6 (mean 3.5). Used a Skin pH-Meter to measure pH.</td>
<td>No significant difference in pH of children’s skin vs. adults’ skin.</td>
<td>This is not a broad enough age range to assess changes in elderly skin.</td>
</tr>
<tr>
<td>Diktein et al., 1984 (17)</td>
<td>Tested forehead skin of 500 female patients, aged 20–70. For pH measurement used planar dura probe electrode.</td>
<td>Found no significant correlation between age and pH.</td>
<td>This is a fairly large study over a fairly broad age spectrum.</td>
</tr>
<tr>
<td>Shoen, 1982 (18)</td>
<td>pH is practically constant up to the age of 70 then rises significantly above the mean value of the “below 70” age group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilhelm et al., 1991 (19)</td>
<td>Studied 11 anatomic locations in 14 young adults (26.7 ± 2.8 yr) and 15 aged adults (70.5 ± 13.8 yr); half of the subjects were male and half female. Measured skin pH in duplicate with flat surface glass electrode connected to a Skin pH meter.</td>
<td>Mean pH varied from 4.8 (ankle) to 5.5 (thigh) in the young group and from 5.0 (forehead) to 5.5 (abdomen) in aged individuals. pH was significantly higher in the aged group on the ankle and the forehead. However, on all other anatomic regions, no significant differences in skin pH were noted.</td>
<td>Authors possibly attribute the pH difference in the ankle to stasis and reduced oxygen supply frequently observed on the lower limbs in older individuals. Also, this data still agrees with above information because it includes adults over 70.</td>
</tr>
</tbody>
</table>

Note: The table summarizes data pertaining to age-related changes in skin pH. See text for discussion.

SC Hydration and Transepidermal Water Loss

While from the above discussion one might presume decreased quantitative measurements of barrier function with aged skin, research has thus far produced conflicting, and often confusing results. Numerous studies of TEWL have shown a decrease in this parameter in aged skin compared with young skin (19,21–27), whereas others have demonstrated no significant measurable difference in TEWL in older skin (5,16,25,28–31). Measurements of SC hydration via studies of capacitance and conductance and/or spectroscopy have generally revealed significantly decreased hydration with age (5,16,29,27,32–35), though a few studies have failed to show significant difference between certain parameters of hydration of aged and young SC (16,36).

We suspect that variability in quantitative measurements of TEWL and SC hydration can be explained by the sheer complexity of skin physiology. Parameters of hydration, which one might expect to be straightforward reflections of barrier function, are undoubtedly also influenced by interindividual/site variation of SC thickness, sebum secretion, cutaneous perfusion, core body temperature, and external conditions and humidity, among many other factors (37–39).

Dermal Structure

Aside from the changes in SC barrier function in aged skin, measurable alterations in the dermal structural network of collagen, elastin, proteins, glycosaminoglycans (GAG), and water lead to changes in elderly skin’s tensile strength and resiliency.

Dermal Collagen

Table 2.3 summarizes data pertaining to skin collagen. Collagen, which comprises approximately 70% to 80% of the dry weight of the dermis, is primarily responsible for skin’s tensile strength. In chronologically aged skin, the rate of collagen synthesis, activity of enzymes that act in the posttranslational modification, collagen solubility, and thickness of collagen fiber bundles in the skin all decrease (48,49). Also, the ratio of type III to type I collagen increases with increasing age (42,49).
Table 2.3 Data: Collagen

<table>
<thead>
<tr>
<th>Source</th>
<th>Methods</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shuster et al., 1975</td>
<td>74 Caucasian males, 80 females aged 15–93 Biopsies were taken from the</td>
<td>Linear decrease in absolute collagen content with age, 1% per year. Collagen density decreases with age (p < .001). Saw a significant relationship between skin thickness and collagen content for all males (p < .001) and for females greater than 60 yr old (p < .001).</td>
<td>Collagen decreases with age. This method may be subject to preparation artifacts.</td>
</tr>
<tr>
<td></td>
<td>midpoint of extensor aspect of forearm using high-speed 5-mm punch. Some</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>post mortem samples were included. Samples were defatted in acetone,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dried to constant weight, hydrolyzed, and their hydroxyproline content</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>was measured.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gniadecka et al., 1998</td>
<td>Study of Caucasians included 10 people aged 74–67 and 10 people aged</td>
<td>Photoaged skin: collagen fibers are fragmented, thickened, and more soluble, elastin fibers form conglomerates, and amount of glycosaminoglycans increases. Chronologically aged skin: changes are more subtle. Despite an overall increase in number of collagen fibers, these are thinner and less soluble. Also see a relative increase with age in the collagen III/collagen I ratio.</td>
<td>Raman spectroscopy allows a detailed analysis without preparation artifacts. The information here agrees with many of the other studies represented in this table.</td>
</tr>
<tr>
<td></td>
<td>22–29. Obtained Raman spectra from buttok skin and forearm skin, using</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NIF-Raman spectroscopy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lovell et al., 1987</td>
<td>Strips of abdominal skin obtained at laparotomy or post mortem from</td>
<td>Hydroxyproline content and estimates of total collagen content did not vary significantly with age. SDS gel electrophoresis showed type III collagen content of skin samples from 2 young donors (age 5) was 20–23%. In people aged 14–65, measurements were relatively constant; showed content of type III collagen to be 18–21.5%. In people over 65 there was greater variation, levels of type III were increased and as high as 31%.</td>
<td>Electron microscopy measurements represented a small study population and are therefore somewhat questionable (n = 5). Hydroxyproline approximations of collagen content appear more reliable, as they include 29 subjects, dispersed between age 3 mo and 82 yr; however, this still reflects a small number of subjects in any given age range. The shift in collagen type with aging prompts the question of whether this was due to increased type III synthesis or decreased type I synthesis. This study does not provide an answer.</td>
</tr>
<tr>
<td></td>
<td>30 subjects, age 0–90 yr. Some samples were cut and acid hydrolyzed;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hydroxyproline content was determined using an automated amino acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>analyzer and the total collagen calculated from hydroxyproline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>estimations. Collagen content was calculated both per unit weight of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>freeze-dried skin and per unit surface area. Other skin samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>were digested with CNBr, and type I: type III ratios were calculated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>using SDS polyacrylamide gel electrophoresis. Pepsin digestion and HPLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>separation of denatured α chains was also used to calculate type I: type</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III ratios. Indirect immunofluorescence enabled analysis of frozen skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>samples antibody-labeled for types I, II, IV, and V collagens. Scanning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>electron microscopy was used to study the diameters of bundles of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>collagen fibers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher et al., 1996</td>
<td>Adult buttock skin (number of subjects not clarified) was irradiated</td>
<td>Transcription factors NF-κ B and AP-1 showed 2.5- to 3-fold increased binding to DNA within 15 min of irradiation, lasting up to 4 hr after irradiation. Induction of interstitial collagenase, streptomycesin 1, and 92-kd gelatinase mRNAs was maximal (6–60 fold, p < 0.05) at 16–24 hr, and returned to near baseline within 48–72 hr. 72-kd gelatinase mRNA was detectable but was only elevated 1.6 fold at 24 hr post UVB exposure. Confirmation that mRNA rises corresponded with actual collagenase protein rises was done using western blot.</td>
<td>Within minutes of UVB exposure, transcription factors AP-1 and NF-κ B showed increased binding to DNA, stimulating synthesis of various collagenase mRNAs, which resulted in increased synthesis of collagenase proteins. Authors provide direct, in vivo mechanistic evidence of UVB exposure’s resulting in increased collagenases in skin.</td>
</tr>
<tr>
<td></td>
<td>with 2 MED UVB in vivo (twice the dose required to cause barely perceptible</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>reddening). Irradiated and adjacent nonirradiated sites were removed at</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>various times following irradiation and snap-frozen. RNA contents were</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>then analyzed using northern blot. Band intensities were quantified using</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a PhosphorImager. Protein content in skin was quantified using western</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>blot. Nuclear extracts from irradiated and nonirradiated skin were also</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>temporally analyzed for AP-1 and NF-γ B binding to double-stranded DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>probes were measured by electrophoretic mobility-shift assays.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 2.3 Data: Collagen (Continued)

<table>
<thead>
<tr>
<th>Source</th>
<th>Methods</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher et al., 1997</td>
<td>Caucasian adults underwent irradiation of skin at four separate buttock sites, with each site exposed one, two, three, or four times to radiation delivered at 48-hr intervals at .5 MED. Skin specimens were obtained from irradiated and adjacent nonirradiated sites at 24 hr after the last exposure.</td>
<td>After a single exposure to UV irradiation, collagenase and 92-kd gelatinase activity was elevated 4.4 +/- 0.2 times the value in nonirradiated skin and 2.3 +/- 0.4 times, respectively. Collagenase and gelatinase activity remained maximally elevated after the second, third, and fourth exposures on days 3, 5, and 7, respectively.</td>
<td>Repeated UV exposure leads to sustained induction of the MMP.</td>
</tr>
<tr>
<td>Varani et al., 2000</td>
<td>72 subjects provided skin samples from sun-protected areas; age groups compared were 18–29, 30–59, 60–79, and 80+. Levels of MMP-1 were assessed using western blot, and levels of MMP-9 and MMP-2 were assessed using gelatinzymography with scanning laser densitometry for quantitation. Levels of types 1 and 3 procollagen were measured using western blot.</td>
<td>In the 80+ yr-old group compared with the 18- to 29-yr-old group, there was a 40%, 52%, and 82% increase in MMP 1, 9, and 2, respectively (p < 0.01, 0.05, and 0.001). In the 60- to 79-yr-old group compared with the 18- to 29-yr-old group, there was a 23%, 20%, and 44% increase in MMP 1, 9, and 2, respectively (p < 0.05, NS, and p < 0.05, respectively). There was a 52% decrease in type 1 procollagen expression in 80+ yr-olds vs. 18- to 29-yr-olds (p = 0.022).</td>
<td>Chronological aging results in elevated expression of MMP and decreased expression of types 1 and 3 procollagen.</td>
</tr>
<tr>
<td>Varani et al., 2006</td>
<td>Young (18–29 yr) vs. old (80+ yr) subjects participated. Replicate 2- and/or 4-mm punch biopsies of sun-protected hip skin were obtained from each individual. 4-mm punches were used for fluorescence microscopic and ultrastructural analysis and for assessment of type 1 procollagen levels. 2-mm biopsies were used for routine light microscopy and for isolation of dermal fibroblasts in culture.</td>
<td>Fibroblasts from young skin produced greater type 1 procollagen than those from old skin (82 ± 16 vs. 56 ± 8 ng/mL, p < 0.05). A reduction in mechanical stimulation in chronologically aged skin was inferred from greater percentage of cell surface attached to collagen fibers (78% ± 6% vs. 56% ± 8%, p < 0.01) and more extensive cell spreading (1.0 ± 0.3 vs. 0.5 ± 0.3, p < 0.05) in young vs. old skin.</td>
<td>Authors hypothesize that old fibroblasts have an age-dependent reduction in the capacity for collagen synthesis while simultaneously experiencing a loss in mechanical stimulation resulting from fewer intact collagen fibers.</td>
</tr>
<tr>
<td>Sell et al., 2007</td>
<td>Human skin samples from 117 people, aged 10–90 yr, were obtained at autopsy. Amounts of 2-aminoadipic acid and 6-hydroxynorleucine (a marker of allysine) in the collagen were determined in acid hydrolysates of processed samples using ion-monitoring gas chromatography. Quantitative contents of 2-aminoadipic acid and 6-hydroxynorleucine were compared in young and old subjects as well as in those with histories of diabetes, renal failure, and sepsis.</td>
<td>2-aminoadipic acid (p < 0.0001), but not 6-hydroxynorleucine (p = 0.14) significantly increased with age, reaching levels of 1 and 0.3 mmol/mol lysine at late age (mean 82), respectively. Significant increased in 2-aminoadipic acid, but not 6-hydroxynorleucine, were also seen in patients with diabetes (p < 0.0001, levels of 2-aminoadipic acid up to <3 mmol/mol), renal failure (levels of 2-aminoadipic acid up to 8 mmol/mol), and especially sepsis (p = 0.0001).</td>
<td>2-Aminoadipic acid, a pan-marker for all forms of lysine oxidation, significantly increased in aging human skin. Levels of its precursor, allysine, are in steady-state suggesting ongoing oxidation of allysine to form the stable end product, 2-aminoadipic acid.</td>
</tr>
</tbody>
</table>

Note: The table presents data on age-related changes in elastin structure. See text for discussion. Abbreviations: MMP, matrix metalloproteinases; MED, minimal erythemogenic dose; SDS, sodium dodecyl sulfate; HPLC, high performance liquid chromatography.

Histological data (41,59) reflects the impacts these biochemical changes ultimately have on the orientation and arrangement of collagen fibers in skin. Lavker et al. compared skin from the upper inner arm of old (age 70–85) and young (age 19–25) individuals using light, transmission electron, and scanning electron microscopy (59). In aged skin, the density of the collagen bundle network appears artifically increased because of a decrease in ground substance (59), and rather than appearing in discrete rope-like bundles of tightly packed fibers, collagen forms aggregates of loosely woven, mostly straight fibers in elderly skin. As fibers become straighter in aged skin, there is less room for the skin to be stretched, so tensile strength decreases (59). Hence both on biochemical and microscopic levels, reduced collagen deposition and enhanced degradation of collagen contribute to development of dermal atrophy, wrinkles, decreased tensile strength, and poorer wound healing in the elderly.

Dermal Elastin

Table 2.4 summarizes skin elastin data. The skin’s intact elastic fiber network, which occupies approximately 2% to 4% of the dermis by volume, provides resilience and suppleness. This network shows definite changes associated with aging, especially between the ages of 30 and 70. Accumulation of new elastin in response to photoaging is also apparent from...
upregulation of the elastin promoter activity and increased abundance of elastin mRNA (60,62). Bernstein et al. compared photoaged with intrinsically aged skin, and found a 2.6-fold increase in elastin mRNA, a 5.3-fold increase in elastin expression, and a 5-fold increase in elastin promoter activity in photodamaged skin (62). However, these apparent increases in elastin synthesis do not account for the massive accumulation of elastic material seen histologically in photoaged skin (62). Some attribute this to elastin degradation being slower than synthesis, leading to an accumulation of partially degraded fibers. Recent work has revealed that proteins such as elafin and lysozyme, expression of which is induced by UVA

<table>
<thead>
<tr>
<th>Table 2.4 Data: Elastin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Bernstein et al., 1994</td>
</tr>
</tbody>
</table>
| | and upper inner arm of 50 individuals (40 males, 10 females). Used a specific elastic staining procedure, then automated computerized image analysis. Calculated percent surface area covered by elastic fibers, length, and number of elastic fibers per unit surface area in superficial (papillary) and deep (reticular) dermis as a function of age. | dermis as males: superficial dermis,
r = .66,
p < .001. Deep dermis,
r = .56, p < .01. Similar correlation in females did not reach significance because of small sample size. Mean fiber length also increased with age in the superficial and deep dermis:
r = .036, p < .02. Number of elastic fibers per unit surface area showed no significant change with age in either the superficial or deep dermis. | This paper provides a review of aspartic acid racemization and its role in skin aging. |
| Ritz-Timme et al., 2003 | 2 × 2 cm skin samples were taken from ventral abdomen during autopsy. Paraffin sections of all samples were examined histologically. Then elastin was purified and AAR was quantified. Specific ages are not given. | In total skin, specimens displayed slight age-dependent increases in D-aspartyl residues; in purified elastin the rate of increase was rapid and highly correlated with age (r = .98). | This paper goes into great detail which is beyond the scope of this overview, but does provide interesting insight into elastin degradation. |
| Ritz-Timme et al., 2002 | Review paper. | Accumulation of new elastin in response to photoaging can be seen from upregulation of the elastin promoter activity and increased abundance of elastin mRNA. However, de novo synthesis of elastin in adult tissues is ineffective. | This paper provides a review of aspartic acid racemization and its role in skin aging. |
| Bernstein et al., 1994 | 16 males aged 49–66. 4-mm punch biopsies taken from the sun-damaged neck and photoprotected buttock. Studied samples using Northern blot analyses, transient transfections with a human elastin promoter/reporter gene, and immunohistochemical staining with elastin and fibrillin antibodies. Analyzed samples in pairs to determine effects of photoaging. | Northern analysis of frozen sections: up to a 2.6-fold increase in elastin mRNA in exposed vs. nonexposed skin. Analysis of mRNA from fibroblast cultures: 5.3-fold increase in elastin expression and 2.5-fold increase in fibrillin expression in photodamaged skin. Transient transfection of cultured cells revealed 5-fold increase in elastin promoter activity. Score for elastin staining in superficial dermis, protected skin: .62 ± .52 exposed skin: 5.0 ± .76. (n = 8, p < .00001). Score for fibrillin staining in superficial dermis protected skin: .75 ± .46. photaged skin: 3.1 ± .64 (p < .0001). | This study does not include a very broad age range. Also, since it used several different methods to establish mechanistic details, each method had a very small sample size (3 in Northern Biot analysis of total RNA from frozen sections, 3 in Northern Blot analysis of fibrilin culture, 2 for transient transfection method, and 8 for immunohistostaining method). The increase in elastin promoter activity and mRNA do not account for the degree of accumulation of elastic material seen histologically in superficial and mid dermis of photoaged skin. It is suggested that most of the material staining as elastin in photoaged skin is structurally abnormal. Authors propose that elastin degradation may be slower than production, with accumulation of partially degraded elastic fibers. |

(continued)
radiation, prevent elastin degradation by human leukocyte (neutrophil) elastase (62). In purified skin elastin, the amount of racemized aspartic acid increases rapidly and is highly correlated with age ($r = .98$) (60). This indicates that skin’s elastin, like elastin in the aorta and lung, is long-lived and accumulates damage over time (57,59).

Computerized image analysis of elastin-stained skin biopsies from photoprotected sites reveals an age-related increase in mean elastin fiber length and percentage surface area coverage in the dermis, but these fibers are thought to be abnormally enriched in polar amino acids, carbohydrates, lipids, and calcium (57). The finer oxytalan fibers in the papillary dermis are depleted or lost altogether; eluanin and elastic fibers become progressively abnormal (57).

Elastin, therefore, exhibits numerous age-related changes, including slow degradation and accumulation of damage in existing elastin with intrinsic aging, increased synthesis of apparently abnormal elastin in photoexposed areas, and abnormal localization of elastin in the upper dermis of photodamaged skin. These factors lead to the histologically evident elastotic accumulation and contribute to characteristic clinically appreciated changes of elderly skin being more lax and more prone to wrinkles.

Proteins, Glycosaminoglycans, and Water

Table 2.5 summarizes data pertaining to other skin protein structure.

Through Raman spectroscopy, little difference is seen between photoexposed and protected areas in young individuals; the majority of proteins in young skin are in helical conformation. Intrinsically aged skin shows slightly altered protein structure, and photoaged skin reveals markedly altered protein conformation, with increased folding and less exposure of aliphatic residues to water (41,64). Amino acid composition of proteins and free amino acids (FAA) in aged skin also differ significantly from that of young skin, including an increase in overall hydrophobicity of amino acid fractions from the elderly (56). Since FAA are believed to play a key role in SC water binding, this shift in their composition, combined with the evidence of altered tertiary protein structure, provides insight into the increased incidence of xerosis in aged individuals.

The content and distribution GAG, especially hyaluronic acid, also impact skin hydration (66). Table 2.6 summarizes data regarding GAG. Quantitatively, GAG increase in photo-aged skin compared with young or intrinsically aged skin (64,66). This seems paradoxical, as photoaged skin appears leathery and dry, unlike newborn skin, which also contains high levels of GAG. Confocal laser scanning microscopy reveals that GAG in photodamaged skin are abnormally deposited on elastic material, rather than diffusely scattered as in young skin (66). This aberrant localization may interfere with normal water binding by GAG, despite their increased number.

In young skin, most of water is bound to proteins and, appropriately, is called bound water (41). This is important for the structure and mechanical properties of many proteins and their mutual interactions. Water molecules not bound to proteins bind to each other, and are called tetrahedron or bulk water (41). Data pertaining to water structure and aging is summarized in Table 2.7. Intrinsic aging does not appear to alter water structure significantly (64). However, in photoaged skin, Raman spectroscopy reveals an increase in total water content. Again, this seems paradoxical, as aged skin is often dry and weathered. However, structurally, significantly more of the water in aged skin is in tetrahedron form. Thus, as proteins are more hydrophobic and folded, and GAG are clumped on elastic material, they interact less with water, and water in aged skin binds to itself instead. This lack of interaction between water and surrounding molecules in photoaged skin likely contribute to its tendency toward a more dry and wrinkled appearance.

Table 2.4 Data: Elastin (Continued)

<table>
<thead>
<tr>
<th>Source</th>
<th>Methods</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seite et al., 2006 (63)</td>
<td>91 skin biopsies from unexposed (buttock area) skin aged 21–80 yr, 30 specimens from semiepidermal (forearm) skin aged 22–64 yr, and 24 specimens from severe exposure (facial) skin aged 45–65 yr. UV exposure’s (280–400 nm) influence on lysozyme deposition measured using 122 samples from buttock skin aged 20–40 yr. Measurement of elastin and lysozyme via direct immunofluorescence with computer-aided quantitation.</td>
<td>Reduced elastin content with age in buttock skin (groups aged 61–80 had significantly less elastin than groups aged 21–50 yr). Relative amount of elastin in the face of subjects aged 51–70 were abnormally high compared with buttock and forearm skin of those age groups. UVA (320–400 nm), especially long wave UVA (340–400 nm) induces lysozyme deposition in elastin fibers to a significantly greater extent than simulated solar radiation (280–400 nm). 25% of elastin fibers in buttock skin were covered with lysozyme, compared with 66% of elastin fibers in facial skin, supporting the association of lysozyme with solar elastosis. Lysozyme was shown to inhibit degradation of elastin fibers by human leukocyte esterase.</td>
<td>Authors use an ample sample size and explain their methodology thoroughly to reveal mechanistic explanation for solar elastosis based on increased deposition of lysozyme in sun-exposed skin; lysozyme inhibits human leukocyte esterase to prevent proper degradation of elastin and allow accumulation of partially degraded fibers. The lower elastin content in sun-protected, older skin compared with sun-protected younger skin implies that human leukocyte esterase naturally works uninhibited to reduce elastin content with age, however the UV-induced accumulation of lysozyme inhibits elastin’s degradation with age in sun-exposed skin.</td>
</tr>
</tbody>
</table>

Note: The table presents data on age-related changes in elastin structure. See text for discussion.
Table 2.5: Data: General Protein Structure

<table>
<thead>
<tr>
<th>Source</th>
<th>Methods</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Gniadecka et al., 1998 (64) | Study of Caucasians included 10 people aged 74–87 and 10 people aged 22–29. Obtained Raman spectra from buttock skin and forearm skin, using NiF-Raman spectroscopy. | Young group: Little difference in spectra of photoexposed vs. photoprotected sites. Most skin proteins were in a helical conformation.
Older group: Intrinsically aged (buttock) skin: resembled young dorsal forearm or buttock, except for a significant ($p = .008$) shift of amide I peak position toward lower frequencies in older skin, suggesting minor conformational changes of protein structure.
Photoaged (dorsal forearm) skin: In addition to the amide I band, the amide III band was also significantly shifted to lower frequency compared with aged photoprotected and younger skin spectra. Also, decreased intensity of the amide III band indicated severe conformational changes in protein in structure, with an increase in protein folding and less exposure of aliphatic amino acids to surrounding water. | In young skin most proteins are in helical structure and we do not see much difference between sun-exposed and sun-protected regions.
Chronologically aged skin has proteins in slightly altered conformation.
Photoaged skin has proteins in markedly altered conformation, with increased folding and less exposure of aliphatic residues to water. This enables the proteins in photoaged skin to bind less water. |
| Jacobson et al., 1990 (56) | Amino acid composition was quantified in 3 fractions isolated from scales of SC from the lower leg. The three fractions studied were FAA, soluble hydrolysate, and whole cell hydrolysate.
"Old" subjects ($n = 20$) were 60 yr or older; "young" subjects ($n = 20$) were 30 yr or younger. | In normal subjects, each of the 3 fractions showed significant difference ($p < .03$) in amino acid composition as a function of age.
The FAA and SH fractions revealed an increase in hydrophobic amino acids. | This is an interesting study that goes into great detail regarding specific amino acid composition, which is beyond the scope of this overview. Nonetheless, the general shift toward increased hydrophobicity is an important trend that should be noted. |
| Gniadecka et al., 1998 (41) | Used NIR-FT Raman spectroscopy to examine 3-mm punch biopsies from buttock, lower leg, back, and arm in 44 individuals aged 18–35. | Most proteins in the whole skin and SC were in α-helix conformation. This was supported by the frequencies of amide I and III maxima and by a strong C-C stretch band at 935/cm. | This data further supports that in young skin, proteins are mostly in α-helical conformation. |
| Sander et al., 2006 (65) | Evaluated buttock skin and photoexposed skin of 12 young (<30 yr) and 12 older (66–73 yr) subjects. ECM1 expression was investigated using immunohistochemistry with densitometric image analysis for semiquantitative results. Acute UV exposure was created by irradiating buttock skin over 10 days with a solar simulator. | In normal human skin ECM1 is expressed mainly in basal cell layers of epidermal keratinocytes and dermal vessels. Intrinsically aged, UV-protected skin showed a significantly reduced expression in basal ($\sim 10\%$ decreased staining intensity) and upper ($\sim 8\%$ decreased staining intensity) epidermal cell layers compared with young skin ($p < 0.05$). In photoaged skin expression is significantly increased in the lower ($\sim 15\%$ increased staining) and upper ($\sim 18\%$ increased staining) epidermis compared with age-matched UV-protected sites ($p < 0.01$). Acute photoexposure also results in marked increased epidermal ECM1 expression (~ 8–$10\%, p < 0.05$). | Semiquantitative data reveals acute and chronic UV-related stress appears to influence expression and distribution of ECM1. Future studies may reveal similar impacts of intrinsic and photoaging on other skin proteins. |

Note: The table presents age-related data on generalized dermal protein structure. See text for discussion.
Abbreviation: FAA, free amino acids.
CUTANEOUS PERFUSION

The epidermal and dermal structural changes noted above are further accompanied by changes in the perfusion of elderly skin. Altered perfusion is implicated in temperature regulation, perfusion of nutrients, and wound healing of elderly skin.

CUTANEOUS PERFUSION

The epidermal and dermal structural changes noted above are further accompanied by changes in the perfusion of elderly skin. Altered perfusion is implicated in temperature regulation, perfusion of nutrients, and wound healing of elderly skin.

CUTANEOUS PERFUSION

The epidermal and dermal structural changes noted above are further accompanied by changes in the perfusion of elderly skin. Altered perfusion is implicated in temperature regulation, perfusion of nutrients, and wound healing of elderly skin.

CUTANEOUS PERFUSION

The epidermal and dermal structural changes noted above are further accompanied by changes in the perfusion of elderly skin. Altered perfusion is implicated in temperature regulation, perfusion of nutrients, and wound healing of elderly skin.

CUTANEOUS PERFUSION

The epidermal and dermal structural changes noted above are further accompanied by changes in the perfusion of elderly skin. Altered perfusion is implicated in temperature regulation, perfusion of nutrients, and wound healing of elderly skin.

CUTANEOUS PERFUSION

The epidermal and dermal structural changes noted above are further accompanied by changes in the perfusion of elderly skin. Altered perfusion is implicated in temperature regulation, perfusion of nutrients, and wound healing of elderly skin.
Table 2.7 Data: Water Structure

<table>
<thead>
<tr>
<th>Source</th>
<th>Methods</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gniadecka et al., 1998</td>
<td>Obtained Raman spectra from buttock skin and dorsal forearm skin, using NIF-Raman spectroscopy.</td>
<td>Younger group: Most water molecules in young skin were bound to other macromolecules (the 180/cm band was absent). Saw no significant difference in water content or structure in sun-exposed vs. sun-protected skin. Older group: Intrinsically aged (buttock) skin: No significant difference in water content or structure compared with young skin. Photoaged (dorsal forearm) skin: Increased content of nonbounded water (180/cm band present). Total hydrogen bonded water is significantly decreased in photoaged skin ($p = .03$). Saw an overall (30%) increase in water content of photoaged skin.</td>
<td>In young skin, water is primarily present in bound form. This does not appear to change with intrinsic aging. However, in photoaged skin, overall water content increases and proportionally shifts such that less of it is in bound form.</td>
</tr>
<tr>
<td>Gniadecka et al., 1998 (41)</td>
<td>Used NIR-FT Raman spectroscopy to examine 3-mm punch biopsies from the buttock, lower leg, back, and arm in 44 people aged 18–35.</td>
<td>Over 90% of water in whole skin is present in the bound form.</td>
<td>This data supports that in young people, water is mainly present bound to macromolecules.</td>
</tr>
<tr>
<td>Wright et al., 1998 (69)</td>
<td>MRI chemical shift imaging was used to noninvasively study nine volunteers of both sexes (ages?). Obtained localized IH spectra of the skin, quantified free water content, normalized to skin thickness.</td>
<td>Relative concentration of free water in the skin, normalized to skin thickness, was slightly greater in older subjects and in tanned subjects.</td>
<td>Need more details—will have paper by 9/13, will fill in details on proofs.</td>
</tr>
</tbody>
</table>

Note: The table presents data pertaining to age and dermal water structure. See text for discussion.

Abbreviation: IH, immunohistochemical.

Likewise, Kelly et al. found little difference in blood flow between young (age 18–26) and elderly (age 65–88) subjects; however, the inclusion of only 10 subjects in each age group limits interpretation of results (71). An LDF study of 201 people aged 10 to 89 revealed that areas with high blood flow, such as the lip, cushion of the third finger, nasal tip and forehead, blood flow decreased with age (74). However, in areas where the cutaneous blood perfusion was initially lower, such as the trunk, no clear variation occurred with age (74). This study also measured cutaneous blood flow and surface temperature in finger cushions for 20 minutes after a 10-minute immersion in 10°C water. The decrease in blood flow after immersion was greater in people over 50, and the restorative ability poorer in those over 70, compared with subjects younger than 50 (71). Another LDV study found that skin’s vasodilation response to heat stress and vasconstriction in response to cold challenge appears delayed in elderly (age 70–83) subjects, indicating a possibly reduced vessel density in aged skin (70). Again, this study only included 9 to 10 people from young and old age groups, so it may not provide the most conclusive answer to the question the effect of age on cutaneous perfusion. More recently, Thompson et al. explained that age-related decrements in sympathetic neurotransmission contribute directly to thermoregulatory impairment when ambient temperature causes whole-body cooling, whereas changes in local cold-induced intracellular signaling represent a more generalized age-associated vascular dysfunction (75).

Intravital capillaroscopy measurements of 26 subjects using fluorescein angiography and native microscopy suggest a decrease in dermal papillary loops and little change in horizontal vessels (postcapillary venules, ascending arterioles, and part of subpapillary plexus) with increasing age (71). An immunohistochemical study of 19 individuals ranging from age 20 to 84 revealed little effect of intrinsic aging of buttock skin on blood perfusion, but progressive and marked decrease in cutaneous perfusion in the photoaged eye corners (72). A photoplethysmographic study including 69 individuals aged 3 to 99 revealed significantly decreased capillary circulation in forehead skin with advancing age. Of interest, recent data demonstrates that acute UV exposure actually increases angiogenesis via upregulation of VEGF via the MEK/ERK pathways and through TSP-1 downregulation via PI3K-Akt activation (76). However, the resultant newly increased vasculature is hyperpermeable and more prone to release inflammatory cells, which contribute to increased expression of proteases. Over time this damages the extracellular matrix and leads to a less permissive environment for maintenance of healthy vessels seen in chronically sun-damaged skin (76).

Hence it appears that increased age may be ultimately associated with decreased cutaneous perfusion, especially in chronically photoexposed areas. Furthermore, stresses such as temperature alterations are not met with the same adaptive responses in dermal blood flow in aged skin. These findings may provide partial physiological explanation for delayed wound healing in elderly skin (77–80).

...
Table 2.8 Data: Cutaneous Blood Perfusion

<table>
<thead>
<tr>
<th>Source</th>
<th>Methods</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluhr et al., 2000 (16)</td>
<td>Measured the volar forearm of 44 adults, aged 21–44 (mean 34.6), and 44 of the adults' children, aged 1–6 (mean 3.5). Measured blood flow by laser Doppler flowmetry LDF-PF2.</td>
<td>Children had significantly higher blood flow than adults. Children (%): 24.6 Adults: 18.7 $p = .004$.</td>
<td>Adults are relatively young here; the oldest adult is 44 yr of age.</td>
</tr>
<tr>
<td>Tolino et al., 1988 (70)</td>
<td>Studied 9 healthy men aged 70–83, and 10 men aged 20–30. Studied at ambient temperature of 20°C and 25°C during warm (41°C) and cool (12°C) water immersion challenges. Lower legs and right arm and hand were immersed. Blood flow was measured continuously in both forearms by laser Doppler velocimetry.</td>
<td>Immersion in 41°C water lead to peak erythrocyte flux values of Young: 140.4 ± 16.1 mV Elderly: 111.1 ± 17.9 mV, $p < .05$. Before immersion in 12°C water, baseline fluxes were Young: 36 ± 3.3 mV Elderly: 37.2 ± 3 mV. After 12°C water immersion, fluxes fell to Young: 16.2 ± 2.4 mV Elderly: 17.9 ± 2.5 mV Fall of erythrocyte flux due to cold water submersion is greater in young subjects ($p < .05$).</td>
<td>This study covers a wider distribution of age and may accurately reflect changes in elderly men's skin. Authors conclude that peak vasodilator response to direct heat is blunted in aging and may correspond to loss of skin blood vessels. Also, the proportional response to direct cold challenge is less in the elderly than in the young.</td>
</tr>
<tr>
<td>Kelly et al., 1995 (71)</td>
<td>10 young (age 18–26) and 10 old (age 65–88) subjects. Used a laser Doppler flowmeter, attaching one probe to the forehead and one to the ventral forearm. Basal flow levels were recorded, then blood flow was occluded for 3 min. After 3 min pressure was removed, resulting in post ischemic reactive hyperemia.</td>
<td>No significant difference was seen between old and young subjects in either the forehead or forearm in basal flow level, reactive hyperemic peak flow, time taken to return from the peak to a new baseline, and area under the post hyperemic curve. Time taken from pressure release to reach post hyperemic peak was less in the elderly forehead ($p = .056$), consistent with more rapid vasodilation. This was not seen in the forearm.</td>
<td>This study finds no significant difference between blood flow in young and elderly except for more rapid vasodilation in response to pressure removal in the forehead, and this result was barely significant. Sample size was fairly small.</td>
</tr>
<tr>
<td>Kelly et al., 1995 (71)</td>
<td>Studied Caucasian men and women; 13 subjects aged 65–88 (mean 74.9), 13 subjects aged 18–26 (23.2). Studied forehead and ventral forearm using intravital capillaroscopy with fluorescin angiography. Counted dermal papillary loops as dots, representing nutritional exchange vessels. Counted horizontal vessels as lines, representing postcapillary venules, ascending arterioles, and part of subpapillary plexus.</td>
<td>Elderly forehead: 40% decrease ($p = .0001$) in dermal papillary loops. No significant difference in horizontal vessels, compared with the young. Elderly forearm: 37% decrease in dermal papillary loops ($p = .0005$). No significant change in horizontal vessels, compared with the young.</td>
<td>This study includes a broad age range and both sexes, but not a large sample size. Forehead data corroborates well with prior native microscopy data from same group.</td>
</tr>
<tr>
<td>Chung et al., 2002 (72)</td>
<td>Included 6 people aged 20–39, 9 people aged 40–69, and 6 people aged 70–84. Obtained 2- and 4-mm punch biopsy specimens from eye corners and buttock. Stained sections for CD31. Blinded, computer assisted-morphometric analysis of sections for analysis of vessel numbers, vessel size, and cutaneous coverage of immunostained vessels.</td>
<td>Buttock, intrinsically aged: No major reduction of vessel numbers. Average vessel size decreased 30.6% in 40–69 age group and 30.8% in 70–84 age group compared with the young group (both $p < .01$). Moderate changes in the cutaneous area covered by the CD31-positive vessels did not reach significance. Eye corners, photoaged: Vessel numbers reduced by 43.1% in 70–84 age group compared with young group ($p < .001$). Average vessel size decreased 38.1% in 40–69 age group, ($p < .01$) with a 45.3% decrease after age 70 ($p = .001$). Average dermal area covered by vessels decreased 43% in 40–69 age group ($p = .02$) and by 69.5% in group over 70 yr ($p < .001$). Linear regression analysis: inverse relation with age of sun-damaged skin: vessel # ($r = .83$), size ($r = .814$), and area coverage ($r = .879$).</td>
<td>Authors state that average dermal area covered by vessels is the most sensitive parameter for measuring skin vascularity. Conclusions: Essentially, intrinsic aging has little effect on cutaneous blood vessels. All vasculature parameters measured in photoaged skin decreased progressively with increased age.</td>
</tr>
</tbody>
</table>
CONCLUSIONS

Clinically evident physiological and pathological changes in elderly skin may in part be understood on the basis of age-related structural alterations. Our discussion focuses on age-related changes in components of the SC which contribute to its barrier function, components of the dermis which contribute to its role in structural support, and alterations in cutaneous perfusion necessary to provision of nutrients and oxygen, thermoregulation, and wound healing.

While somewhat limited by interindividual variation, many studies have demonstrated either a decrease in SC lipid content or altered distribution of lamellar granules within the SC of aged skin. Of crucial importance is the ratio of cholesterol, ceramides, and free fatty acids, and the homeostasis and turnover of SC lipids, which may also be altered in aging skin. The skin surface pH also contributes greatly to barrier function; most studies concur that pH remains relatively stable until approximately age 70, after which point pH increases with age. This increased pH leads to activation of enzymes involved in lipid and corneodesmosome degradation. While one might expect quantitative measures of barrier function to reveal impaired barrier function of elderly skin, studies have vastly conflicted and may be complicated by factors such as inter- and intraindividual variation, sebum and sweat production, and influences of ambient temperature and humidity.

In terms of dermal structural support, collagen becomes less soluble, thinner, and sparser in intrinsically aged skin, but is thickened, fragmented, and more soluble with photoaging. UV exposure activates transcription factors stimulating increased production of collagenases and MMP, with subsequent breakdown of skin collagen and other proteins. Elastin, a long-lived protein, accumulates damage with age and sun exposure. New elastin is synthesized in greater quantities in aged skin, but its structure is abnormal. Furthermore, elastin degradation does not appear to keep pace with new synthesis in aged skin. This results in massive accumulations of elastocollagen, especially in photoaged skin; degradation is further impaired by UV-induced expression of proteins elafin and lysozyme. Structural alterations therefore lead to impaired structural support and elasticity of aged skin.

Studies of primary and tertiary skin protein structure in aged skin reveal an environment unfriendly to water, with an overall increase in hydrophobic amino acids and greater folding such that aliphatic residues are more hidden from water. While total GAG appear quantitatively increased in age skin, these are abnormally localized on the elastic material in the superficial dermis; thus they are unable to bind water as well as if they were scattered appropriately throughout the whole dermis. Hence, although aged skin contains increased amounts of water, most of this water is bound to itself in tetrahedral form, rather than being bound to proteins and GAG as it is in young skin. These factors together may contribute to increased xerosis and the often withered appearance of aged skin.

Studies of cutaneous perfusion vary, but the tendency is toward decreased capillary circulation in aged skin, especially in photoaged skin. Adaptation to temperature changes is slower in aged skin. These parameters correlate well with clinically apparent alterations in thermoregulation and wound healing in aged skin.

REFERENCES

TEXTBOOK OF COSMETIC DERMATOLOGY

Climatic influence on cosmetic skin parameters

Mathias Rohr and Andreas Schrader

INTRODUCTION

Beside a good compatibility, which should be a matter of course for cosmetic products, the physiologic effectiveness, in particular moisture and smoothing effects on the skin, is the main interest for cosmetic products. Techniques such as fast optical in vivo topometry of human skin (FOITS) (1,2) and corneometry are used to investigate their effectiveness. A high degree of standardization is required to quantify the effects of cosmetics. To obtain reproducible and statistically significant results, experimental conditions, such as a test panel controlled climatic conditions and a test design including a positive and a negative standard, are the basic starting tools. Nevertheless, as the following discussion will show, it is not only the normal standardization procedures, such as acclimatization of volunteers in special air-conditioned laboratories, which have to be taken into consideration when interpreting objective and subjective cosmetic parameters, but also the effect of the actual climate during the application phase and especially during the days of measurement. The influence of the indoor climate in the laboratory as well as the outdoor climate will be analyzed. What will happen to the level of skin moisture during the preconditioning phase or what will happen at different seasons of the year? Will it be influenced by the level of relative room humidity and/or the actual climate conditions? Will the influence vary for different kinds of product? Will the influence on skin moisture and skin structure be comparable? Will the influence change for different types of volunteer? What is the best time for preconditioning? Could the regeneration of the stratum corneum be influenced by the climate? Will effects felt subjectively (washing the bend of the elbow) be equally dependent on climatic conditions as objectively rated parameters?

A summary of individual results and averages of thousands of volunteers will be given. Both a positive standard (in the sense of increasing moisture and smoothness) and a negative standard (in the sense of increasing dehydration, roughness or side effects) are used to present the effect of climatic conditions on skin physiology tests.

MATERIALS AND METHODS

Climatic Data

To be able to correlate climate data with skin physiology parameters, the relative humidity and outside temperature are measured continuously at a station by a computer (CAN system, Lufft Company, Fellbach, Germany). Capturing the data by computer ensures that the climate is recorded day and night. Let us take climatic changes in Holzminden (longitude 9.27 east and latitude 51.49 north; Middle Germany) over a year as an example. As Figure 3.1 shows, temperature fluctuates between values of about −10 and 25°C in a year. Relative humidity is about 50% in summer and 90% in winter.

Positive and Negative Standards

Tests have been carried out with the same products repeatedly over a period of several years, and these will serve to demonstrate the effect of climatic conditions on skin physiology. The positive standard is a well-accepted former brand product that is currently unavailable on the European market. However, we have been making it at a constant quality level for years using the known formulation. This product, referred to hereafter as “standard L” (Table 3.1), is tolerated very well by the skin and demonstrates a moisture-retaining and skin-smoothing effect that can be easily classified in terms of physiologic effectiveness. This makes it an ideal standard, because other products can be classified as better or worse with respect to their effectiveness. Another aspect of demonstrating the effectiveness of products on skin physiology relates to negative effects that, for instance, can be induced by aggressive surfactants. Here, too, we have been using the same standard product for years. This is sodium dodecyl sulfate (SDS), which is referred to as the “negative standard” from now on.

Laser Profilometry

The laser profilometry technique is used to investigate the antiwrinkle effect. Skin replicas are taken from the test areas on the volar forearms by means of a white pigmented silicone substance (two components, Optosil® Bayer, Inc., Germany), before the first application and 12 hours after the last application. A round impression having a diameter of 18 mm is made using a label especially designed for this purpose. While the impressions are being made the volunteers are seated on chairs with adjustable armrests so that the angle between the upper arm and the forearm can be adjusted to 90°. Fixing the forearms in this way ensures that no factitious smoothing or roughening effects, due to stretching of the arms when the impressions are taken after application, are evaluated and included in the documentation.

An automated laser scanner with an optical autofocus sensor is used for contactless scanning of the skin replicas (UBM, optical measuring system Microfocus, UBM RC14, Karlsruhe, Germany) (3). The measuring range of the laser scanner is ±500 μm at a resolution less than 0.01% of the measuring range. The measuring spot (focus of the laser diode) has a diameter of about 1 μm. The z resolution is increased to ±25 mm by an additional shift of the z-axis if necessary. The resolution in the x- and y-directions is identical to be independent of any predominant direction of wrinkles. The skin replica taken from the volar forearm of a volunteer is scanned over an area of 8 mm × 8 mm in the x- and y-directions at a resolution of 25 points/mm. Thus 40,000 individual measurements are available, permitting an exact three-dimensional reconstruction of the skin surface (3,4).
Parameter

The Deutsche Industrie Norm (DIN) parameter Ra represents the mean roughness index according to DIN 4768. Ra indicates the arithmetic mean of the absolute values of the skin profile’s deviations from the center line over the total distance. If the overall structure of the profile remains unchanged (Rz constant) but the fine structure of the profile changes, then the Ra parameter will indicate smoothing or roughening by a reduced or increased value, respectively (5,6).

Rz Parameter

The Rz parameter represents a mean peak-to-valley height according to DIN 4768/1. If, in the two-dimensional case, a profile line is divided into five equal parts and the R_max parameter is calculated for each part, Rz will be the arithmetic mean of these five individual values. The Rz parameter will indicate roughening of the skin profile by a significantly increased value if the profile is changed by the influence of a product (Fig. 3.2).

FAST OPTICAL IN VIVO TOPOMETRY OF HUMAN SKIN

After a successful validation phase, the first publication of the new FOITS technology can be found in 1997 (1). In comparison to the replica driven technique during the last decade, the touch-free technique of fringe projection became state of the art to investigate skin surface (2,7–9). Because of many technical advancements (as, for example, improved camera resolution, the use of blue LED lighting systems, or LASER-supported and computer-optimized overlaying procedures), an easy-to-operate system could be realized during the last years. As scientific interest on the mechanisms of wrinkle evaluation is always been pushed, the technical developments led to a tool of high scientific standard (10–13).

FOITS is a touch-free optical technique with a history of more than a decade to investigate skin surface structures in a direct three-dimensional measurement by fringe projection (14). The fringe-projection technique used is a combination of gray-code and phase-shift technique (5). In less than a few hundred milliseconds, the absolute space coordinates are measured of all object points in the selected image area with great exactness. The FOITS measurement system consists of a projection unit and a CCD camera. Both are fixed under the triangulation angle. Concerning the gray-code method, grids with a rectangular brightness distribution by different numbers of lines are projected. The
number of lines is doubled at each new projection. This gives a clearly defined hierarchy of lines for each image point. Regarding the phase-shift technique, only one grid with a sinus-like intensity distribution is projected several times with different phase positions. The FOITS technique is able to realize a depth sharpness area of ±10 mm on an inspection area of 30 mm × 40 mm. The resolution in the vertical z-direction with 0.2% of the measured area leads to an effective resolution of 4 μm in z-direction. A CCD camera with a horizontal and vertical resolution in x- and y-directions of about 30 μm is used. It has to be pointed out that the resolution in z-direction is not limited by 256 gray steps of the CCD camera. The high resolution in the vertical direction is achieved by the analysis of the intensity and phase displacement of the projected grids. The surface structure of the analyzed area causes a deviation of the intensity and phase information of the projected grid structures from the theoretical model structure of a plane surface. With corresponding mathematical algorithms, the absolute three-dimensional coordinates of the inspected area can be calculated of these deviations. A synopsis of the most important experimental side parameters is shown in Table 3.2, starting from the beginning of first experiments up to these days (Fig. 3.3).

Table 3.2 Synopsis of the Technical Side Parameters of FOITS from the Beginning to Today

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technique</td>
<td>Gray-code and phase-shift technique</td>
<td>Contact free direct skin measurement in vivo</td>
<td>Halogen light</td>
<td>Blue LED technique</td>
</tr>
<tr>
<td>Superimposition</td>
<td>Mechanically aided by online overlay procedure</td>
<td>LASER aided mechanically</td>
<td>Software aided on top of all</td>
<td></td>
</tr>
<tr>
<td>Measurement area</td>
<td>Inner side of the forearm</td>
<td>Crow’s-feet, under the eye, cheek, glabella, lips, nasolabial, décolleté, forearm, leg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area of inspection</td>
<td>875 mm² (25 mm × 35 mm)</td>
<td>1200 mm² (30 mm × 40 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area of analysis</td>
<td>20 mm × 20 mm</td>
<td>20 mm × 20 mm (or as needed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution x-direction</td>
<td>~40 μm</td>
<td>~30 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y-direction</td>
<td>~40 μm</td>
<td>~30 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z-direction</td>
<td>4 μm</td>
<td>4 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to digitize the fine structure</td>
<td>~320 msec</td>
<td>~260 msec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.3 Presentation of various FOITS system from 1995 to today; example of FOITS data presentation on an individual subject. 3-DIM data presentation of the crow’s-feet area before and after four weeks of product application.
Starting with analysis of the inner side of the forearm, the crow’s-feet area became the area of most interest later on. Increasing the power of FOITS technique as described in Table 3.2, more and more areas of analysis could be investigated like cheek, glabella area, under the eye, nasolabial area, lips, or all over the body areas like décolleté and legs. The latest technique used combines the fastest data measurement with the best superimposition technique to guarantee a perfect comparison of baseline and end value data. Superimposition is realized in a combination of LASER-aided mechanical alignment of the subject in a first step and a software-driven rotation and shifting procedure of measured data/pictures to find the optimum of superimposition.

Parameter of Analysis

Bringing into focus the periorbital wrinkle area (crow’s-feet), the morphological structure of this test area has to be taken into account if wrinkles are investigated. Having this in mind, analysis is carried out perpendicular to the main wrinkle direction based on the R_z parameter (according to DIN 4668 (10)) or the frequency distribution of depth (FDD) analysis. Starting close to the eye, 50 separate lines with a distance of 400 μm are analyzed. The resulting roughness is shown as a function of line number (Fig. 3.4). Ten successive lines are averaged, resulting in five areas of evaluation. Separating the area of analysis into these five subareas (areas 1 to 5, see Fig. 3.4), the area close to the eye named area 1 represents the deepest structures while with area 5 smaller structures are quantified. An example of this analysis is given in Figure 3.3. In comparison, analysis of the lip area is shown. Because of the smaller test area at all only 4 areas are defined with 40 separate lines with a distance of 250 μm. As shown by Figure 3.1, correlation of line number and R_z results in a more flat link for the lip area in comparison to the crow’s-feet area.

To document the surface structure by a global parameter, the frequency distribution of all depths is used. The FDD is calculated in the range from −600 μm to 600 μm (after polynomial correction) by using interval steps of 5 μm. The defined evaluation area is equivalent to a surface of 2 cm × 2 cm and represents according to the technical resolution of the camera 640,000 single points. Therefore, a calculated FDD parameter is based on a rearrangement within these 640,000 values of depth.

Working with a distribution function the zero level has to be kept in mind carefully. Thus, the zero level of each volunteer is defined as the first plane representing a level of about 0.1% of all single values (about 600 counts). This plane is set as zero and
all further calculations are done with these resulting standardized values. From the surface structure, a frequency distribution of all depths is obtained as shown exemplarily in Figure 3.5 (red curve).

According to the selected zero level, a classification of depth is made as follows:

- 0 to 50 \(\mu \text{m} \) → microstructure (about 5%)
- 55 to 170 \(\mu \text{m} \) → fine structure (about 65%)
- <170 \(\mu \text{m} \) → rough structure (about 30%)

The given proportion will give a rough estimation of structure ranges found in the crow’s-feet area of women with distinct wrinkles and Caucasian skin. Taking into account a product smoothing effect, the green FDD curve as shown in Figure 3.3 can be expected. Consequently, an improvement of skin structure is defined by a shift of maximum and a change of width of the distribution function. A reduction of rough structures can be expected, while for fine- and microstructures an increase is obtained in case of structural improvements.

Corneometer

Water differs markedly from most substances as far as its dielectric constant is concerned. A quantitative proof of changes to the water content of the skin can thus be achieved by means of capacity measurements in a noninvasive manner (15,16).

A corneometer (Courage + Khazaka Co., Köln, Germany) is used to measure the water content (Table 3.3). A measuring capacitor reacts to the samples in the volume to be measured by

Table 3.3 Summary of Experimental Conditions for the Various Skin Physiology Tests

<table>
<thead>
<tr>
<th>Investigation brief description</th>
<th>Corneometer 20–30 volunteers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–3 wk of application; twice a day</td>
<td>Baseline measurement on the forearm</td>
</tr>
<tr>
<td>Final value 12 hr after the last application</td>
<td>Statistical analysis of data</td>
</tr>
<tr>
<td>Corneometer kinetic frequent measurements up to 5 hr</td>
<td>Laser profilometry 30 volunteers</td>
</tr>
<tr>
<td>3 wk of application; twice a day</td>
<td>Silicone replica of the forearm (baseline)</td>
</tr>
<tr>
<td>Silicone replica 12 hr after the last application (final value)</td>
<td>Robot-controlled laser profilometry</td>
</tr>
<tr>
<td>Analysis of Ra and Rz</td>
<td>Analysis of Ra and Rz</td>
</tr>
<tr>
<td>FOITS frequent measurements up to 4 hr</td>
<td>Washing test on the bend of the elbow 20 volunteers</td>
</tr>
<tr>
<td>No replica</td>
<td>5 days of application</td>
</tr>
<tr>
<td>Analysis of Ra and Rz</td>
<td>Twice a day, 2 × 1 minute of washing</td>
</tr>
<tr>
<td></td>
<td>Subjective rating of side effects in a direct comparison</td>
</tr>
<tr>
<td></td>
<td>Reddening/stinging/skin tautness/itchiness</td>
</tr>
<tr>
<td></td>
<td>Skin roughness/dull feeling/bad skin feeling</td>
</tr>
<tr>
<td></td>
<td>Statistical analysis of reaction points</td>
</tr>
<tr>
<td></td>
<td>DHA decoloring 20 volunteers, aged >50 years</td>
</tr>
<tr>
<td></td>
<td>Measurement of skin color by Chromameter (baseline)</td>
</tr>
<tr>
<td></td>
<td>Application of DHA to inner side of forearm</td>
</tr>
<tr>
<td></td>
<td>Application of test product twice a day for 18 days</td>
</tr>
<tr>
<td></td>
<td>Measurement of skin color every day</td>
</tr>
<tr>
<td></td>
<td>Analysis of decay curves</td>
</tr>
</tbody>
</table>

Abbreviation: DHA, dihydroxyacetone.
way of capacitance changes (depending on water content). Those capacitance changes registered by the measuring head capacitor are processed fully automatically by the equipment to form a digital measured value. There is no conductive (galvanic) connection between the object measured and the measuring equipment. Consequently, almost no electricity flows through the object measured. Properties such as ionic conductivity and polarization effects have no influence on the measurement result. The fact that the electronics adapt to the moisture circumstances almost without inertia means that the measuring process is very fast and that it is possible, to a considerable extent, to eliminate effects on the results caused by involuntary movements or moisture accumulation during the measuring process.

All tests mentioned in this discussion were carried out in an electronically controlled air-conditioned laboratory that ensures that room temperature and air humidity are kept constant. The volunteers were kept seated in this laboratory at 22 °C (±1) and 60% or 50% (±5%) relative humidity for 45 minutes before the test and during the complete standard test procedure.

To quantify the influence of this procedure of standardization, frequent measurements were carried out immediately after the volunteers arrived at the institute and for up to five hours. To show the basic influence of the indoor climate, no product application was performed during the time of the investigation. In a second series of measurements, five different brands and five different formulations with an increasing amount of glycerin (3–25%) as an active ingredient were investigated in a short time test design up to four hours after product application. To quantify the influence of the indoor climate on the product rating, the second test series was carried out twice. In a first run, the relative humidity was set at 60%; in a second run the relative humidity was reduced to 50%.

Transient individual side effects that may have an influence on the skin are standardized in this way. However, this procedure does not compensate for climatic conditions such as for winter or summer.

Regeneration
Dihydroxyacetone (DHA) is a substance that is tolerated very well and is approved in the cosmetics industry as a suntan substance. It tans by means of the Maillard reaction, forming combinations with amino acids in the skin that do not wash off. The color disappears within approximately three weeks as a result of desquamation of the colored horny cells. The tan of the skin decreases accordingly.

For this investigation, the desquamation effect, and consequently the rate of regeneration, is measured in the laboratory color room by measuring the decoloring with a Minolta Chromameter CR 300 (L-a-b color room). The yellow value \(b \) differentiates best, and this is used to establish the color decay curves (17,18).

The region that is tested is again the volar forearm. Areas of 4 cm × 4 cm in the middle of the region of application are colored with DHA after a defined washing procedure to standardize the baseline conditions. In the coloring process, a special emulsion with 10% DHA is applied to the area to be tested. The amount applied is 6 mg/cm². In addition, an adhesive bandage saturated with DHA emulsion is applied for 24 hours. Over the next 18 days, the volunteers continue to use the products twice a day. The forearms are permitted to be washed only twice a day with warm water. Surfactants and abrasive cleansing agents are not allowed to be used. Measurements are taken directly before DHA coloring, and then every day over the next 18 days with the exception of weekends. For each time and area of measurement, three values are recorded at different places in the measurement area and averaged. The \(b \)-values of all 30 volunteers per product are averaged, and the standard deviations, percentage changes, and percentage differences standardized to the coloring are calculated. The color decay curves can be described under normal conditions with the following exponential function:

\[
b = a_1 e^{-a_2 t} + a_3
\]

Further statistical treatment is described in detail in Refs. 3 and 9.

Washing Test on the Bend of the Elbow
To assess the skin tolerance, the cleansing effect, and the acceptance of surfactant products, we carry out the washing test on the bend of the elbow. In a practical test, the bend of the elbow is washed under intensive conditions. Twenty volunteers take part in this test. In each application, the bend of one elbow is lathered vigorously with the first sample and washed for two minutes by hand. After being rinsed with lukewarm water, this bend of the elbow is again lathered and washed for two minutes. This is followed by a period of drying also lasting two minutes. After the second rinsing with lukewarm water, the area in question is dabbed dry carefully with a towel, ensuring that there is no rubbing. The bend of the other elbow is treated in exactly the same way with the negative standard SDS (19,20).

To determine any side effects induced by the test products, the volunteers are asked at the end of the test about any reactions they noticed directly after washing. The following parameters are ascertained: reddening, stinging, skin tautness, itchiness, skin roughness, dull feeling, and bad skin feeling. The ratings are given on the basis of a coded volunteer questionnaire.

RESULTS AND DISCUSSION

Outdoor Climate
One of the major factors in cosmetic skin physiology is the moisture-retaining effect of a product. Figure 3.6 shows a summary of this for 1992–1995. The data have been summarized on a monthly basis in each case. Figure 3.6 shows the percentage increase in moisture that is induced by the positive standard L after correction for changes in the corresponding untreated area. The recorded averages are based on at least 100 volunteers a month.

Calculations led to an average moisture increase of approximately 12.7% for all data recorded. To make it easier to compare seasonal dependency of the achievable moisture increase, Figure 3.7 shows the difference from the overall average after the data have been standardized on the basis of the overall average. A change of 0% corresponds to the above-mentioned overall average of approximately 12.7% moisture increase. A bar in the positive direction thus shows an increase in moisture that is higher than the average, whereas a bar in the negative direction indicates a reduced level of effectiveness. Figure 3.7 shows that from November to February, there was...
about 15% above the average moisture increase, whereas in the summer months of June, July, and August, the level of effectiveness was approximately 50% below the average achievable moisture increase.

Figure 3.8 shows the relative change of the laser profilometry parameters \(Ra \) and \(Rz \) both for the positive standard L and for the untreated area in a way that is comparable to Figure 3.6. At this juncture, we must point out that the area referred to as “untreated” has not been treated with a cosmetic but has been subjected to a washing procedure to obtain better results, as described in the “Materials and Methods” section. Figure 3.8 clearly shows how important this prior treatment is. Whereas the \(Ra \) and \(Rz \) parameters for the positive standard fluctuate between \(-6\%\) and \(-8\%\) from January to October 1994 to 1996 without showing a definite trend, these parameters fall noticeably for the untreated area from January to August followed by a rise in September and October. After allowing for the untreated area, the profilometry tests result in the dependency that is shown in Figure 3.9A. Again, the positive standard L was found to be less effective on average in the summer months of June, July, and August than in the other months.

The data clearly show that the seasonal dependency was based both on the reduced positive effectiveness of standard L in the summer and on the reduced negative sensitivity of the untreated area (prior treatment with a surfactant of all areas tested). External climatic conditions thus have a distinct influence on the cosmetic effects that can be achieved. The basic level of the skin is increased in the summer months to such an extent that, first, skin moisture and smoothing can be increased further by cosmetics to only a limited degree and, second, that the deliberate use of substances that are detrimental to the skin also has a limited negative effect. This leads to an apparent reduction of cosmetic effectiveness.

In addition to these objective skin physiology parameters, subjective information gained from volunteers’ answers to questions indicates a comparable dependency on external climatic conditions. Figure 3.10 shows the total negative reaction points that volunteers gave for reddening, stinging, skin tension, itchiness, skin roughness, dull feeling, and bad skin feeling in the elbow washing test. The negative reaction points
for the negative standard fluctuated between 11 and 18 in May, depending on the comparative product. Since the comparative product is of crucial importance in rating effects subjectively, the same test setup was repeated in November with the same comparative products. Here, the average total negative reaction points for the comparative product SDS were distinctly higher in all four groups taking part in the test. Whereas the average for May was approximately 15 negative reaction points, this rose to approximately 23 reaction points in November under otherwise identical conditions as far as the volunteers’ subjective feelings were concerned. These data, based on 80 volunteers, clearly show that it is possible and necessary to correlate information derived from volunteers’ subjective ratings with climatic conditions and to consider this along with the objectively demonstrable parameters for skin physiology.

Another example of how external climatic conditions make it almost impossible to evaluate the results of skin physiology investigations is given by the turnover of the stratum corneum on the basis of DHA decoloring tests. When the stratum corneum has been colored with DHA, it can generally be expected that there will be a constant exponential reduction of skin coloring of both the untreated area and the areas that have been treated with the test products (17). Figure 3.11 shows average curves that have been standardized to the maximum coloring, on the basis of 20 volunteers for two test products (A and B) containing α-hydroxy acids and one untreated area. The observation period was 18 days. In contrast to theoretical expectations and preliminary experiments, this investigation revealed a fall in skin coloring from about 70% to about 30% on day 8. Both before and after this sudden change, the curve is in keeping with theoretical expectations. When all potential technical sources of error had been eliminated, the solution to this problem was found in the temperature and relative humidity data for the days of measurement, as shown in Figure 3.12. As the curves show, relative humidity fell from about 90% to about 60%, whereas the temperature rose from about 0 to 6°C over the same period of just a few hours, and then fell to 1°C after a short time. Since temperature/humidity fluctuations were far less extreme in the rest of the test period, it seems reasonable to suppose that the strong fluctuations of temperature and humidity correlate with the recorded inconsistency in the DHA color decay curves. This inconsistency induced by extreme climatic fluctuations made it necessary to repeat the test, because it was no longer possible to carry out an exponential analysis of the decay curves.

As the measured curve was constant before and after day 8 but higher humidity fluctuations accompanied by lower
temperature fluctuations were recorded on day 7, it can be assumed that humidity is of greater importance in examining the regeneration of the stratum corneum and that the outside temperature plays only a subordinate part in the quality of this skin physiology investigation.

Indoor Climate

Figure 3.13A presents the results of the “no product Corneometer kinetic” (i.e., without application of a product). The kinetic measurements were carried out on four different test areas (forearm—lower, middle, and upper—and upper arm). In Figure 3.13B, the forearm data are summarized on the basis of the first measured value. The first group had starting values below 40 Corneometer Units (CU), the second group summarized the volunteers between 40 and 55 CU, and the third group was based on starting values above 55 CU.

Analyzing the data of different test areas resulted in a decrease of about 2 CU for the upper forearm and a little less for the other test areas independent of the absolute level, which was different for each test site (lower forearm < middle forearm < upper forearm = upper arm). These data were
calculated without taking into account the individual skin type of the volunteers. Figure 3.13B reflects this, showing the individual starting conditions. As can be seen from the differences from baseline, the group with 40 to 55 CU did not show any changes above about 1% during five hours of investigation. The group below 40 CU showed a constant increase of approximately 2%, whereas for the group with high starting values above 55 CU, a decrease of up to 10% was obtained. Independent of the test site the preconditioning phase seems to be most effective for a high skin moisture level at the beginning of the study. A dry skin might be less influenced by the indoor climate. The data to determine the optimal time of preconditioning to generate stable skin conditions are represented in Figure 3.14.
As shown in Figure 3.14A, the difference from baseline (–Δ curve: mean overall) became stabilized at 30 minutes and remained constant from 60 minutes on. Thus, 45 minutes of acclimatization seems to be the best choice—a time not too short for “moist” skin and not too long to reflect a reliable test design.

The data describing the skin surface are given in Figure 3.14B. No significant changes occurred during the four-hour kinetic investigation. Differences between lower and upper forearm were comparable to the Corneometer measurements. Nevertheless, summing up the Rz and Ra values for up to four hours, no trend in the changes was observed. Consequently, the influence of the indoor climate seems to be of minor impact if compared to skin moisture. In any case, changes of the skin structure are obviously on a much slower
time scale if the producing event is as indirect as the indoor climate.

Changing the kinetic view to more static analysis, the data of five different brands are summarized in Figure 3.15. Figure 3.15A shows the difference between baseline and end value four hours after unique product application in absolute CU. The dark blue bars represent the data at an indoor climate of 60% relative humidity, whereas the light blue bars are obtained at 50% relative humidity.

With the exception of product no. 1, no difference occurred from changing the indoor humidity. For product no. 1, a tendency was calculated for the comparison of both measurements. Taking product no. 1 as a hint that an influence might be possible, a second run of five formulations with an increasing amount of glycerine was carried out under the same conditions. In this case, significant changes occurred for the first two low glycerine concentrations (concentration below saturation). At 50% relative humidity, the level of measured absolute units decreased.

Figure 3.15 (A) Corneometer for brands 1–5. Difference from baseline after correction by untreated. (B) Corneometer for increasing concentration of glycerine (bar 1, 3% increasing to bar 5, 25%). Difference from baseline after correction by untreated.
significantly. Thus, the selectivity became better if the relative humidity was reduced and the product contained hygroscopic active ingredients. The hygroscopic ingredient seems to pick up the air humidity like a sponge as long as it is in the upper stratum corneum. Nevertheless, the origin of moisture should be irrelevant for the skin, but in the case of ranking and differentiating products as fast as possible after the product application, it might be helpful to measure at 50% relative humidity.

CONCLUSION

The data recorded, both from objective skin physiology parameters such as moisture and smoothness and from subjective factors in the elbow-washing test, clearly show that such tests are influenced considerably by climatic conditions. Differences, such as between summer and winter, cannot be compensated for by acclimatization in air-conditioned laboratories. Alongside standardized measurement conditions, it is therefore essential to record the quality of the test panel not only by including an untreated area but also by means of a positive or negative control. Only in this way is it possible to establish a classification system for test products that is not dependent on a particular season and allows the quality of cosmetic products to be rated objectively.

As demonstrated by the obtained results, the indoor climate also plays an important part in cosmetic efficacy testing. Beside the outdoor climate, which might have an effect on a long-term basis, the indoor climate (especially the time of preconditioning) is decisive for short-term and kinetic investigations. While the influence of the moisture level is strongly dependent on the starting value, the changes of the skin topometry seem to be not so marked. On the basis of the Corneometer kinetic data, 45 minutes of preconditioning appears to be an optimal compromise between effect, standardization, and costs. The laboratory conditions (relative humidity) may also be of great influence. Depending on the active ingredients (hygroscopic or not), a ranking of products might be of greater selectivity if a lower level of relative humidity is used.

All in all, the presented data underline the importance of a standardized procedure to investigate cosmetic effects on a statistical and reproducible level.

REFERENCES

1. Rohr M, Schrader K. Fast optical in vivo topometry of human skin (FOITS)—a comparison to LASER-Profilometry. 5th Congress of the International Society for Skin Imaging, Vienna, 1997.

Photodamage
Karen Connolly, Camile L. Hexsel, and Henry W. Lim

INTRODUCTION
Electromagnetic radiation emitted by the sun includes ultraviolet (UV) (290-400 nm), visible (400-760 nm), and infrared radiation (IR) (760 nm–1 mm). The subdivisions of UV are defined as UVA (320–400 nm), UVB (290–320 nm), and UVC (200–290 nm) with UVA reaching the skin surface (15,16). It has also been demonstrated that exposure to visible light of individuals with skin types IV to VI also induces IPD and PPD (17).

In this chapter, the acute and chronic effects of UV, visible light, and IR on the skin will be discussed.

ACUTE EFFECTS OF UVR
Acute effects of UVR include erythema, edema, blisters, immediate and persistent pigment darkening followed by delayed tanning or neomelanogenesis, acanthosis, and dermal thickening. Exposure to UV can also induce immunosuppression, vitamin D synthesis, and development of photodermatoses (5).

UV-Induced Erythema
UV-induced erythema and edema are primarily induced by UVB, which starts at 3 to 4 hours after UVB exposure, and peaks at 8 to 24 hours; it lasts 24 to 48 hours or longer in light-skinned individuals. In contrast to UVB, UVA-induced erythema peaks at 1 to 2 hours after exposure and subsides gradually over 24 to 72 hours. Because of the longer wavelength of UVA, it takes 1000-fold more fluence to induce erythema by UVA, compared to UVB (5). The familiar erythematous and edematous sunburn can be described on the basis of the cellular mechanisms involved: These include vascular leakage and dilatation, influx of an inflammatory infiltrate, apoptosis of cells, and proliferation of keratinocytes. These effects begin with the absorption of UVR by the skin, a process called photoexcitation. The main targets for absorption are chromophores, which determine the depth of penetration of radiation. DNA is the major UV chromophore in human skin. Formation of cyclobutyl pyridine dimers (CPDs) is a hallmark of DNA damage and occurs at a peak action spectrum of 300 nm in the UVB range (6,7). One favored mechanism is that DNA damage activates cell death pathways via p53. This is followed by a reactive epidermal hyperplasia as early as six hours following UVR insult (8).

In contrast to IPD and PPD, DT involved neomelanogenesis; it peaks at 72 hours (5) to 1 week after UV radiation and declines over at least 10 weeks (18). UVB-induced DT requires a preceding erythematous response and has a sun protection factor (SPF) of 3. UVA-induced DT tanning appears usually three days after exposure (5). Visible light-induced DT was observed by one week after exposure (17).

UV-Induced Pigmentation
Another effect of solar radiation is increased pigmentation (Table 4.3). This process can be divided into three processes: Immediate pigment darkening (IPD), persistent pigment darkening (PPD), and the delayed tanning (DT) reaction (13). IPD occurs within seconds after UVA and visible light irradiation, and resolve in two hours; it is due to photooxidation of preexisting melanin. PPD is also a result of a photooxidation and redistribution of preexisting melanin; PPD persists from 2 to 24 hours after irradiation. Both of these responses occur more intensely with UVA exposure as opposed to UVB (14), and PPD has also been shown to be linearly dependent on the fluence of UVA reaching the skin surface (15,16). Recently, it has been demonstrated that exposure to visible light of individuals with skin types IV to VI also induces IPD and PPD (17).

In contrast to IPD and PPD, DT involved neomelanogenesis: it peaks at 72 hours (5) to 1 week after UV radiation and declines over at least 10 weeks (18). UVB-induced DT requires a preceding erythemal response and has a sun protection factor (SPF) of 3. UVA-induced DT tanning appears usually three days after exposure (5). Visible light-induced DT was observed by one week after exposure (17).

UV has been shown, through damage to epidermal cell DNA, to increase synthesis of tyrosinase, a rate-limiting enzyme for melanogenesis. It has also been shown that DNA damage causes an increase in the activity of receptors for melanocyte-stimulating hormone, a melanotropic hormone (19,20).
Immunosuppression

A number of immune cells are present in normal human skin, including keratinocytes, Langerhans cells, the resident dendritic antigen-presenting cells, dermal and plasmacytoid dendritic cells, T cells, mast cells, and macrophages (21). UVR can induce local and systemic immune suppression, even at suberythropoietic levels. UVR-induced immunosuppression appears to be somewhat dose-dependent and varies on the basis of UVA or UVB exposure (22). The interplay between UVA and UVB has not been entirely described, but it appears that different doses of UVA determine whether it acts as an immunosuppressant or immunoprotectant (21).

UVR exposure has been shown to suppress Th1 cytokine responses to application of a contact hypersensitivity-inducing antigen up to three days following the UVB exposure, while UVA can produce a more short-acting Th1 cytokine response at higher doses (23). Both UVA and UVB can induce reduction of epidermal Langerhans cells (24).

Other effects of UVR on immunosuppression include the release of immunosuppressive cytokines and mediators, induction of regulatory/suppressor T cells, suppression of antigen presentation, and induction of immunologic tolerance (25).

The concept of UVR-induced immunosuppression has particular relevance to the development and persistence of skin cancer in humans, since UVR prevents rejection of highly immunogenic UV-induced tumors in mice that have been irradiated. These tumors are rapidly rejected in nonirradiated mice, suggesting that UVR allows persistence of UV-induced neoplasms (26).

Vitamin D Synthesis

In recent years, it has been recognized that low levels of vitamin D may be associated not only with proper maintenance of blood levels of calcium and phosphate for bone health, but also as protective for certain malignancies, cardiovascular diseases, bone disease, type 1 diabetes, and possibly autoimmune conditions (27,28). There are three sources for obtaining vitamin D precursors: cutaneous vitamin D metabolism, oral ingestion of vitamin D supplements/food supplemented with vitamin D, and natural animal sources of vitamin D (29).

The action spectrum of cutaneous vitamin D photosynthesis is in the UVB range, with a peak at 300 ± 5 nm. The pathway involves conversion of cutaneous 7-dehydrocholesterol to cholecalciferol, which undergoes further metabolism in the liver to 25-hydroxyvitamin D, and in the kidneys to the active metabolite, 1,25-hydroxyvitamin D (29,30). The metabolite commonly assessed to measure vitamin D status is serum 25-hydroxyvitamin D (30). Production reaches a maximum at less than one minimal erythema dose, which can be achieved for approximately two to eight minutes outside on a sunny day for a light-skinned individual (27). This estimate varies on the basis of season, time of year, time of day, skin type, and latitude.

The other routes for obtaining vitamin D are through oral ingestion of vitamin D supplements, vitamin D–fortified foods like milk and milk products, or vitamin D–rich natural food sources such as fatty fish.

Sun and UV exposure has been advocated by some, including the tanning industry, as a necessary means for obtaining vitamin D levels. However, the peak action spectrum for vitamin D photosynthesis is around 300 nm, similar to the peak wavelengths for erythema and pigmentation responses, and formation of CPDs. UVR is a well-known carcinogen (27); recently, WHO has classified tanning beds as carcinogenic (31). Studies have shown that even with abundant unprotected sun exposure (several hours per day), some individuals do not synthesize adequate levels of vitamin D, especially darker-skinned individuals (27,32). Therefore, for individuals at risk for vitamin D insufficiency, it is recommended that oral vitamin

Abbreviations

- IPD: Immediate pigment darkening
- PPD: Persistent pigment darkening
- DT: Delayed tanning
- UVR: Ultraviolet radiation
- UV: Ultraviolet

Table 4.1 Components of Solar Radiation, Wavelength, and Depth of Penetration

<table>
<thead>
<tr>
<th>Subdivision</th>
<th>Energy</th>
<th>Depth of Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVC</td>
<td>Lowest</td>
<td>Deepest</td>
</tr>
<tr>
<td>UVB</td>
<td>Highest</td>
<td>Shallowest</td>
</tr>
<tr>
<td>Visible</td>
<td>Deepest</td>
<td>Shallowest</td>
</tr>
<tr>
<td>Infrared</td>
<td>Lowest</td>
<td>Shallowest</td>
</tr>
</tbody>
</table>

Table 4.2 Timeline of UVR-Induced Erythema

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Peak response</th>
<th>Main contributing range of UVR</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial erythema</td>
<td>Immediately after exposure</td>
<td>UVA, visible light</td>
<td>24–72 hr</td>
</tr>
<tr>
<td>Peak erythema</td>
<td>1–2 hr</td>
<td>UVA and visible light</td>
<td>24–72 hr</td>
</tr>
</tbody>
</table>

Table 4.3 Timeline of UVR-Induced Pigmentation

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Peak response</th>
<th>Main contributing range of UVR</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPD</td>
<td>Within seconds of exposure</td>
<td>UVA and visible light</td>
<td>2 hr</td>
</tr>
<tr>
<td>PPD</td>
<td>2–24 hr</td>
<td>UVA and visible light</td>
<td>2 to 24 hr</td>
</tr>
<tr>
<td>DT</td>
<td>72 hr–1 wk</td>
<td>UVA, visible light</td>
<td>Up to 10 wk</td>
</tr>
</tbody>
</table>

Abbreviations: IPD, immediate pigment darkening; PPD, persistent pigment darkening; DT, delayed tanning; UVR, ultraviolet radiation; UV, ultraviolet.
platelet-derived growth factor, and from down-regulation of matrix metalloproteinases (MMPs), which degrade various components of the extracellular matrix, such as elastin and collagen (36–38).

UVB is mostly absorbed in the epidermis. It plays a role in photoaging by induction of transcription factors, such as nuclear factor-κ B and other proinflammatory cytokines, expression of MMPs, induction of CPDs, as well as generation of pyrimidine-pyrimidone photodimers, photoisomerization of trans- to cis-urocanic acid, and generation of ROS (39). Furthermore, amino acids that cross-link collagen and elastin, melanin (6), tryptophan, and tyrosine (40) are additional potential targets of UVB radiation.

Compared to UVB, UVA generates more oxidative stress, is more phototoxic, and is 10 times more efficient in causing lipid peroxidation. UVA also induces MMP synthesis, and the formation of nicks in the DNA, mitochondrial DNA base deletions in the fibroblasts, and the formation of 8-hydroxyguanine.

Telangiectasias are thought to occur from the effect of UVR in increasing vascular endothelial growth factor and platelet-derived endothelial growth factor, and from down-regulation of angiogenesis inhibition (39).

Table 4.4 Clinical Differences Between Chronologic Aging and Photoaging

<table>
<thead>
<tr>
<th></th>
<th>Chronologic aging</th>
<th>Photoaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigmentation</td>
<td>Regular</td>
<td>Diffusely irregular</td>
</tr>
<tr>
<td>Thickness</td>
<td>Thinning of skin, increased laxity</td>
<td>Thickened skin</td>
</tr>
<tr>
<td>Texture</td>
<td>Smooth and atrophied</td>
<td>Leathery, wrinkled, dry, and rough</td>
</tr>
<tr>
<td>Blood vessels</td>
<td>Decrease in number</td>
<td>Telangiectasias</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Distinctive features</td>
<td></td>
<td>Cutis rhomboid nuchae</td>
</tr>
</tbody>
</table>

D₃ at 1000 IU daily be taken; they should not be advised to obtain vitamin D from natural or artificial UV (33).

CHRONIC EFFECTS OF UVR

Clinical features of photoaging, along with differences from normal intrinsic aging, are outlined in Table 4.4 (34–36).

Histopathologically, photodamaged skin presents with hyperkeratosis and acanthosis. In addition, classic characterized effects of photoaging are due to damage of the dermal connective tissue and include the presence of numerous hyperplastic fibroblasts, irregular and disorganized collagen bundles that acquire a distinctive basophilic staining, increased and amorphous elastin, thickened vessels, and increased glycosaminoglycans and inflammatory cells.

UV radiation results in generation of reactive oxygen species (ROS) and free radicals, as well as increased activation of growth factor receptors in keratinocytes and fibroblasts, resulting in upregulation of matrix metalloproteinases (MMPs), which degrade various components of the extracellular matrix, such as elastin and collagen (36–38).

Photocarcinogenesis and Development of Actinic Keratosis

As previously discussed, UVB is especially important in the formation of CPDs and UVA in the development of ROS, which can further damage DNA. Many studies have implicated these entities directly in the carcinogenesis of skin cancers and actinic keratoses. Actinic keratoses (AKs) are a reflection of over exposure to sunlight, occurring in up to 50% of fair-skinned population greater than 40 years (41). They are precursor lesion to carcinoma in situ and eventually squamous cell carcinoma (SCC). AKs occur in individuals with light skin, since melanin in dark-skinned individuals provide natural photoprotection. An important risk factor for development of AKs and skin cancers is age, as the rates of incidence increase exponentially as age increases. Age-related differences in the immune system may play a role (42). AKs are located in sun-exposed sites (43), and the incidence of AKs in people who work outdoor or spend lots of recreational time in the sun is higher than in people who work indoors (41). Support for AK and SCC lying on a biologic continuum relies on the progression of AK to SCC: about 0.1% to 10% will progress in a 1-year period (44), and 6% to 10% over 10 years (45). Although AKs are not thought to progress to become basal cell carcinomas (BCCs), a high number of AKs is a risk factor for BCCs as well.

As opposed to cumulative, chronic UVR being responsible for the development and progression of AK and SCC, it is thought that intermittent, intense sun exposure, and childhood UVR with sunburns are more important risk factors for development of BCC and melanoma (46–52). Although it is agreed that development of melanoma is related to sun exposure, the association is not as clear as with other skin cancers (47). Major risk factors include total sun exposure, altered or irregular patterns of exposure, fair-skinned complexion, history of painful sunburns before the age of 20 years, freckling, and location close to the equator (42,49,53). Melanoma and other skin cancers have been induced by UVR in animals (54,55). Additionally, the incidence of these entities is inversely related to latitude (49). Melanomas most commonly affect the back in males and the lower legs in females, and are more common in people with indoor jobs, supporting the idea that it is intermittent, intense exposure and not chronic cumulative exposure to UVR that is involved in its pathogenesis (46).

Mutation of critical genes is thought to be the mechanism through which UVR induces development of AK and skin cancers. The p53 tumor suppressor gene plays an important role in the pathogenesis of skin cancers and other malignancies. The normal function of this gene is to serve as a guardian for the genome by inducing apoptosis in a cell in which its DNA has been damaged. Signature mutations of the p53 gene that are induced by UVR are found in up to 80% of AKs and 90% of SCC. It is also thought to be involved in BCC. The p16 tumor suppressor gene is implicated in the development of melanoma (56). The Hedgehog pathway and PTCH1 gene are thought to be involved in the pathogenesis of BCC (57).

CUTANEOUS EFFECTS OF VISIBLE LIGHT

Visible light accounts for the spectrum of solar radiation ranging from 400 to 760 nm and produces the general illumination visible to the human eye. Solar radiation reaching the earth’s surface consists of about 50% visible light (39). The biological effects of visible light on human skin have not been fully studied. Chromophores that absorb wavelengths along the visible light spectrum include β-carotene, protoporphyrin IX, melanin, water, riboflavin, bilirubin, and hemoglobin. Among them, several have an action spectrum that includes UVR wavelengths. The existing studies focusing on visible light have shown that it can produce erythema, pigmentation, and ROS (58).
Erythema

Although UVB is most frequently considered responsible for the erythema produced by sunlight, visible light has also been shown to produce an immediate erythema that fades over 24 hours (59). This is thought to result from dilatation of the subpapillary plexus, since the longer wavelength of visible light allows its deeper penetration into skin (58, 60).

Pigmentation (IPD and PPD)

Visible light can produce an IPD, a PPD, and a DT reaction that can last at least 14 days (17, 59). Kollias and Baqer studied the effects of visible and near-infrared light on pigmentation and also found an IPD and a DT effect (61).

ROS Formation

Visible light has been implicated in production of ROS in wavelength ranges close to UVA1. Kielbassa and Epe, have demonstrated DNA damage likely via ROS in cells exposed to visible light of wavelengths from 400 to 500 nm (62, 63). It has been shown that visible light may contribute one-third to one-half of ROS damage produced by solar radiation (64, 65). Visible light has also been shown to induce p53 expression in epidermal cells and to induce epidermal proliferation, but to a lesser degree than UVA irradiation (66).

CUTANEOUS EFFECTS OF IR

IR radiation ranges from wavelengths 760 nm to 1 mm and is invisible to the human eye. It composes about 45% of sunlight reaching the earth’s surface (39) and is also used in a variety of cosmetic modalities. IR lies on the electromagnetic spectrum between visible light and microwaves and is further divided on absorption, especially IRC, and this may contribute to its physiologic effects (4).

Photoaging

IR has been shown to induce expression of several mediators associated with photoaging independently of and also with production of heat. IR and visible light in combination can increase expression of MMPs and decrease procollagen expression, events that cause connective tissue damage (67, 68). IR and visible light can also cause macrophage infiltration of the skin (68–70) and induces cutaneous angiogenesis and inflammatory cellular infiltration (68). Furthermore, mast cells are recruited to the skin not only by UV but also by IR (71). The angiogenesis is at least in part regulated by the increase in skin temperature from IR (72). In mouse studies, IR has been shown to induce wrinkles and augment UV-induced damage both clinically and histologically, suggesting that it is important in photoaging (73). Interestingly, it appears that IR causes photoaging damage via a different mechanism than UVR. Schroeder et al. recently showed that IRA causes mitochondrial ROS production via the electron transport chain, which is thought to cause MMP-1 expression via retrograde signaling (74). This production of ROS has been shown to cause oxidative DNA damage and induction of MMP as well (68).

ACKNOWLEDGMENT

Dr Lim is a consultant for La Roche-Posay, Orfagen, Johnson & Johnson, and Dow Pharmaceuticals and he has received research grant support from Johnson and Johnson.

Conflict of Interest: Karen Connolly and Dr Hexasel have no conflicts of interest to declare.

REFERENCES

Skin barrier cream efficacy: evidence based

Hongbo Zhai, Heidi P. Chan, and Howard I. Maibach

INTRODUCTION
The skin provides a protective shield between us and environmental toxicity. This is evident in certain occupations where there is constant exposure to hazardous substances. Precautionary measures such as glove use minimize the risk of incurring contact dermatitis (CD), but in many professions this is impossible because of the loss of dexterity. An alternative measure is to utilize barrier creams (BC), which may play an important role in the prevention of CD (1–7). BC are also used to protect the face and neck against chemical and resinous dust and vapors (8). Many prefer to use BC rather than gloves because they do not want the hand continuously sealed inside a glove that can inhibit skin barrier function (6). In addition, many gloves do not resist the penetration of low molecular weight chemicals and some allergens are soluble in rubber gloves that may penetrate the glove and produce severe dermatitis (6,9,10). Allergy to rubber latex has become a growing problem (6,10). Furthermore, because of continuous gloves wearing, workers can develop serious symptoms (i.e., contact urticaria syndrome) including generalized urticaria, conjunctivitis, rhinitis, and asthma, etc. (6,11). Additionally, BC can be used against chemical warfare agents (12,13). However, their utilization remains the subject of a lively debate; some suggest that the inappropriate BC application may exacerbate rather than prevent irritation (1–3,6,14–16). The accuracy of measurements depends on the use of appropriate methodology and hence various in vitro and in vivo methods have been developed to evaluate their efficacy. This chapter reviews methodology and efficacy of BC.

IN VITRO METHODS
In 1946, Sadler and Marriott (17) introduced facile tests to evaluate the efficiency of BC. One method used the fluorescence of a dyestuff and eosin as an indicator to measure penetration and the rates of penetration of water through BC; this is rapid and simple, but provides only a qualitative estimate.

Suskind (18) performed a simple method to measure the relative efficacy or repellency of formulations with film immersion test in a specific exposure. Formulation containing 52.5% silicone in bentonite, and 30% silicone in petrolatum were effective against a range of aqueous irritants and sensitizers.

Langford (19) conducted in vitro studies to determine the efficacy of the formulated fluorochemical (FC)-resin complex included solvent penetration through treated filter paper, solvent repellency on treated pig skin, and penetration of radiotagged sodium lauryl sulfate (SLS) through treated hairless mouse skin. He also conducted an in vivo study on 75 persons who had previously experienced irritation on their hands due to continued contact with solvents. 83% of the panelists stated the cream was effective in protecting their hands.

Reiner et al. (20) examined the protective effect of ointments on guinea pig skin in vitro and in vivo. The permeation values of a toxic agent through unprotected and protected skin within 10 has a function of time was determined radiologically and enzymatically. Permeation of the toxic agent was markedly reduced by polyethylene glycol ointment base and ointments containing active substance. In vivo experiments on guinea pigs mortality was greater after applying the toxic agent to unprotected skin. All formulations with nucleophilic substances markedly reduced the mortality rate.

Loden (21) evaluated the effect of BC on the absorption of (3H) water (14C)-benzene and (14C)-formaldehyde into excised human skin. The control and the BC-treated skins were exposed to the test substance for 0.5 hour, whereupon absorption was determined. The experimental cream “water barrier” reduced the absorption of water and benzene but not formaldehyde. One cream slightly reduced benzene and formaldehyde absorption. Two other creams did not affect the absorption of the substances studied.

Treffel et al. (22) measured in vitro on human skin the effectiveness of BC against three dyes (eosin, methyl violet, and oil red O) with varying n-octanol/water partition coefficients (0.19, 29.8, and 165, respectively). BC efficacy was assayed by measurements of the dyes in the epidermis of protected skin samples after 30-minute application. The efficacy of BC against the three dyes showed in several cases data contrary to manufacturer’s information. There was no correlation between the galenic parameters of the assayed products and the protection level, indicating that neither the water content nor the consistency of the formulations influenced the protection effectiveness.

Fullerton and Menne (23) examined the protective effect of ethylenediaminetetraacetate (EDTA) barrier gels against nickel contact allergy using in vitro and in vivo methods. In an in vivo study, about 30 mg of barrier gel was applied on the epidermal side of the skin and a nickel disk was placed above the gel. After 24-hour application, the nickel disk was removed and the epidermis separated from the dermis. Nickel content in epidermis and dermis was quantified by adsorption differential pulse voltammetry (ADPV). The amount of nickel in the epidermal skin layer on barrier gels treated skins was significantly reduced compared with the untreated control. In vivo patch testing of nickel-sensitive patients was performed using nickel disks with and without barrier gels. Test preparations and nickel disks were removed one day post application, and the test sites were evaluated. Reduction in positive test reactions was highly significant at barrier gels treated sites.

Zhai et al. (24) utilized an in vitro diffusion system to measure the protective effective of quaternium-18 bentonite
(Q18B) gels to prevent 1% concentration of [35S]-SLS penetration by human cadaver skin. The accumulated amount of [35S]-SLS in receptor cell fluid were counted to evaluate the efficacy of the Q18B gels over 24 hours. These test gels significantly decreased SLS absorption when compared with the unprotected skin control samples. The percent protection effect of three test gels against SLS percutaneous absorption was from 88%, 81%, and 65%, respectively.

Millieroux et al. (25) validated screening tests by utilizing two in vitro skin permeation models: split-thickness skin from pig ears and semipermeable silicone membranes disposed in Franz-type diffusion cells. The protective efficacy of three formulations, oil-in-water and water-in-oil emulsions, and perfluorinated compounds–based cream against the neurotoxic organophosphorus compounds (OP) was evaluated. Results indicated that the least effective formulations could be quickly identified by performing in vitro permeation tests with silicone membranes, and by evaluating interfacial interactions between formulations and OP. Among the tested formulations, the perfluorinated compounds–based cream could have a broader spectrum of efficacy than emulsions against OP and other toxic chemicals.

IN VIVO METHODS
Schwartz et al. (26) introduced an in vivo method to evaluate the efficacy of a vanishing cream against poison ivy extract utilizing visual erythema on human skin. The test cream was an effective prophylaxis against poison ivy dermatitis where compared with unprotected skin.

Lupulescu and Birmingham (27) observed the ultrastructural and relief changes of human epidermis following exposure to a protective gel and acetone and kerosene on humans. Unprotected skin produced cell damage and a disorganized pattern in the upper layers of epidermis. Protective agent prior to solvent exposure substantially reduced the ultrastructural and relief changes of epidermis cells.

Lachapelle et al. (3,28–31) utilized a guinea pig model to evaluate the protective value of BC and/or gels by laser Doppler flowmetry and histological assessment. The histopathological damage after 10 minutes of contact to toluene was mostly confined to the epidermis while the dermis was almost normal. The dermal blood flow changes were relatively high on the control site compared with the gel pretreated sites.

Frosch et al. (1,15,16,32,33) developed the repetitive irritation test (RIT) in the guinea pig and in humans to evaluate the efficacy of BC using bioengineering techniques. The cream pretreated and untreated test skin (guinea pigs or humans) were exposed daily to the irritants for two weeks. The resulting irritation was scored on a scale and assessed by biophysical techniques’ parameters. Some test creams suppressed irritation with all test parameters; some failed to show such an effect, and even exacerbated (16).

Zhai and Maibach (2) utilized an in vivo human model to measure the effectiveness of BC against dye indicator solutions: methylene blue in water and oil red O in ethanol, representative of model hydrophilic and lipophilic compounds. Solutions of 5% methylene blue and 5% oil red O were applied to untreated and BC pretreated skin with the aid of aluminum occlusive chambers for zero and four hours. At the end of the application time, the materials were removed, and consecutive skin surface biopsies (SSB) obtained. The amount of dye penetrating into each strip was determined by colorimetry. Two creams exhibited effectiveness, but one cream enhanced cumulative amount of dye.

Zhai et al. (5) introduced a facile approach to screening protectants in vivo in human subjects. Two acute irritants and one allergen were selected: SLS representative of irritant household and occupational CD, the combination of ammonium hydroxide (NH4OH) and urea to simulate diaper dermatitis, and Rhus to evaluate the effect of model protective materials. Test materials were spread over onto test area, massaged, allowed to dry for 30 minutes, and reapplied with another 30-minute drying period. The model irritants and allergen were applied with an occlusive patch for 24 hours. Inflammation was scored with an expanded 10-point scale at 72 hours post application. Most test materials statistically suppressed the SLS irritation and Rhus allergic reaction and not NH4OH and urea induced irritation.

Wigger-Alberti et al. (34) determined which areas of the hands are most likely to be skipped on self-application of BC by fluorescence technique at workplace. Results showed the application of BC was incomplete, especially on the dorsal aspects of the hands.

Draelos (35) conducted a randomized, double-blind, split-body study in 80 men, women and children (neonate) with the following dermatological conditions: household dermatitis, occupational hand dermatitis, latex glove irritant CD, diaper dermatitis, cutaneous wounds, and allergic CD. The subjects were given two identical jars (one jar containing petrolatum-based cream, and the other contained hydrogel-based barrier/repair cream) and were instructed to apply one cream to half of their bodies, while the other cream to the other half for four weeks. Results showed 62% of the subjects preferred hydrogel-based barrier/repair cream over the petrolatum-based cream (p < 0.005), as well as the investigator’s assessment (p < 0.000,01) in terms of the overall skin appearance.

McCormick et al. (36) performed a double-blind, randomized trial comparing a novel BC versus an oil-containing lotion in 54 health care workers for two months. Results showed that both creams substantially protected the health care workers against drying and chemical irritation, preventing skin breakdown and promoting more frequent handwashing.

The skin protection efficacy of dexpanthenol was investigated by Biro et al. (37) in a double-blind, randomized, placebo-controlled study design in 25 healthy volunteers. They compared a cream containing 5% dexpanthenol with its vehicle moisturizing base, and applied to the flexor forearms twice daily for 26 days—one arm treated by the test product, while the other treated with placebo. In days 15 to 25, 2% SLS were treated on both forearms. Measures of skin physiology included sebumetry, corneometry, pH values and clinical appearance (photographs). Results showed, though not significantly, a decreasing trend of the pH values and decrease in sebum content during SLS treatment but normalized when SLS was discontinued. Hydration of the stratum corneum remained stable throughout the study in the dexpanthenol group, while corneometry for the placebo group showed a significant (p < 0.05) decrease at the end of the SLS treatment on day 23. This study demonstrates the capability of dexpanthenol to protect skin from experimentally induced skin irritation.

Perrenaud et al. (38) conducted a double-blind cross-over study comparing a new registered BC containing 5% aluminum chlorhydrate as active ingredient with its vehicle in 21 apprentice hairdressers who are frequently exposed to repeated shampooing and hair care products for a period of two months.
The subjects were randomly assigned into two groups then each subject was given identical 50-g tubes at the onset of the study, after two weeks, and at the start of the second phase. The contents of the tubes were unknown to the investigators and subjects. The participants recorded their daily comments. Evaluation of the creams' efficacy included (i) clinical scores (dryness, redness, and breaks rated as 0 = none to 3 = maximum) assessed by the researchers; (ii) biometric measurements using evaporimeter, corneometer, and chromameter; and (iii) recording of subjective opinions. Result for clinical evaluation showed low scores—nearly everyone had a “0” or “1” score. Only corneometric values showed a significant difference, that is, the scores for the control group were significantly \(p < 0.01 \) higher than the test product.

De Paepe et al. (39) investigated the beneficial effects of a skin tolerance–tested moisturizing cream on the barrier function in experimentally elicited irritant and allergic CD in 24 white female volunteers. Skin compatibility was assessed in the raw cosmetic materials and the final test product were initially performed in a large population to verify that the test product was well tolerated. Irritant CD was elicited using 1.25% SLS patch tested for 24 hours on the volar forearms of 12 white female volunteers in two sites (one site for treatment with the test cream, while the other site left untreated). A third site was patch tested with filter paper soaked in pure water. Following patch removal, the forearms were washed, and application of 0.03 mL test cream was initiated the next day, twice daily for 14 consecutive days. There were significant \(p < 0.05 \) decreases in transepidermal water loss (TEWL) values of the treated site when compared to the untreated site on days 3, 8, and 15. Allergic CD was elicited using nickel-mediated contact allergy patch (CAP) test in another 12 white female volunteers with well-established histories of nickel (Ni) contact allergies. Two patches contained 0.3 mL of 5% nickel sulfate in petrolatum and a third patch contained 0.3 mL of physiological serum (0.9% NaCl) served as control. Patches were removed after 48 hours and test sites were cleaned with dry tissue, then 0.3 mL of the test cream was applied on the test sites 2× a day for four consecutive days. Results revealed that a significant \(p < 0.05 \) decrease in TEWL values of the treated site when compared with the untreated site on days 3, 8, 15.

Diepgen et al. (40) investigated six skin care products (Locobase Pro cream, Debba Wet, Taktosan, Pluctect Dual, Locobase fatty cream, and Kerodex 71) for their compatibility with normal and diseased skin, as well as their efficacy as protective skin barriers in 40 healthy volunteers in a double-blind study. The chamber scarification test (33) was used to compare the test products with known positive (aqueous SLS 0.5%) and negative (paraffin oil) controls and to rank the irritancy potential of products in 20 healthy volunteers. Approximately 0.1 mL of each product was applied in the scarified normal skin of their flexor forearms of the participants using Finn Chambers. Patches were removed after 23 hours (day 1) and read an hour later, and immediately before reapplication of the samples for days 2 and 3. Reactions were scored visually using a five-point scale (“0” = no reaction to “4” = confluent, severe redness with edema or bullae). Results revealed that out of the eight samples applied, Debba Wet had the highest sum of scores (“12”) in five subjects, while positive control only reached a maximum score of “10” in three subjects. Both Debba Wet and SLS 0.5% were considerably more irritating \(p < 0.0001 \) than the other test products. The ranking of the test products was as follows: Debba Wet (score average = 11) ≥ SLS 0.5% aqueous (score average = 7.4) ≥ Taktosan cream (score average = 3.7) ≥ Locobase fatty cream (score average = 3.3) ≥ Kerodex 71, Pluctect Dual, Locobase Pro cream, and paraffin oil (score average = 2.2–3.0). On the other hand, the repeated-exposure short-time occlusive irritation test (ROIT) was used to assess the efficacy of the six products and yellow Vaseline as protective skin barriers in another 20 healthy volunteers. ROIT involved multiple short application times using low concentration of irritants. Aqueous SLS 0.5% was used as the irritant and was patch tested using Large Finn Chambers on the volar forearms of the subjects. For each site, the following were applied: irritant alone, water alone, one was left blank, while the rest of the sites were first pretreated with the seven test creams 10 minutes prior to irritant application. The placing of the test products was changed from person to person according to a rotation system. The whole procedure was repeated every 3 to 3.5 hours for three consecutive days. Parameters utilized were TEWL (measured by Tewameter TM 210), erythema (measured by ChromaMeter CR 300), and clinical visual scoring (numerical scale: “0” = no reaction to “3” = pronounced erythema and edema, extensive scaling, possibly vesicles, bullae, pustules, and/or pronounced crusting). Final results for the comparison of delta TEWL values between the test areas and the untreated sites showed significantly \(p < 0.05 \) increased values for Vaseline, Taktosan, and Debba Wet. There was no significant different among the TEWL values for Locobase Pro cream, Pluctect Dual, Locobase fatty cream, and Kerodex 71 when compared with normal skin. The increase in TEWL values were not significant \(p > 0.05 \) between SLS-exposed sites and pretreated sites. Clinically, treatment with the SLS increased the visual scores. Likewise, Vaseline, Taktosan, and Debba Wet did not offer protection from skin irritation.

Modak et al. (41) demonstrated that the use of topical formulation with zinc gel delayed or prevented latex sensitivity in 22 volunteers known to have mild to moderate latex intolerance. Three cubic centiliter (cc) of both zinc gel formulation and placebo creams were applied to the subjects divided into four groups: group A (zinc gel formulation applied on the right hand and placebo cream on the left hand in 10 subjects who used powdered latex gloves); group B (no cream on the right hand and zinc gel formulation on the left hand in another 10 subjects who used powdered latex gloves); and group C (no cream on the right hand and zinc gel formulation on the left hand in 2 volunteers who used powder-free latex gloves). Latex gloves were then worn by the subjects until they perceived discomfort or until three to four hours that had passed if without symptoms. Investigators rated the subjects using numerical scale: “0” = no visible reaction to “3” = severe itching, redness, and papules all over the hand within 30 minutes. Results showed that zinc gel formulation protected 21 out of 22 volunteers from latex sensitivity. Only one subject had a score of “1” belonging to group A. Additionally, the investigators extracted latex proteins from the gloves, and treated with zinc gel formulation diluted in distilled water. Results revealed that zinc gel formulation-treated latex proteins decreased (mean = 0.28) as compared with the untreated ones (mean = 1.14), by ~74%. Lastly, zinc gel formulation was compared with three other creams and a control (no cream applied) to evaluate its barrier efficacy. Zinc gel formulation proved superior among the three creams.

Rosado et al. (42) utilized dynamic methods to assess the efficacy of a urea containing moisturizing cream to the lower}
Table 5.1 Brief Data of Recent Experiments of BC

<table>
<thead>
<tr>
<th>Models</th>
<th>Animals or humans</th>
<th>Irritants or allergens or penetrants</th>
<th>BC</th>
<th>Evaluations by</th>
<th>Efficacy</th>
<th>Authors and references</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td>In vivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human skin</td>
<td>Dyes (eosin, methylviolet, oil red O)</td>
<td>16 BC</td>
<td>Amount of dyes in the epidermis</td>
<td>Various percent protection effects.</td>
<td>Treffel et al. (22)</td>
<td></td>
</tr>
<tr>
<td>Human skin</td>
<td>Nickel-sensitive patients</td>
<td>Nickel disk</td>
<td>Ethylenediaminetetraacetate gels</td>
<td>Nickel content</td>
<td>Significantly reduced the amount of nickel in the epidermis in vitro, and significantly reduced positive reactions in vivo.</td>
<td>Fullerton and Menne (23)</td>
</tr>
<tr>
<td>Human skin</td>
<td>[35S]-SLS</td>
<td>3 Quaternium-18 bentonite gels</td>
<td>Amount of [35S]-SLS</td>
<td>Percent protection effect was 88%, 81% and 65%, respectively.</td>
<td>Zhai et al. (24)</td>
<td></td>
</tr>
<tr>
<td>Pig ears and semipermeable silicone membranes</td>
<td>Neurotoxic OP</td>
<td>3 creams</td>
<td>Cumulative amount of OP</td>
<td>The perfluorinated compounds-based cream have a broader spectrum of efficacy.</td>
<td>Millerioux et al. (25)</td>
<td></td>
</tr>
<tr>
<td>Guinea pigs</td>
<td>N-hexane, trichlorethylene, toluene</td>
<td>3 water-miscible creams</td>
<td>Morphological assessment</td>
<td>Limited protective effects.</td>
<td>Lachapelle et al. (31)</td>
<td></td>
</tr>
<tr>
<td>Guinea pigs and humans</td>
<td>SLS, sodium hydroxide, toluene, lactic acid</td>
<td>Several BC</td>
<td>Various bioengineering techniques</td>
<td>Some of them suppressed irritation, some failed.</td>
<td>Frosch et al. (1,15,32,33)</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>Dyes (methylene blue and oil red O)</td>
<td>3 BC</td>
<td>Amount of dye penetrating into strips</td>
<td>2 of them exhibited effectiveness, 1 enhanced cumulative amount of dye. Most of them suppressed the SLS irritation and Rhus allergic reaction, failed to NH\textsubscript{4}OH and urea irritation.</td>
<td>Zhai and Maibach (2)</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>SLS, ammonium hydroxide (NH\textsubscript{4}OH) and urea, Rhus</td>
<td>Several protectants</td>
<td>Clinical scores</td>
<td>Most of them suppressed the SLS irritation and Rhus allergic reaction, failed to NH\textsubscript{4}OH and urea irritation.</td>
<td>Zhai et al. (5)</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>Self-application of BC</td>
<td>An oil-in-water emulsion</td>
<td>Fluorescence technique</td>
<td>Self-application of BC was incomplete.</td>
<td>Wigger-Alberti et al. (34)</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>Skin with dermatitis</td>
<td>Hydrogel barrier/repair creams</td>
<td>Questionnaire</td>
<td>62% of the subjects’ and 75% of the investigators’ assessments favored the BC.</td>
<td>Draeolos (35)</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>Antiseptics, gloves</td>
<td>Novel BC and cream with oil-containing lotion</td>
<td>Clinical scores</td>
<td>Both creams offered protection.</td>
<td>McCormick et al. (36)</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>SLS on days 15–25</td>
<td>5% dexamethasone</td>
<td>Various bioengineering techniques and photography</td>
<td>Capable to protect skin in experimentally elicited irritation.</td>
<td>Biro et al. (37)</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>Products</td>
<td>Application</td>
<td>Methods</td>
<td>Findings</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>Shampoos and other hair care products</td>
<td>5% aluminum chlorhydrate</td>
<td>Clinical scores, bioengineering techniques, subjects’ personal assessment</td>
<td>Very little difference between BC and its vehicle.</td>
<td>Perrenoud et al. (38)</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>SLS and nickel</td>
<td>Skin tolerance–tested moisturizing cream</td>
<td>TEWL</td>
<td>Significant decrease in TEWL values of treated sites.</td>
<td>De Paepe et al. (39)</td>
<td></td>
</tr>
<tr>
<td>Ears of the domestic white pigs</td>
<td>VX chemical warfare</td>
<td>AG-7 (70% w/w Fomblin™ HC/R plus 30% w/w lubricant grade polytetrafluoroethylene)</td>
<td>Acetylcholinesterase, pupil diameter</td>
<td>Treated groups survived the 3-hr exposure; Pretreatment of BC lowered the amount of VX penetration.</td>
<td>Chilcott et al. (12)</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>SLS</td>
<td>6 skin care products</td>
<td>Chamber scarification test and repeated-exposure short-time occlusive irritation test</td>
<td>Treated groups survived the 3-hr exposure; Pretreatment of BC lowered the amount of VX penetration.</td>
<td>Diepgen et al. (40)</td>
<td></td>
</tr>
<tr>
<td>Dissolved latex proteins</td>
<td>Humans</td>
<td>Latex gloves</td>
<td>Topical formulation with zinc</td>
<td>Protection of over 95% of subjects; decreased dissolved latex proteins by ~74%.</td>
<td>Modak et al. (41)</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>Severe dry skin</td>
<td>A urea containing cream</td>
<td>Plastic occlusion stress test</td>
<td>BC improved the water dynamic balance and skin barrier.</td>
<td>Rosado et al. (42)</td>
<td></td>
</tr>
<tr>
<td>Pig skin</td>
<td>Humans</td>
<td>Patent Blue V</td>
<td>Quantify stratum corneum penetration; and comparison of 3 BC for efficacy</td>
<td>Penetration behavior of Patent Blue V</td>
<td>Higher concentrations of the penetrant yielded excess amount recovered, and Vaseline and beeswax are effective BC.</td>
<td>Teichmann et al. (43)</td>
</tr>
</tbody>
</table>

Abbreviations: BC, barrier creams; SLS, sodium lauryl sulfate; OP, organophosphorus compounds; TEWL, transepidermal water loss.
leg of 12 volunteers with severe dry skin. After two weeks of application with test BC, a plastic occlusion stress test (POST) was performed in the treated and control untreated site and a mathematical model was adjusted to the resulting desorption curves. Results indicate that, after treatment of the skin with the cream for two weeks, statistically different kinetic parameters are obtained in the treated site, which suggests an improvement in the water dynamic balance and skin barrier. They concluded that the method has enough sensitivity to assess in vivo the effect of moisturizers on human skin, and also that this evaluation can be performed in a shorter period than that required by the regression method.

IN VITRO AND IN VIVO METHODS

Teichmann et al. (43) investigated the reservoir and barrier functions of the skin in two study designs because the former function is dependent on the latter function. Study design A was carried out in six healthy volunteers according to the method described by Teichman et al. (44) and to a pig skin, to quantify stratum corneum penetration. Patent Blue V \((C_9H_5CaN_4O_{14}S_4)\) in water (the penetrant) was applied to the human skin in increasing amounts—10 and 40 \(\mu g/cm^2\) of the 0.5% concentration, and 40 \(\mu g/cm^2\) of the 2% concentration. After one hour, substances were wiped to avoid occlusion, and then tape stripping was performed on the fifth hour. Results for the 10 \(\mu g/cm^2\) of the 0.5% concentration revealed the amount of stratum corneum extracted were 5.1 \pm 1.25 \(\mu g/cm^2\)—no penetrant was recovered, that is, no excess amount developed. However, after the applications of 40 \(\mu g/cm^2\) of the previous concentration and the 2% concentration, \((21.5 \pm 1.27.7 \pm 1.5 \mu g/cm^2\) of extracted stratum corneum, respectively), excess amounts of the penetrant were recovered \((6.7 \pm 2.8 \text{ and } 27.7 \pm 1.5 \mu g/cm^2, \text{ respectively})\). The same procedure was performed on the porcine skin to obtain a histological diagnosis and showed that a large amount of Patent Blue V was located on the skin surface and the upper parts of the stratum corneum, and greater amounts were also found in the furrows. Study B was performed in another six healthy volunteers and investigated three BCs (commercial BC, beeswax, Vaseline) using the penetration behavior of Patent Blue V in water in different BC-pretreated skin, and one untreated site by tape stripping. Results revealed that the commercial BC did not demonstrate barrier function—similar to the untreated site \((p > 0.05)\); while beeswax and Vaseline were significant \((p < 0.05)\) in their efficacy of barrier function.

Chilcott et al. (12) conducted an in vivo and in vitro study evaluating the efficacy of a BC (70% w/w Fomblin™ HC/R and 30% w/w lubricant grade polytetrafluoroethylene) versus chemical warfare agent in domestic white pigs. In the vivo study involved 18 pigs prepared as previously described (13) and divided into three groups: control group (no agent, no BC), positive control group (with agent, no BC) and pretreated group (application of agent 15 minutes post application of the BC). Where appropriate, 40 \(\mu L\) of the BC and \(^3\)C-VX \((\sim 6\text{-hour } 2LD_{50})\) were applied over the inner ear of the animals. Indicators of mortality included a decrease in serum acetylcholinesterase (AChE) and a large pupil diameter. Animals in the control and BC-treated groups survived the three-hour exposure period, while five out of the six animals in the positive control group died after a mean time of 65 \pm 13 minutes. Correspondingly, there was a significant \((p < 0.05)\) decline in serum AChE while there was no significant \((p > 0.05)\) change in pupil diameter. On the other hand, the in vitro study involved the contralateral (unexposed) ears of the post mortem pigs from the in vivo study. Twelve pig skins were placed in Franz-type glass diffusion cells filled with PBS (phosphate buffered saline) receptor chamber fluid. Twenty-five point four microliters \((25.4 \mu L)\) of the BC was applied onto the skin using a 25-\(\mu L\) positive displacement pipette, and was spread using a piston from a 1-mL syringe as previously described (13) to give a nominal thickness of 0.1 mm. Each diffusion cell was subjected to the same decontamination procedure similar to the in vivo study. Pretreatment with the BC significantly \((p < 0.05)\) decreased skin surface spreading of \(^3\)C-VX and lowered the total amount penetrated, similar to the in vivo study results. On the other hand, the three dose parameters (unabsorbed, skin, receptor/systemic) were significantly \((p < 0.05)\) different except for one parameter (total amount absorbed) between the two systems.

Recent BC experiments are summarized in Table 5.1.

CONCLUSIONS

Some BC reduce CD under experimental conditions. But, inappropriate BC application may enhance irritation rather than benefit. To achieve the optimal protective effects, BC should be used with careful consideration based on a specific exposure conditions; also, the proper use of BC should be instructed.

In vitro methods are simple, rapid, and safe, and are recommended in screening procedure for BC candidates. With radiolabeled methods, we may determine the accurate protective and penetration results even in the lower levels of chemicals because of the sensitivity of radiolabeled counting when BC are to be evaluated. Animal experiments may be used to generate kinetic data because of a closer similarity between humans and some animals (pigs and monkeys, etc.) in percutaneous absorption and penetration for some compounds. But no one animal, with its complex anatomy and biology, will simulate the penetration in humans for all compounds. Therefore, the best estimate of human percutaneous absorption is determined by in vivo studies in humans. The histological assessments may define what layers of skin are damaged or protected, and may provide the insight mechanism of BC. Noninvasive bioengineering techniques may provide accurate, highly reproducible, and objective observations in quantifying the inflammation response to various irritants and allergens when BC are to be evaluated that could assess subtle differences to supplement traditional clinical studies.

To validate these models, well controlled field trials are required to define the relationship of the model to the occupational setting. Finally, the clinical efficacy of BC should be assessed in the workplace rather than in experimental circumstance. A recent review of evaluating the efficacy of BC provides additional insights (45).

REFERENCES

4. Zhai H, Maibach HI. Percutaneous penetration (Dermatopharmacokinetics) in evaluating barrier creams. In: Elsner P, Lachapelle...
SKIN BARRIER CREAM EFFICACY: EVIDENCE BASED

INTRODUCTION

Manufacturers of consumer products consistently look for new ways in which their products may provide benefits to the consumer. A growing trend for absorbent consumer products is to incorporate lotions and emollients on the surface to improve overall consumer comfort during product use. There are a number of examples of such products currently on the market. Facial tissues impregnated with lotion have been shown to facilitate the healing of redness and dryness that may occur to the area around the nose as a result of repeated wiping when suffering from a cold or allergy (1). Benefits of topical administration of skin protectants from baby diaper topsheets clinically reduced skin erythema and skin barrier damage in infants (2). Petrolatum emollient impregnated in diapers reduced skin surface roughness, skin erythema and diaper dermatitis compared with identical diapers without emollient (3,4). A combined zinc oxide/petrolatum (ZnO/Pet) formulation was demonstrated to actually protect skin from damage when subsequently challenged with a model irritant (0.5% sodium lauryl sulfate) under 24-hour occlusive patch (5). The protective effects of this technology also provide advantages in feminine protection products. Preliminary clinical studies in nonmenstruating women showed that the ZnO/Pet lotion effectively transferred to vulvar skin during pad wear in a dose and time-dependent manner. The safety and efficacy of the emollient-impregnated pads was subsequently confirmed in clinical studies (6).

Lotion transfer is primarily a surface phenomenon. Molecules of lotion on the surface of the product transfer to the surface of the skin. Once on the skin surface, the lotion acts as a barrier to moisture loss and provides lubrication (7). It follows that, for lotion technologies to provide benefits for absorbent products, the lotion must first be able to transfer to the skin surface. While this point may seem obvious, it provides a unique challenge when dealing with absorbent products. After all, the main function of the product is to absorb material, not release it to the skin. A reliable means to measure the relative quantities of various lotions which transfer from absorbent products, and the potential effects of other product characteristics, is key in the development of lotion-containing products that will provide skin benefits.

We have developed a modification of the behind-the-knee (BTK) protocol to evaluate lotion transfer from emollient-coated menstrual pads. The BTK protocol using the popliteal fossa as a test site was originally developed to evaluate both the inherent chemical irritation, and the potential for mechanical irritation of substrates and products that come into prolonged or repeated contact with the skin (8). However, we have found that this method can effectively measure the amount of lotion formulations that transfer to the skin with greater reliability than measurements conducted in the course of clinical in-use studies (9). In a series of studies, we examined the influence of various aspects of menstrual pad construction and chemical composition on the transfer of lotion to the skin.

It is important to note that this method measures transfer of lotion from the menstrual pads, and is capable of detecting small differences in the amount of lotion transferred. This model is not a measure of efficacy. In fact, in our experience, consumers do not notice small differences in the amount of lotion transferred, nor do we see differences in efficacy with small changes in the amount transferred. However, when making decisions about improvements or other changes to the product which may involve considerable expense and resources, having a sensitive measure of lotion transfer is invaluable in guiding the product development process toward the most cost-effective efforts.

METHODS

Both the BTK and clinical in-use protocols were conducted in accordance with the Declaration of Helsinki, and were reviewed and accepted by the Institutional Review Board of the research facility (10). All subjects reviewed and signed an informed consent prior to the study. Subjects were excluded from participation in the study if they had a history of sensitivity to skin tapes, bandages or adhesives, if they had any condition in the test area which would prevent the collection tapes from adhering to the skin (i.e., piercings, wounds, etc.), or if they were currently menstruating.

BTK Protocol

The BTK protocol has been described previously (7,9). Panels of healthy adults were enrolled for participation. Subjects were instructed to refrain from using lotions, creams, or any other skin preparation on the area of the skin to which product was to be applied. Subjects with preexisting irritation or discomfort in the area behind the knee or leg varicosities were excluded. To absorb lotion transfer, two sections of waterproof, thin film dressing tape (Tegaderm™ tape, 3M™. St. Paul, Minnesota, U.S.) were applied on the popliteal fossa of each leg, as in the examples shown in Figure 6.1. Test pad samples were placed horizontally and held in place on the popliteal fossa by an elastic knee band of the appropriate size. Samples were placed randomly on the right or left test sites. Following application of the pads, subjects left the test facility and participated in normal daily activities. After three hours, the test sample was removed, and one piece of collection tape was removed from each test site for analysis. A fresh test product was applied for...
three more hours (i.e., a total of six hours of application), following which, the second collection tape was removed and analyzed.

Clinical In-Use Protocol

The clinical in-use protocol has also been described previously (9). Healthy, adult, nonmenstruating female subjects, aged 18 to 55, were enrolled. At least 24 hours prior to tape application and pad wear, subjects were required to discontinue the use of all lotions, ointments, creams, powders, soaps/body washes, feminine wipes or toilet paper with lotion in the vulvar area. The subject was asked not to bathe or shower during the 24-hour periods when the collections tapes were in place.

The subjects were randomized into three groups of 12 each, and each group was assigned to wear two of the six test products (i.e., feminine protection pads with lotion) in random order. A crossover design with a 24-hour washout period was used for the pairwise comparisons so that each subject served as her own control. Consequently, the study had two phases, each involving 24 hours of pad wear time with one of the two comparison products to which the subject was assigned.

Immediately prior to the start of phase one, pubic hair present on the site of application was clipped by the study technician. Four sections (22 mm × 44 mm) of the thin film dressing tape were applied to each side of the labia majora (two per side) oriented parallel to the vaginal opening (Fig. 6.1). Panties and test pads were dispensed, and the subjects wore the pads for three hours. During this time, subjects participated in normal activities of daily living. After three hours of wear, two of the four tape sections (in random order) were removed for determining lotion transfer. An activity log for the three hour wear time was completed. After removal of two sections of collection tape, the same fresh test product was reapplied as needed by the test subject for the remainder of the total 24-hour test period (approximately 21 additional hours of wear time). Subjects were given enough test products so that they could change pads at approximately three- to five-hour intervals and once after overnight wear during the test period. The subjects kept a test product use log to record the times when each test product was removed, and the total number of pads used. After the pads had been worn for a total of 24 hours, subjects returned to the test facility, and the two remaining sections of collection tape were removed, to complete phase one. Following the 24-hour washout period, the entire process was repeated for phase two using a different product.

Test Products

Menstrual pads are constructed of a surface layer (topsheet), an absorbent core, and a moisture-impermeable backing (11–13). The topsheets are made from nonwoven polyethylene-based or polypropylene-based copolymeric fabrics, perforated polyethylene films, or some combination of these. The absorbent core may consist of cellulose fluff pulp, or absorbent gel materials (AGM) designed to hold larger volumes of fluid. In addition, some menstrual pads contain emollients on the surface to reduce skin irritation during use. These are applied in stripes on the topsheet that may vary in number, position and size.

For these studies, two series of products were tested. Key characteristics are provided in Table 6.1. In the first series (product codes 1 through 7), identically constructed menstrual pads were used, with the same absorbent core, topsheet, lotion formulation and configuration of the stripes. The only difference was the amount of lotion applied to the surface of the pad. The second series was designed to test the potential influence of differences in pad construction, that is, the type of absorbent core and the configuration of the lotion applied to the pad. This series was also evaluated in a clinical in-use study for comparison.

Lotion Measurement

Lotion was quantified by gas chromatography with flame ionization detection. The thin film dressing tapes containing lotion from either the BTK or clinical in-use wear protocols were
Influence of the Absorbent Core on Lotion Transfer

The two basic options for absorbent cores have very different chemical and absorbent characteristics. Cellulose material...
absorbs by capillary action whereas AGM absorbs by ionic action. If the lotion is composed of nonpolar components, AGM will have a lower affinity for the lotion and, therefore, release it more easily. Thus, the type of absorbent core would be expected to influence the amount of lotion that will transfer from the product.

A second test product series was constructed to compare a number of product differences, including a comparison of the cellulose and AGM cores (Table 6.1). Because of the superior absorbent qualities of the AGM, the three AGM pads were only 2 mm thick, whereas those with cellulose cores ranged from 7 to 9 mm thick. The lotion concentrations and configuration differed. These products were tested in both the BTK and a clinical in-use study to measure lotion transfer.

In the BTK, pads with an AGM core transferred more lotion than those with the more traditional cellulose absorbent core. Figure 6.3A shows data from both the three- and six-hour collection. As shown, even though the cellulose pads had more lotion applied to the surface, they tended to transfer less lotion to the collection tapes than the AGM pads.

The clinical in-use study results showed a similar trend, although the data were less consistent (Fig. 6.3B). No particular trend was obvious at the three-hour collection point. However, after 24-hour exposure, the AGM pads released similar amounts of lotion compared with the cellulose pad, even though the stating amounts on the AGM pads were greatly reduced compared with the cellulose pads.

Influence of Pad Thickness on Lotion Transfer

The most likely explanation for the results shown in Figure 6.3 are the chemical differences between the AGM and cellulose materials. However, an alternative possibility is that the AGM pads transfer more lotion because they are thinner. If this were the case, and thinner pads transfer lotion better, one would expect that the intermediate pads (i.e., pad E, 6 mm thick, and pad S, 7 mm thick) would transfer more lotion than the thickest pad (pad Q, 9 mm). This was not the case, as shown in the Figure 6.4. Among the cellulose core products (S, Q, and E), the one with the most lotion on the pad to start (pad S with 63.7 mg lotion and a thickness of 7 mm) transferred directionally more lotion to the skin in both the BTK and clinical, although the differences were not statistically significant in either protocol. The thicker cellulose pad Q (9 mm) and the thinner cellulose pad E (6 mm) both transferred an amount that was directionally less than pad S, and roughly equivalent to each other.

Influence of Lotion Configuration on Lotion Transfer

The amount of lotion transferred did not seem to be dependent on the configuration of the lotion on the pad in the series of products tested. These products had varying numbers of 0.5-cm-wide stripes, that is, from seven to four, yet the amount of lotion transferred did not vary directionally with the number of stripes for the group of products as a whole, nor when the cellulose (Q, E, and S) and AGM (C, B, and K) products were considered separately (Fig. 6.5).

Lotion Transfer Efficiency BTK Protocol Vs. Clinical in-Use Protocol

The efficiency of lotion transfer for both test protocols was determined as a percentage of the entire lotion reservoir available for transfer (amount of lotion on pad in μg/cm²). These results are presented in Figure 6.6. With the cellulose pads, both methods resulted in the transfer of 3.0% to 5.8% of the total amount of lotion available on the pad (per unit area) to the collection tapes. For the AGM pads, the transferred ranged from 2.2% to 7.7%.

The transfer efficiency in the BTK protocol was higher than that of the clinical in-use protocol for all three AGM pads, and for the cellulose pad S. In fact, for pad C, the transfer was
more than double in the BTK (7.0% compared with 3.3% in the clinical). For two cellulose pads, the transfer efficiency was similar for the two protocols (E and Q). Similar patterns were observed for the transfer efficiency at 6 hours for the BTK and 24 hours for the clinical (data not shown).

Comparison of the Two Test Protocols:

BTK Vs. Clinical

When the two test methods were compared, the BTK seemed to yield more consistent results when used as a means of determining the amount of lotion that transfers from feminine protection pads. As shown in Table 6.2, the lotion transfer from the second product application (six-hour time point) was approximately double the transfer from the first application (Table 6.2). This would be expected since the six hours of application used two fresh pads. In the clinical in-use protocol, the amount of lotion transferred was inconsistent (Table 6.3).

The study measures only one parameter: transfer to an impermeable tape on the surface of the skin. It does not measure parts of the process that may reduce the apparent concentration of lotion on the surface, such as absorption of the lotion into the skin, or any transport or metabolism of lotion components from the epidermis or dermis. Obviously, some external factor, such as sweating, must have had an effect on the amount of lotion either transferred to the tape, or the amount remaining on the tape at the three-hour time point in the clinical study. Supporting this notion is the observation that with some individual panelists, the amount of lotion...
transferred after 24 hours was actually less than that transferred after 3 hours (data not shown).

Of course, vulvar skin differs from the stratified squamous epithelium that would be found behind the knee (14). However, in this study, lotion transfer is to a tape applied to the surface of the skin, not to the skin itself. Therefore, physiological and/or biochemical differences between the skin of the vulva and the popliteal fossa cannot account for the different results observed with the two test methods. In both experiments, transfer of the lotion would depend only on the characteristics of the product itself, that is, the lotion formulation, the amount and configuration of the lotion, the topsheet, the thickness of the pad and the absorbent core. Therefore, the extent of transfer should be additive for each product. In the clinical protocol, the amount of lotion transferred was not additive. Panelists used a total of 6.4 to 6.8 pads (sample applications) in each of the six test groups, but the increase in lotion transferred was 3.4 to 4.6 fold (Table 6.3).

As summarized in Table 6.4, the results of the BTK produced the same rank order of test products in terms of lotion transferred at the three- and six-hour time points. In most cases, the differences were significant. In contrast, the clinical in-use protocol produced a different rank order in the transfer amount, depending on the order of testing (i.e., phase 1 vs. phase 2), indicating the washout period was not effective. The 24-hour time point produced yet another rank order.
The clinical protocol is subject to a number of variables that do not impact the BTK protocol (reviewed in Table 6.5). First, as already mentioned, the number of pads used differs for different panelists, although this did not seem to account for any trends in the data. Differences in daily activities may also influence transfer amounts. In addition, even though the panelists all wear the identical type of panties issued by the test facility, the amount of pressure on the test site would vary depending on the fit of the panties (tight or loose) and the clothing preferences of the panelists (i.e., pantyhose, tight jeans, or skirts). Further, the pressure would change throughout the 24-hour period as the panelist changes from regular clothing to looser-fitting sleepwear. The protocol used in the BTK would result in higher pressure on the test site, and the degree of pressure would be more consistent among different panelists, and for individual panelists throughout the course of the study. Finally, the clinical protocol design results in a high potential for removal of transferred lotion from the tapes during bathroom visits and other activities.

Table 6.2 Results of Lotion Transfer Analysis Using the BTK Test Protocol

<table>
<thead>
<tr>
<th>Product code</th>
<th>Absorbent</th>
<th>3 hr of application (µg/cm²)</th>
<th>6 hr of application (µg/cm²)</th>
<th>Total sample applications</th>
<th>Fold increase (6 vs. 3 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SE</td>
<td>Mean ± SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>AGM</td>
<td>85.3 ± 5.2</td>
<td>185.8 ± 8.0</td>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>B</td>
<td>AGM</td>
<td>80.1 ± 6.4</td>
<td>170.0 ± 7.6</td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>S</td>
<td>Cellulose</td>
<td>78.8 ± 6.2</td>
<td>149.9 ± 11.6</td>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>Q</td>
<td>Cellulose</td>
<td>62.4 ± 4.4</td>
<td>111.5 ± 7.3</td>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td>E</td>
<td>Cellulose</td>
<td>52.6 ± 3.4</td>
<td>105.8 ± 5.6</td>
<td>2</td>
<td>2.0</td>
</tr>
<tr>
<td>K</td>
<td>AGM</td>
<td>48.2 ± 3.3</td>
<td>105.6 ± 5.2</td>
<td>2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Note: The BTK protocol was conducted as described in the materials and methods. Three panels with 18 subjects each were used to compare lotion transfer from pairs of products (E vs. K, B vs. C, and Q vs. S). Two sections of tape were applied on the popliteal fossa of each leg, with test pads were placed horizontally and held in place by an elastic knee band. After three hours, one piece of tape was removed from each test site for analysis and fresh test product was applied for three more hours (i.e., a total of six hours of application). Results are given as µg lotion per unit area of tape (µg/cm²).

Abbreviations: AGM, absorbent gel materials; BTK, behind-the-knee; SE, standard error.
Table 6.3 Results of Lotion Transfer Analysis Using the Clinical in-Use Test Protocol

<table>
<thead>
<tr>
<th>Product code</th>
<th>Absorbent</th>
<th>3 hr of application, phase 1 (μg/cm²) Mean ± SE</th>
<th>3 hr of application, phase 2 (μg/cm²) Mean ± SE</th>
<th>24 hr of application, phases 1 and 2 (μg/cm²) Mean ± SE</th>
<th>Total sample applications</th>
<th>Fold increase (24 vs. 3 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (Cellulose)</td>
<td></td>
<td>64.5 ± 10.3</td>
<td>111.3 ± 11.6</td>
<td>279.7 ± 26.9</td>
<td>6.6</td>
<td>4.4</td>
</tr>
<tr>
<td>C (AGM)</td>
<td></td>
<td>40.5 ± 19.3</td>
<td>90.7 ± 20.3</td>
<td>260.5 ± 53.0</td>
<td>6.5</td>
<td>4.2</td>
</tr>
<tr>
<td>G (Cellulose)</td>
<td></td>
<td>61.2 ± 4.5</td>
<td>53.3 ± 3.4</td>
<td>246.8 ± 22.1</td>
<td>6.4</td>
<td>4.0</td>
</tr>
<tr>
<td>E (Cellulose)</td>
<td></td>
<td>53.7 ± 10.8</td>
<td>62.0 ± 12.6</td>
<td>235.0 ± 29.3</td>
<td>6.4</td>
<td>4.0</td>
</tr>
<tr>
<td>B (AGM)</td>
<td></td>
<td>62.3 ± 15.2</td>
<td>56.0 ± 10.2</td>
<td>204.9 ± 38.2</td>
<td>6.8</td>
<td>3.4</td>
</tr>
<tr>
<td>K (AGM)</td>
<td></td>
<td>29.7 ± 10.1</td>
<td>59.2 ± 10.4</td>
<td>202.8 ± 33.2</td>
<td>6.4</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Note: The clinical in-use protocol was conducted as described in the materials and methods. Each product was tested on 12 subjects in a crossover design. Four sections of tape were applied to each side of the labia majora, and test pads were worn for three hours. After three hours two of the four tape sections were removed for determination of lotion transfer. The subjects applied the same test product for the remainder of the total 24-hour test period (approximately 21 hours). Subjects returned to the test facility, and the two remaining sections of tape were removed for analysis, thus completing test phase 1. After a "washout" period of 24 hours, the subjects repeated the test with a different product (phase 2). Results are given as μg lotion per unit area of tape (μg/cm²).

Table 6.4 Rank Order of Lotion Transfer Resulting from Evaluation by the BTK and Clinical Protocols

<table>
<thead>
<tr>
<th>BTK protocol</th>
<th>3 hr</th>
<th>C > B ≥ S > Q > E > K</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 hr</td>
<td></td>
<td>C > B > S > Q > E > K</td>
</tr>
<tr>
<td>Clinical protocol</td>
<td>3 hr (phase 1)</td>
<td>S > B ≥ Q ≥ E ≥ C ≥ K</td>
</tr>
<tr>
<td></td>
<td>3 hr (phase 2)</td>
<td>S > C ≥ E ≥ K ≥ B ≥ Q</td>
</tr>
<tr>
<td></td>
<td>24 hr (phases 1 and 2)</td>
<td>S > C ≥ Q ≥ E ≥ B ≥ K</td>
</tr>
</tbody>
</table>

Note: The data presented in Tables 6.2 and 6.3 are summarized as a rank order of the amount of lotion transferred (from highest to lowest).

> indicates a significant difference.

≥ indicates a directional difference that did not reach significance.

Abbreviation: BTK, behind-the-knee.

Table 6.5 Characteristics of the Two Test Protocols

<table>
<thead>
<tr>
<th>Behind-the-knee</th>
<th>Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two applications for 3 hr each. Conducting different activities during the test would have minimal effects due to the method of product application. Application pressure of the sample is similar for all panelists because of the use of elastic knee braces in application. Application pressure of the sample for each panelist is consistent throughout the duration of the test. There is no potential for accidental removal of the transferred lotion by the panelists.</td>
<td>Varying number of applications over the 24-hr test period. The effects of different activities on lotion transfer are unknown. Application pressure of the sample will vary among panelists depending on the fit of panties and clothing choices. Application pressure of the sample for each panelist throughout the test as the panelists change clothing, particularly as the panelists dress in loose-fitting sleepwear. There is potential for accidental removal of the transferred lotion during bathroom visits and other activities.</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Both the BTK and the clinical protocol provide a means of evaluating the transfer of lotion formulations from feminine protection pads. However, this adaptation of the BTK test method provides more consistent results at a fraction of the cost.

REFERENCES

2. Baldwin S, Ollo MR, Haines SL, et al. Skin benefits from continuous topical administration of a zinc oxide/petrolatum...

Nail penetration

Xiaoying Hui, Ronald C. Wester, and Howard I. Maibach

INTRODUCTION

The human nail, equivalent to claws and hooves in other mammals, acts as a protective covering for the delicate tips of the fingers and toes against trauma, enhances the sensation of fine touch, and enables one to retrieve and manipulate objects. The nail is also used for scratching and grooming, as a cosmetic organ, and, by some, to communicate social status. The appearance of the nail plate is a thin, hard, yet slightly elastic, translucent, convex structure (1).

Disorders of the nail resulting from conditions such as infections or physical-chemical damage can result in painful and debilitating states, and often change the nail plate’s appearance. Onychomycosis, the most common nail plate disorder (2), thickens the nail, makes it white and opaque, and may cause pain while wearing shoes. Onychomycosis is a fungal infection—usually caused by the species Epidermophyton, Microsporum and Trichophyton—and affects 14% of the human population. Aging increases the incidence significantly, with the rate estimated at 48% in persons 70 years of age (3).

To cure the infection, the patient is obliged to take oral systemic medication for an extended period, generally months, or undergo surgical nail removal (4). These treatments have adverse effects such as pain (surgery) and systemic side effects (oral treatment). Thus, topical therapy is a desirable approach, but has met with limited success. Topical therapy is limited by the infection’s deep-seated nature and by the ineffective penetration of the deep nail plate by topically applied drugs (5,6).

How can topical drugs be delivered effectively into the nail? And, perhaps as importantly, how can the drug content in the human nail be assessed to validate nail drug delivery? Our challenge was to develop a system to assay drug content in the inner nail bed in which infection often resides. We developed a micrometer-controlled drilling instrument that removes and collects from the inner nail bed, a powder sample from which—by mass balance recovery—we assay the amount of penetrated radiolabeled drug. With this procedure, the effectiveness of topical nail drug delivery can be assessed (7,8). This paper reviews the results of studies undertaken with drilling system.

REVIEW OF NAIL PHYSICAL AND CHEMICAL PROPERTIES THAT AFFECT TOPICAL PENETRATION

The human nail anatomy consists of nail plate, nail bed, and nail matrix. The nail plate consists of three layers: the dorsal and intermediate layers derived from the matrix, and the ventral layer from the nail bed (9,10). The upper (dorsal) layer is only a few cell layers thick and consists of hard keratin. It constitutes a main barrier to drug diffusion into and through the nail plate. The intermediate layer constitutes three quarters of the whole nail thickness and consists of soft keratin. Below the intermediate layer is the ventral layer of soft keratin—a few cells thick—that connects to the underlying nail bed, in which many pathological changes occur. Thus, in the treatment of nail diseases, achieving an effective drug concentration in the ventral nail plate is of great importance. The nail bed consists of noncornified soft tissue under the nail plate. It is highly vascularized. Beneath the nail bed is the nail matrix, which is a heavily vascularized thick layer of highly proliferative epithelial tissue that forms the nail plate.

The human nail is approximately 100 times thicker than the stratum corneum, and both are rich in keratin. However, they exhibit some physical and chemical differences (11,12). The nail possesses high sulphur content (cystine) in its hard keratin domain, whereas the stratum corneum does not. The total lipid content of the nail ranges from 0.1% to 1%, as opposed to approximately 10% for the stratum corneum. This suggests that the role of the lipid pathway in the nail plate is probably of much less importance than that in the stratum corneum. The human nail acts like a hydrophilic gel membrane, while the stratum corneum acts like a lipophilic partition membrane.

Under average conditions, the nail contains 7% to 12% water, in comparison to 25% in the stratum corneum. At 100% relative humidity, the maximal water content in the nail approximate 25%, in sharp contrast to the stratum corneum that can increase its water content to 200% to 300%. The rate of chemical penetration into the human nail depends on its water solubility (11) and its molecular size (12).

Topical therapy for onychomycosis has been largely ineffective, and this failure may be due to minimal drug penetration into the nail plate (5). The nail’s unique properties, particularly its thickness and relatively compact construction, make it a formidable barrier to the entry of topically applied agents (6). The concentration of an applied drug across the nail dropped about 1000-fold from the outer to the inner surface (13). As a result, the drug concentration presumably had not reached a therapeutically effective level in the inner ventral layer. The existing clinical evidence suggests that a key to successful treatment of onychomycosis by a topical antifungal product lies in effectively overcoming the nail barrier. Currently available topical treatments have limited effectiveness, possibly because they cannot sufficiently penetrate the nail plate to transport a therapeutically sufficient quantity of antifungal drug to the target sites (14) and eradicate the infection.

To achieve an effective chemical concentration into the human nail plate, penetration enhancers that tend to promote diffusion through the skin’s horny layer have been studied. However, these studies were conducted on a few limited nail penetration models that may not provide an intimate
contact between the receptor compartment and the nail surface, and the nail plate can be easily hydrated beyond normal levels (6,11,12,14,15). Moreover, nail samples prepared with scalpel or sand paper are time consuming and may not be accurate to represent the three-nail compartment structure (10,16).

METHODOLOGY

Chemicals/Formulations

[14C]-Urea (specific activity 55 mCi/mmol, 99% purity), [7,14C]-salicylic acid (specific activity 55 mCi/mmol, 99% purity), and [3H(G)]-ketoconazole (specific activity 5 Ci/mmol, 99% purity) were purchased from American Radiolabeled Chemicals, Inc. (ARC, St. Louis, Missouri, U.S.). [14C]-AN2690 was synthesized by Amersham Biosciences UK Ltd. (Buckinghamshire, U.K.). [14C]-Econazole [chlorophenyl benzyl-15C]-tio-ecnazole (chemical name: 1-[2-[4-chlorophenyl]-methoxy]-2-(2,4-dichlorophenyl)-ethyl]-1H-imidazole), [14C]-ciclopirox (pyrindine-6(4C)-ciclopirox) was obtained from Perkin-Elmer Life Sciences, Inc. (Boston, Massachusetts, U.S.). [14C]-Terbinafine free base and [14C]-terbinafine hydroxyl malate were obtained from Novartis Pharma AG (Basel, Switzerland). The radiochemical purities and specific activities of all chemicals were >98% and >99%, respectively. Penlac® nail lacquer (ciclopirox 8% topical solution) was manufactured by Dermik (Berklyn, Pennsylvania, U.S.). 2-n-Nonyl-1,3-dioxolane (SEPA), a penetration enhancer, and all necessary lacquer components were provided by MacroChem Corp. (Lexington, Massachusetts, U.S.).

Formulations

Nails have a high content of disulfide bonds (10.6% vs. 1.2% for human skin), which make the nails both strong and impene-
trable. To deliver a therapeutically sufficient quantity of an antifungal drug to fungally infected sites, such as nail plate, bed, and matrix, a suitable carrier is needed to enhance drug penetration through the nail barrier. In the case of urea, ketoconazole and salicylic acid, a lotion (Pennsaid lotion, Dimethaid Research Inc., Markham, Ontario, Canada) containing the penetration enhancer dimethyl sulfoxide (DMSO) had previously been shown to enhance skin penetration (7,8,17). To test these three drugs, we prepared three formulations with [14C]-urea, [14H]-ketoconazole, and [14C]-salicylic acid at 0.002%, 0.1%, and 0.07%, respectively and corresponding saline controls with each drug at the same concentrations (7).

For the antifungal drugs econazole, terbinafine free base, and terbinafine salt, we used a nail lacquer formulation, which is a popular choice for topical antifungal treatment. Nail lacquer contains a film-forming agent and a solvent, in addition to the antifungal drug and, possibly, a penetration enhancer. Once the lacquer is applied, it forms a thin, water-insoluble film containing the supersaturated antifungal drug. This provides a chemical gradient to drive drug flux as the drug is released. Thus, a lacquer formulation is suitable for topical treatment of nail diseases. We selected a commercial lacquer formulation, Econail (EconoNail is a trademark of MacroChem Corp.). The components of this lacquer formulation include econazole with penetration enhancer, 2-n-nonyl-1,3-dioxolane (18%), and were assembled into a test formulation in the lab prior to use (8). The control is the same formulation minus 2-n-nonyl-1,3-dioxolane.

[14C]-Ketoconazole commercial cream was purchased from TEVA Pharmaceuticals USA (Sellersville, Pennsylvania, U.S.) and used for control.

AN2690 (5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole) was obtained from Anacor Pharmaceuticals, Inc. (Palo Alto, California, U.S.). Trance amount of [14C]-AN2690 was mixed with propylene glycol/ethanol (1:4, v/v) to a final 10% (w/v) test formulation (18). Penlac nail lacquer (ciclopirox 8% topical solution) was manufactured by Dermik (Bervyn) (19). Trace amount of [14C]-ciclopirox was mixed with the lacquer to be a control.

Human Finger Nail Plates

Nail plates were collected from adult human cadavers and stored in a closed container at 0°C. Before each experiment, nail samples were gently washed with normal saline to remove any contamination, then rehydrated by placing them for three hours on a cloth wetted with normal saline. Nail samples were randomly selected and allocated to test groups. Nail thickness was measured by a Sony microdigital meter (Sony Magnescale Inc., Japan) before testing to determine the drilling depth for each nail. Five nails were used for each formulation tested.

Dosing and Surface Washing Procedures

A 10 μL dosing aliquot of each of the test formulations was applied to the surface of a nail plate with a microsyringe. Topical application was usually conducted in the morning. For twice daily dosing, a second one was done in the evening, 8 hours after morning application. Surface washing to remove the residue dose was done in the morning, 24 hours after the previous morning application, and 10 minutes prior to the next one if necessary. The nail was washed with cotton tips in a cycle as follows to simulate daily bathing: a dry tip, then a tip wetted with 50% Ivory liquid soap (Ivory is a registered trademark of Procter & Gamble, Cincinnati, Ohio, U.S.), then a tip wetted with distilled water, then another tip wetted with distilled water, then a final dry tip. The nails treated with lacquer also received an alcohol wash to remove residual lacquer that was insoluble in soap and water. The samples from each cycle from each nail were pooled and collected by breaking off the cotton tip into scintillation glass vials. An aliquot of 5.0 mL methanol was added to each vial to extract the test material. The radioactivity of each sample was measured in a liquid scintillation counter.

Nail Incubation

To keep the nail at physiological levels of temperature and humidity, we incubated it in a Teflon one-chamber diffusion cell (Permegear, Inc., Hellertown, Pennsylvania, U.S.). The nail surface (top center) was open to air and the inner surface made contact with a small cotton ball acting as a nail supporting bed (Fig. 7.1). The cotton ball was wetted by normal saline. The incubation period started 24 hours prior to the first dose and ended 24 hours after the final dose. A small cotton ball wetted with 0.1 mL normal saline was placed in the chamber beneath the nail plate to serve as a “nail bed” and provide moisture for the nail plate, and hydration was monitored and controlled during the experiment (7,8). This cotton ball method prevented the overhydration of a liquid interface. Cotton is a hydrophilic fiber that can contain high degree of moisture content, and absorbs
water-soluble substances. It also absorbs lipophilic substances, which can fill the lumen and lie between the numerous internal layers of the cotton (20). Thus, the cotton ball is an idea-receiving medium for in vitro transungual delivery.

Nail Sampling

The objective was to determine drug concentration within the nail where the disease resides. Treatment is applied to the nail surface. The drilling system samples the inner core of the nail without disturbing the nail surface. The two parts (surface and inner core) can be assayed separately. The surface contains only residual drug after washing. The drilled out core (from the ventral side) is thus a true drug measurement at the target site where the disease resides (Fig. 7.2). Drug penetration into the nail was sampled by a unique micrometer-controlled nail-sampling instrument that enabled finely controlled drilling into the nail and collection of the powder created by the drilling process (7,8). The nail-sampling instrument (Fig. 7.3) has two parts, a nail sample stage and a drill. The nail-sampling stage consists of a copper nail holder, three adjustments, and a nail powder capture. The three adjustments control vertical movement. The first coarse adjustment (on the top) is for changing the copper cell and taking powder samples from the capture. The other two adjustments (lower) are used in sampling. The second coarse adjustment allows movement of 25 mm, while the fine adjustment provides movement of 0.20 mm. The nail powder capture is located between the copper cell and the cutter. The inner shape of the capture is an inverted funnel with the end connected to a vacuum pump. By placing a filter paper inside the funnel, nail powder samples can be captured on the filter paper during sampling. The nail is fastened in a cutting holder below the cutter and surrounded by a funnel containing a filter paper. The funnel is attached to a vacuum pump. During drilling, the vacuum draws the powder debris onto the filter paper so that it can be collected and measured and increase total collection for mass balance determination.

After completion of the dosing and incubation phase, the nail plate was transferred from the diffusion cell to a clean cutting holder for sampling. The nail plate was secured in position so that the ventral surface faced the cutter and the dorsal-dosed surface faced the holder. The cutting holder was moved to bring the plate surface just barely in contact with the cutter tip. The drill was then turned on and a fine adjustment moved the stage toward the cutter tip, removing a powder sample from the nail. In this way, a hole approximately 0.3 to 0.4 mm in depth and 7.9 mm in diameter was drilled in each nail, enabling the harvest of powder sample from the center of the nail.
each nail’s ventral surface. We refer to these samples as having been taken from the “ventral/intermediate nail plate.”

After the nail had delivered its ventral/intermediate nail plate powder samples, it was removed from the sampling instrument. The nail outside the dosing area was cut away and discarded. The nail within the dosing area but outside the sampling area was trimmed away and saved; we refer to this as the “remainder nail plate.” It surrounds the dorsal layer above the sampling area where the powder samples were taken; we refer to this as the “sampling area dorsal nail plate.” The ventral/intermediate nail plate powdered samples, the sampling area dorsal nail plate, and the remainder nail plate were individually collected into a glass scintillation vial and weighed. The nail samples were then dissolved by adding 5.0 mL of a Packard Soluene-350 (Packard Instrument Company, Meriden, Connecticut, U.S.). The total mass of nail collected was measured by the difference in weight of the plate before and after drilling (7,8).

RESULTS
Nail Incubation Conditions
Table 7.1 shows that the average hydration of the wetted cotton balls 109 ± 6.2 AU that resembles the average hydration of human nail bed, 99.9 ± 8.9 AU measured from fresh human cadavers, where AU is Arbitrary Units, a digital expression of capacitance. During the experiment, the holding tank temperature was 25 ± 2°C and relative humidity was 44 ± 8%.

<table>
<thead>
<tr>
<th>Source</th>
<th>Measurement</th>
<th>Time</th>
<th>Nail plate (AU)</th>
<th>Nail bed (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human cadavers</td>
<td>6</td>
<td>24-hr postmortem</td>
<td>7.6 ± 0.9</td>
<td>99.9 ± 8.9</td>
</tr>
<tr>
<td>Diffusion cells</td>
<td>8</td>
<td>Twice/day for 7 days</td>
<td>8.5 ± 2.4</td>
<td>109.9 ± 6.2</td>
</tr>
</tbody>
</table>

*During the experiment, the holding tank temperature was 25 ± 2°C and relative humidity was 44 ± 8%. The importance of this controlled temperature and humidity is to mimic normal physiological condition of the human nail to prevent overhydration that was easily occurred in nail in vitro studies.

*Hydration of the nail plate and the supporting cotton bed was measured with a Corneometer CM 820 (Courage + Khazaka, Cologne, Germany).

*AU is Arbitrary Units, a digital expression of capacitance. Thus, the CM820 Corneometer gives only an estimate of the nail (or other membrane such as stratum corneum) hydration. Agache et al. (21) used a sorption-desorption test to assess the water content of the stratum corneum. They correlated the results measured with the CM820 Corneometer (as AU unit) and TEWL (g/m²/hr) measured with an evaporimeter and found that water retained in the SC (µg/cm²) = ln(AC/3.8)/0.0436. From Ref. 21.
Thus, there was no statistical difference between hydration conditions for nails treated with either the test formulation or the saline control. This incubation device is nonocclusive and hydration controlled, and approximate normal physical condition is reached.

Accuracy of Nail-Sampling Process

The advantage of the micrometer-controlled drilling and nail powder removal system is the accuracy of the sampling process. The sampling instrument allowed well-controlled, accurate, and reproducible sampling of the inside of the nail. Table 7.2 shows that the average depth of nail sampling from the inner center surface was well controlled at 0.26 ± 0.05 mm, which was close to the expected depth of 0.24 mm. The weight of the nail samples collected was consistent for all experiments.

Mass Balance of Radioactivity Recovery

Table 7.3 summarizes the econazole mass balance recovery following the 14-day nail treatment. Overall recovery of applied dose was 90.8 ± 16.4% for the test formulation and 96.4 ± 7.3% for the saline control, indicating that essentially the entire dose was accounted for.

Table 7.3 also indicates what happens to chemicals applied to the nail. Approximately 72% was washed from the surface. The dose absorbed from the surface of the nail penetrated to the sampling area dorsal nail plate (11.4%), the ventral/intermediate nail plate (1.4%), and the supporting bed (0.7%), which is the cotton ball on which the nail rested. Note that econazole recovery in the test formulation is greater for both the ventral/intermediate nail plate and the supporting bed, which is an effect of the drug delivery enhancer. At the sampling area dorsal nail plate, there is more econazole from the saline control because the dose remained on the nail surface.

Effects of Dosing and Washing Frequency

Figures 7.4 and 7.5 show the weight of normalized [14C]-econazole equivalent in different layers of the nail plate and cumulative [14C]-econazole equivalent collected in the cotton ball–supporting bed following different frequency of topical

Table 7.2 Nail Core Sampled from the Ventral (Inner) Surface Center of the Human Nail Plate

<table>
<thead>
<tr>
<th>Test number</th>
<th>Whole nail thickness (mm)</th>
<th>Depth of core (mm)</th>
<th>% Whole nail thickness</th>
<th>Total core sample removed (mg)</th>
<th>Powder sample collected (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea (control)</td>
<td>0.65</td>
<td>0.25</td>
<td>39.52</td>
<td>16.4</td>
<td>5.2</td>
</tr>
<tr>
<td>Urea (test)</td>
<td>0.71</td>
<td>0.27</td>
<td>37.97</td>
<td>17.6</td>
<td>6.4</td>
</tr>
<tr>
<td>Ketoconazole (control)</td>
<td>0.68</td>
<td>0.28</td>
<td>41.88</td>
<td>14.3</td>
<td>6.7</td>
</tr>
<tr>
<td>Ketoconazole (test)</td>
<td>0.73</td>
<td>0.28</td>
<td>38.62</td>
<td>14.1</td>
<td>4.3</td>
</tr>
<tr>
<td>Salicylic acid (control)</td>
<td>0.77</td>
<td>0.25</td>
<td>32.62</td>
<td>12.1</td>
<td>6.0</td>
</tr>
<tr>
<td>Salicylic acid (test)</td>
<td>0.60</td>
<td>0.21</td>
<td>35.03</td>
<td>23.4</td>
<td>4.7</td>
</tr>
<tr>
<td>Average</td>
<td>0.69</td>
<td>0.26</td>
<td>37.61</td>
<td>16.3</td>
<td>5.5</td>
</tr>
</tbody>
</table>

aNail sample, approximately 0.24 mm in depth and 7.9 mm in diameter, was drilled from the center of the ventral surface of the nail. The amount of nail sample removed was measured by difference in weight and depth of the drilled area before and after sampling. Each number represents mean (SD) of five samples.

The data demonstrated the repeatability and accuracy of the nail-sampling system.

Source: From Ref. 7.

<table>
<thead>
<tr>
<th>Sampling area</th>
<th>Test formulation</th>
<th>Control formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorsal/Intermediate nail plate</td>
<td>11.4 (3.6)</td>
<td>20.1 (2.9)</td>
</tr>
<tr>
<td>Ventral/Intermediate nail plate (powdered samples)</td>
<td>1.3 (1.1)</td>
<td>0.22 (2.9)</td>
</tr>
<tr>
<td>Remainder nail plate</td>
<td>5.6 (3.9)</td>
<td>3.2 (2.3)</td>
</tr>
<tr>
<td>Supporting bed (cotton ball)</td>
<td>0.7 (0.3)</td>
<td>0.0 (0.0)</td>
</tr>
<tr>
<td>Surface washes</td>
<td>71.7 (12.5)</td>
<td>72.8 (5.1)</td>
</tr>
<tr>
<td>Total</td>
<td>90.8 (16.4)</td>
<td>96.4 (7.3)</td>
</tr>
</tbody>
</table>

aFrom Ref. 8. The data represent the mean (SD) of each group (n = 5). The test formulation group contains 18% 2-n-nonyl-1,3-dioxolane and the control formulation contains no 2-n-nonyl-1,3-dioxolane. The data demonstrated not only the importance of the penetration enhancer but the high recovery rate of two groups when using the nail-sampling system.
Figure 7.4 Nail penetration profile of [14C]-econazole following a 14-day treatment/incubation period in vitro. Each bar represents the mean (SD) of six samples. The frequency of topical dosing was different but the surface wash was the same, once daily. (*) The group received twice daily topical doses was statistically significant higher than the one treated once daily dose ($p < 0.05$).

Figure 7.5 Nail penetration profile of [14C]-econazole following a 14-day treatment/incubation period in vitro. Each bar represents the mean (SD) of 6 samples/group. Each group was received once daily topical application for 14 days. The frequency of surface washing for each group was different. The group was received daily washing was no statistically significant than the corresponding bar from the once weekly washing one ($p > 0.05$).
dosing or surface washing treatments. As expected after twice daily application (and surface washing once daily) for 14 days, the [14C]-econazole content in all nail and cotton ball samples were significantly higher than those in the dosing and washing once daily group ($p < 0.05$), whereas comparison of the once daily dosing and washing treatment group and the once daily dosing and once weekly washing group did not show significant difference for all collected samples ($p > 0.05$).

Enhancer Effects

Table 7.4 summarizes the penetration of ketoconazole, urea, and salicylic acid into the human inner nail plate. Each test formulation contained a drug delivery enhancer (7,8) and was compared to a control formulation without any penetration enhancer. In each case, the test formulation enhanced drug delivery ($p < 0.05$). Table 7.5 comprises antifungal efficacy of econazoles, terbinafine base, and terbinafine salt following topical applications. Each test antifungal agent contains 18% 2-n-nonyl-1,3-dioxolane (SEPA), a skin penetration enhancer, and the control (no 18% 2-n-nonyl-1,3-dioxolane). All test formulations show the antifungal efficacy coefficient (E) was significantly higher than that of corresponding control ($p < 0.05$).

Table 7.4 Radiolabeled Drug Penetration into Human Nail from a Test Formulation Containing DMSO, a Penetration Enhancer Vs. a Control Without a Penetration Enhancer

<table>
<thead>
<tr>
<th>Test chemicals</th>
<th>Penetration enhancera</th>
<th>Radioactivity content in ventral/intermediate center layer of the nail plateb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unitc</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>DMSO</td>
<td>µg eq/g</td>
</tr>
<tr>
<td>Urea</td>
<td>DMSO</td>
<td>µg eq/g</td>
</tr>
<tr>
<td>Salicylic acid</td>
<td>DMSO</td>
<td>µg eq/g</td>
</tr>
</tbody>
</table>

aDMSO is a transdermal delivery enhancer. The enhancement mechanism of transungual delivery is not clear. However, it did enhance the nail penetration of the test chemicals.

bFrom Ref. 7. The data represent the mean (SD) of five samples per formulation group. The nail sample drilled as powder from ventral/intermediate layer of human nail plate.

cµg eq/g = microgram equivalents drug per gram of nail sample. Because radioactivity is used, the drug mass is referred to as “equivalents” because radioactivity was measured, not the drug itself.

Abbreviation: DMSO, dimethyl sulfoxide.

Table 7.5 Comparison of Econazole Concentration and Relative Antifungal Efficacy with a Test Formulation Containing 2-n-Nonyl-1,3-Dioxolane, a Penetration Enhancer and a Controla

<table>
<thead>
<tr>
<th>Parameterb</th>
<th>Test formulation</th>
<th>Control formulation</th>
<th>Significant ($p < 0.05$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econazole in the deeper layer (µg/cm3)</td>
<td>14,830 (341)</td>
<td>2,371 (426)</td>
<td>Yes</td>
</tr>
<tr>
<td>E_0 ($MIC_0 = 1$ µg/mL)c</td>
<td>14,830</td>
<td>2,371</td>
<td>Yes</td>
</tr>
<tr>
<td>E_Y ($MIC_Y = 100$ µg/mL)c</td>
<td>148</td>
<td>23.7</td>
<td>Yes</td>
</tr>
<tr>
<td>Terbinafine salt in the deeper layer (µg/cm2)</td>
<td>5946 (1029)</td>
<td>463 (271)</td>
<td>Yes</td>
</tr>
<tr>
<td>E_0 ($MIC_0 = 0.04$ µg/mL)d</td>
<td>5946</td>
<td>463</td>
<td>Yes</td>
</tr>
<tr>
<td>E_Y ($MIC_Y = 1.77$ µg/mL)d</td>
<td>134</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>Terbinafine base in the deeper layer (µg/cm3)</td>
<td>727 (372)</td>
<td>407 (106)</td>
<td>Yes</td>
</tr>
<tr>
<td>E_0 ($MIC_0 = 0.04$ µg/mL)d</td>
<td>1527</td>
<td>156</td>
<td>Yes</td>
</tr>
<tr>
<td>E_Y ($MIC_Y = 1.77$ µg/mL)d</td>
<td>34</td>
<td>3</td>
<td>Yes</td>
</tr>
</tbody>
</table>

aThe data represent the mean (SD) of each group ($n = 5$). The test formulation group contains 18% 2-n-nonyl-1,3-dioxolane and the control formulation contains no 2-n-nonyl-1,3-dioxolane.

bThe deeper layer is the center of the ventral/intermediate layer of the nail plate. The data represent the amount drug in the sample after a 14-day dosing period. The amount of antifungal agents in the tested nail layer (µg/cm3) was computed from the average of the cumulative amount of the test agent permeated into the area (area x thickness) of the deeper layer of the nail (dorsal/intermediate layer).

cFrom Ref. 8. E is antifungal efficacy coefficient and MIC is the minimum inhibitory concentration of the tested antifungal agent. D is dermatophytes and Y is yeast.

dFrom Ref. 22.

Abbreviation: MIC, minimum inhibitory concentration.
DISCUSSION

Topical therapy for onychomycosis is not yet maximally effective, and this failure may be due to inadequate penetration of drugs into the nail plate. The nail’s unique properties, particularly its thickness and relatively compact construction, make it a formidable barrier to the entry of topically applied agents. The concentration of an applied drug across the nail drops about 1000-fold from the outer surface to the inner surface. As a result, the drug concentration presumably does not reach a therapeutically effective level in the ventral/intermediate layers. To optimize the nail penetration of topical treatments, it is important to consider the nail’s unique barrier properties and develop an antifungal drug formulation that has matching physicochemical properties.

Nail lacquer formulations, a popular choice for topical antifungal treatment, typically contain a film-forming agent, solvent, antifungal drug, and possibly a penetration enhancer. Once the lacquer is applied, it forms a thin film containing a supersaturated antifungal drug. This film provides a chemical gradient to drive drug flux as the drug is released. For an example, [14C]-ketoconazole lacquer yields a significant number of antifungal efficacy coefficients than that in cream (\(p < 0.05\), Fig. 7.6). However, the nail deeper penetrations of [14C]-ciclopirox from the commercial available formulation, Penlac nail lacquer (ciclopirox 8% topical solution), was statistically lower than that of market gel formulation (ciclopirox 0.77% topical solution) (Table 7.6) (19). When compared with other antifungal topical formulations, such as [14C]-AN2690, 10% (w/v) in propylene glycol/ethanol solution, it decreased (\(p < 0.05\)) the deeper nail layer penetration rate (Fig. 7.7) (18).

Transungual enhancement has been examined: dimethyl sulfoxide (DMSO) and 2-n-nonyl-1,3-dioxolane used as

Table 7.6 Summary of Weight Normalized [14C]-ciclopirox Equivalent in the Nail and Supporting Bed Samples After 14-Day Treatment

<table>
<thead>
<tr>
<th>Items (unit)</th>
<th>Markedgel equivalent (mg eq/mg)</th>
<th>Experimentalgel equivalent (mg eq/mg)</th>
<th>Lacquer equivalent (mg eq/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorsal/intermediate center within surface of nail</td>
<td>71.7 (16.8)</td>
<td>103.4 (38.1)</td>
<td>2162.1 (526.4)</td>
</tr>
<tr>
<td>Ventral/intermediate center within infection-prone area</td>
<td>0.6 (0.3)</td>
<td>0.2 (0.1)</td>
<td>0.3 (0.1)</td>
</tr>
<tr>
<td>Penetration through the nail into the supporting bed cotton ball</td>
<td>46.3 (4.1)</td>
<td>6.0 (1.3)</td>
<td>15.5 (3.1)</td>
</tr>
</tbody>
</table>

\[\text{Normalized [14C]-ciclopirox equivalent}^a\]

\[\text{items (unit)} \quad \text{Marketed gel} \quad \text{Experimental gel} \quad \text{Lacquer} \quad \text{Significant (if } p\text{-value } < 0.05)\]

\[\text{Dorsal/intermediate center within surface of} \quad \text{71.7} (16.8) \quad 103.4 (38.1) \quad 2162.1 (526.4) \quad \text{Lacquer vs. experimental gel} \]

\[\text{Ventral/intermediate center within infection-prone area} \quad \text{0.6} (0.3) \quad 0.2 (0.1) \quad 0.3 (0.1) \quad \text{Lacquer vs. marketed gel} \]

\[\text{Penetration through the nail into the} \quad \text{46.3} (4.1) \quad 6.0 (1.3) \quad 15.5 (3.1) \quad \text{Experimental gel vs. lacquer} \]

\[^a\text{From Ref. 19. The data represents the mean (SD) of each group (}n=5\text{).}\]

Figure 7.6 Comparison of antifungal efficacy coefficient of two ketoconazole formulations, lacquer and cream. Each bar represents the mean (SD) of 5 samples/group. Each group received once daily topical dose and washing for a seven-day treatment. The lacquer group shows that the antifungal efficacy coefficient was statistically significant higher than that of the cream group (\(p < 0.05\)).
Transdermal delivery enhancers were tested for enhancement of antifungal agents penetrating into and through the nail plate in vitro. The two enhancers increased the deeper nail penetration of [14C]-ketoconazole (Table 7.3), [14C]-econazole, [14C]-terbinafine salt, and [14C]-terbinafine base (Table 7.5) when significantly compared to the controls (p < 0.05). DMSO has been previously reported to facilitate the penetration of some topical antimycotics (15,23). The enhancement function of 2-n-nonyl-1,3-dioxolane has not previously been determined. The mechanism of 2-n-nonyl-1,3-dioxolane in skin penetration was suggested to reversibly fluidize the stratum corneum lipids and alter barrier function (24). However, [14C]-dioxolane, the radio-labeled 2-n-nonyl-1,3-dioxolane, had minimal penetration to and through the human nail plate in vitro (8). Since 2-n-nonyl-1,3-dioxolane can function as an adhesion promoter and a plasticizer for the film-forming polymer of the nail lacquer (25,26). The enhancement function of 2-n-nonyl-1,3-dioxolane for the tested antifungal agents was possibly to soften the lacquer film to increase releasing per unit time (8). As shown in Table 7.5, the amounts of [14C]-econazole, [14C]-terbinafine free base, and [14C]-terbinafine salt detected from the deeper layer, ventral/intermediate nail layer in the test groups containing 18% 2-n-nonyl-1,3-dioxolane, were significantly greater than that of in the controls (p < 0.05). The results suggest that the enhanced level of these antifungal agents in the ventral/intermediate layers and supporting bed dramatically increased, which exceeds the minimum inhibitory concentration (MIC) of econazole for most common onychomycosis organisms (Table 7.5).

MIC is a laboratory index in the determination of antifungal potency. Martin and Lippold (11) introduced an efficacy coefficient E to better estimate and compare the relative efficacy of antifungal agents. The efficacy coefficient E is the ratio of the flux of an antimycotic drug through the nail plate to the MIC. For econazole, the range of MIC for dermatophytes species is 0.1 to 1.0 μg/mL and for yeast species it is 1.0 to 100 μg/mL (27). After 14 days of exposure, the econazole content measured in the test group was 11.15 ± 2.56 μg/mg for the ventral/intermediate layers. This content multiplied by the density of the nail sample (1.332 mg/cm³, measured under current experimental conditions) yields 14,830 ± 340 μg/cm³ of econazole, almost 15,000 times the MIC for most dermatophytes species and 150 times that for most yeast species (Table 7.5).

This study demonstrated that with our in vitro nail study methodology, the nail plate can be scientifically studied, and with proper formulation one can deliver a variety of chemicals, be they drugs or nail modifiers (cosmetics). The nail is now ready for serious attention and treatment just as hair and skin have been in the past. The nail barrier can be breached.

These findings presumably relate to delivery of cosmetic agents for the management of nail abnormalities, such as nails that are peeling or fragile. R&D on these agents will be simplified when the rules describing the relationship of

![Figure 7.7](image-url)
physical chemistry to flux are developed for the nail, as they have been in part for the skin.

Taken together, the methodology appears robust, as with other models, inclusion of other chemicals with varying physicochemical properties, and in vivo replication will add strength to the results.

REFERENCES

Sensitivity skin: new findings yield new insights

Miranda A. Farage and Howard I. Maibach

INTRODUCTION
The concept of sensitive skin arose in the 1970s with the observation that despite the fact that previous safety evaluations had found no evidence of toxicity, some patients reported stinging sensations upon using a sunscreen that contained a derivative of p-aminobenzoic acid (8). Growing consumer awareness of the potential for irritation from common products has fueled a huge increase in products marketed for the supposedly rare individual with susceptibility to components of everyday products such as cosmetics or toiletries (18). Itching, burning, stinging, and tightness are the most common subjective complaints (9), which have been reported mainly by women (9). Sensory effects are only occasionally accompanied by erythema (12).

Although sensitive skin is now generally accepted as a real physiological disorder, there is still no consensus regarding its etiology, classification, or criteria for diagnosis. To date much of the research has been published in cosmetic journals (inaccessible through major databases), and ignored by leading dermatological publications (9). Medical researchers have largely ignored consumer reports of sensory irritation because they are difficult to quantify and frequently are unaccompanied by visible signs (19).

Testing has showed sizeable variation within the same individual at different anatomic sites (24), and even at the same anatomic site on symmetric limbs (25). The diversity of methodology approaches employed in sensitive-skin research has also contributed to interpretive difficulties.

The etiology of sensitive skin is unknown, but the disorder is believed to be the result of either an increased permeability of stratum corneum or an acceleration of nerve response to specific irritants (23,24), even among chemicals with similar modes of action (18).

Testing has showed sizeable variation within the same individual at different anatomic sites (24), and even at the same anatomic site on symmetric limbs (25). The diversity of methodology approaches employed in sensitive-skin research has also contributed to interpretive difficulties.

The etiology of sensitive skin is unknown, but the disorder is believed to be the result of either an increased permeability of stratum corneum or an acceleration of nerve response to specific irritants (23,24), even among chemicals with similar modes of action (18).

Testing has showed sizeable variation within the same individual at different anatomic sites (24), and even at the same anatomic site on symmetric limbs (25). The diversity of methodology approaches employed in sensitive-skin research has also contributed to interpretive difficulties.
results from the abnormal penetration in skin of potentially irritating substances and a resulting decrease in the skin tolerance threshold (20).

Alterations in barrier function in sensitive-skin patients have been observed (29,30). Alterations of baseline capacitance values imply barrier impairment and support the view that hyperreactivity to water-soluble irritants results from increased absorption (31). A derangement of intercellular lipids, specifically, was also associated with a decline in barrier function in sensitive skin (32). The pain sensations, which are the hallmark of the disorder, also imply possible integration dysfunctions in the central nervous system.

Of the two studies reviewed that did evaluate the relationship between neurosensory responses and objective clinical irritation and included only subjects with demonstrated sensory sensitivity, both showed a correlation between sensory and objective signs (29,30). In a study regarding sensitivity to facial tissue, which did not exclude nonsensitive individuals, sensory effects were demonstrated to be the most reliable measure of product differences (33). The presence of impaired irritant thresholds, which may produce increased inflammatory sensitivity to many of the irritants tested by numerous studies and a variety of assessment methods (25).

Most methods focused on objective assessment of physical irritation in skin rather than the sensory effects reported (33), and few reports have quantified sensory effects or correlate sensory effects to degree of irritation. Most testing has included few subjects, and few have restricted subjects to those with demonstrated sensitivity (34). Few have attempted to evaluate the influence of endogenous hormones or lifestyle factors.

Ultimately, traditional irritant-testing methodologies have not proven to be good predictors of consumer response. Response to one irritant does not predict sensitivity to another, and has not correlated well with evaluation of objective signs (35).

FACTORS IN SKIN SENSITIVITY

Numerous potential host factors (Table 8.2) undoubtedly play a role in experimental variability observed in sensitive skin. To date, no constitutional factors have been identified (26).

Gender

Sensitive skin is self-reported far more often in women than in men (Table 8.1). There is biological plausibility for greater sensitivity, as thickness of the epidermis was observed to be greater in males than in females ($p < 0.0001$) (50), and hormonal differences, which may produce increased inflammatory sensitivity in females, have also been demonstrated (25,51). Irritant

Table 8.1 Prevalence of Sensitive Skin Perception in the Industrialized World

<table>
<thead>
<tr>
<th>Population(s) studied</th>
<th>Population characteristics</th>
<th>Definition of sensitive skin</th>
<th>Percentage of people who claimed sensitive skin</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan, United States, Europe (1992) a</td>
<td>15,000 men and women, conducted by questionnaire</td>
<td>People whose skin reacts to particular insults more than the majority of people</td>
<td>50% women (25% very sensitive skin) 30% men</td>
<td>10</td>
</tr>
<tr>
<td>France (2000)</td>
<td>319 women, conducted by interviews</td>
<td>Cutaneous discomfort in the absence of clinical and histological evidence of skin lesions</td>
<td>90% (23% very sensitive skin)</td>
<td>8</td>
</tr>
<tr>
<td>England (2001)</td>
<td>3300 men and women, conducted by mailed questionnaire</td>
<td>Intolerance to cosmetics and toiletries, including both sensory and visible signs</td>
<td>51.4% men (5.8% very sensitive skin) 38.2% women (10% very sensitive skin)</td>
<td>6</td>
</tr>
<tr>
<td>United States (San Francisco, 2002)</td>
<td>800 women, conducted by telephone interview</td>
<td>Sensitive facial skin</td>
<td>52%</td>
<td>2</td>
</tr>
<tr>
<td>United States (Cincinnati, 2009)</td>
<td>1039 men and women, surveyed by questionnaire</td>
<td>Sensitive skin</td>
<td>68.4% of population reported some degree of sensitivity (69.0% of women, 64.4% of men)</td>
<td>3</td>
</tr>
<tr>
<td>France (2008)</td>
<td>18 women, identified by questionnaire</td>
<td>Sensitive skin</td>
<td>50% (facial skin specifically)</td>
<td>11</td>
</tr>
<tr>
<td>France (2008)</td>
<td>400, identified by questionnaire</td>
<td>Sensitive skin?</td>
<td>85% (facial skin specifically)</td>
<td>12</td>
</tr>
<tr>
<td>France (2005)</td>
<td>1006 men and women, identified by questionnaire</td>
<td>Sensitive skin</td>
<td>59% women, 44% men</td>
<td>13</td>
</tr>
<tr>
<td>France (2006)</td>
<td>8522 men and women, identified by questionnaire</td>
<td>Sensitive skin</td>
<td>61% women, 32% men</td>
<td>14</td>
</tr>
<tr>
<td>Greece, women (2008)</td>
<td>25, identified by questionnaire</td>
<td>Sensitive skin</td>
<td>64%</td>
<td>7</td>
</tr>
<tr>
<td>Greece, women (2008)</td>
<td>25 women with atop dermatitis</td>
<td>Sensitive skin</td>
<td>100%</td>
<td>7</td>
</tr>
<tr>
<td>Germany, men and women (2001)</td>
<td>420</td>
<td>Sensitive skin</td>
<td>75% (48% severe)</td>
<td>15</td>
</tr>
<tr>
<td>Italy, women (2005)</td>
<td>1870</td>
<td>Sensitive skin</td>
<td>56.5%</td>
<td>16</td>
</tr>
</tbody>
</table>

aYear of publication, not year of the study.
testing, however, generally finds no differences (24). A recent study, however, found, among 1039 subjects a 68.4% prevalence of self-reported sensitive skin, with no difference between men and women (3). It may be that with increased marketing of products for sensitive skin in men it has become more cultural acceptable for males to define themselves as having sensitive skin.

Age

The physiological changes that occur as skin ages would predict an increased susceptibility to irritants (52). Existing studies, however, are ambiguous with regard to the influence of age on skin sensitivity. Clinical assessment of the erythematous response to irritants in older people suggest that susceptibility generally decreases with age (52). However, objective signs of irritation often show little correlation with the intensity of subjective complaints (52). A study of sensory perceptions of sensitive skin conducted on 1029 individuals in Ohio stratified subjects into four age groups (subjects under 30, subjects in their 30s, subjects in their 40s, and those over 50), and evaluated subjective data according to age (52).

Those over 50 were more likely to claim sensitive skin than younger adults, and more likely to perceive genital skin (to the exclusion of other body sites) to be more sensitive (52). Older adults also stated that their skin had become more sensitive over time (46%) (52). In a large Italian study that performed lactic acid sting tests on more than one hundred elderly subjects, the intensity of the stinging response was inversely proportional to age (16).

Ethnicity

There are pronounced differences in skin structure depending on skin type (Table 8.3) and racial differences, with regard to skin susceptibility to irritants, are among the fundamental questions in dermatotoxicology (34). Two large epidemiological studies reported no observed racial differences in reporting product sensitivity (2,6). Most testing, however, has focused on Caucasian females (34).

Differences have been observed in sensory perceptions, although substantive conclusions are hard to provide. Asians have been reported to complain of unpleasant sensory responses more often than Caucasians, supported by the observation that a higher incidence of dropouts in a Japanese clinical study withdrew because of adverse skin effects as compared with those in Caucasian studies (38). There have also been reports of an increased sensory response, as well as speed of response in Asian subjects versus Caucasian in sensory testing (38). Another study, however, found fair-skinned subjects prone to sunburn had higher sensory responses to chemical probes than those with darker skin tones (37). No racial differences in innervation on an architectural or biochemical level have been observed (18).

Studies of racial differences with regard to irritants have yielded conflicting evidence. Although black skin was demonstrated to have greater potential for irritant susceptibility than white skin (24), another study found blacks to be less reactive than Caucasians (23). Asians seemed to be more reactive than Caucasians in some studies, and less in others, even within studies done under the same investigator and protocol (34). Tristimulus colorimeter assessment of skin reflectance observed that skin pigmentation was inversely associated with susceptibility to irritation (25), supported by the finding that irritant susceptibility to sodium lauryl sulfate (SLS) is decreased after ultraviolet B (UVB) exposure (tanning) (25).

Methyl nicotinate assessment of vasoactive response suggests that there may be genuine racial differences in permeability (57). Increased percutaneous absorption of benzoic acid, caffeine, and acetylsalicylic acid was demonstrated in Asians when compared with Caucasians, and decreased percutaneous absorption was observed in blacks (38).

More recent studies have observed that, while overall prevalence of skin sensitivity is similar across skin types and ethnic groups, there are some observable differences with regard to what triggers discomfort and how discomfort is experienced. Caucasians report visual effects more than African-Americans, while African-Americans are more likely to report sensory effects (35). In addition, African-Americans of both genders were more likely to report sensitivity in the genital area than other groups ($p = 0.0008$) (3).

A study of 800 women in San Francisco enrolled two hundred subjects in each of four ethnic groups to interview by phone and found no significant difference in overall prevalence between ethnic groups studied. Euro-Americans, however, were found to have a relatively higher susceptibility to wind than other ethnic groups, Asians had significantly higher sensitivity to spicy food, and Hispanics had relatively less reactivity to alcohol (2).

Cultural Factors

Cultural factors may play a role. Fastidious cleansing routines (with douches, perfumes, medication, antifungal medications, and contraceptives), which often precede irritation (51), undoubtedly have some cultural component. Hygiene practices are the most common cause of vulvar irritation (51).

However, that confounding lifestyle factors should be considered with regard to some observed differences, as cultural practices may produce widely different exposures to potential irritants (26). For example, older women were found to be more likely to report irritation due to incontinence products than younger women, who were more likely to report irritation due to tampons (52). Air conditioning is more likely to be reported as a trigger for sensitive skin in July than in March (13,80). These findings are quite likely to be based on increased levels of exposure than on actual physiological differences.
Environmental Factors
A majority of sensitive-skin sufferers report unpleasant sensory responses to cold temperatures, wind, sun, pollution, and heat (2,20). An increased susceptibility to SLS was observed in the winter compared with the summer (25). Low temperatures and humidity characteristic of winter cause lower water content in the stratum corneum (25). Large-scale epidemiological testing in France conducted phone interviews of over 1000 people each in March and then in July, and observed the frequency of sensitive skin in women to be significantly higher in summer than in winter: (71.2% in July vs. 59.39% in March) (13).

Numerous other host factors that could influence skin sensitivity include unusual occupational or leisure exposures to chemicals and home climate-control measures (35). Long-term or excessive use of personal-care products can also create sensitivities (20). Daily topical use of corticosteroids has been demonstrated to produce fragile skin (20), and excessive use of topical medications has been demonstrated to be the source of

Table 8.3 Comparison of Racial Differences in Functional Skin Properties

<table>
<thead>
<tr>
<th>Skin property</th>
<th>Types</th>
<th>Racial differences</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeability</td>
<td>In vitro penetration of fluocinolone acetone</td>
<td>Lower in blacks than in Caucasians</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>In vitro penetration of water</td>
<td>No differences</td>
<td>53,54</td>
</tr>
<tr>
<td></td>
<td>Topical application of anesthetic mixture</td>
<td>Less efficacy in blacks than in Caucasians</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>In vivo penetration of C-labeled dipyrithione</td>
<td>Lower in blacks (34% lower) than in Caucasians</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Methyl nicotinate–induced vasodilatation</td>
<td>Time to peak response equal than Caucasians</td>
<td>57–59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slower in blacks</td>
<td></td>
</tr>
<tr>
<td>TEWL</td>
<td>Baseline TEWL (in vitro)</td>
<td>Higher in blacks</td>
<td>57,60</td>
</tr>
<tr>
<td></td>
<td>TEWL in response to SLS irritation (in vivo)</td>
<td>Higher in blacks and Hispanics</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Baseline TEWL (in vivo)</td>
<td>Blacks > Caucasians > Asians</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Return to baseline TEWL after tape stripping</td>
<td>Blacks faster than whites</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Reactivity to SLS (measured by TEWL)</td>
<td>Higher in blacks than in Caucasians</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Reactivity to dichloethylysulphide (1%)</td>
<td>Lower in blacks (measured by erythema, 15% vs. 58%) than in Caucasians</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Reactivity to o-chlorobenzylidene malonitride</td>
<td>Lower, longer time to response in blacks than in Caucasics</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Reactivity to dinitrochlorobenzene</td>
<td>Lower in blacks, but trend toward equalization after removal of stratum corneum than Caucasians</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reactivity to octanoic acid, 20% SLS, 100% decanol, 10% acetic acid</td>
<td>Asians more reactive than Caucasians (react more quickly)</td>
<td>66</td>
</tr>
<tr>
<td>Stinging re.</td>
<td>UV protection factor of stratum corneum</td>
<td>Higher in blacks (about 50% higher) than in Caucasians</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Higher in blacks and whites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skin transparency</td>
<td>Lower in blacks (about 50% lower)</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>UVB transmission in stratum corneum</td>
<td>Lower in blacks (above 300 nm: 2–3 fold)</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>UV protection factor of epidermis</td>
<td>Higher in blacks (4 fold)</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>UVA transmission through epidermis</td>
<td>Lower in blacks (almost 4 fold)</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Contribution of malpighian layer</td>
<td>Black skin: twice as effective in absorbing UVB as white skin</td>
<td>70</td>
</tr>
<tr>
<td>Photoprotection of epidermis</td>
<td>Skin extensibility on dorsal (sun-exposed) and volar (sun-protected) forearms</td>
<td>Black skin maintains extensibility on sun-exposed sites, but Hispanic skin extensibility is reduced on sun-exposed sites</td>
<td>72</td>
</tr>
<tr>
<td>Consequence of photoaging</td>
<td>Elastic recovery</td>
<td>Black skin maintains recovery on sun-exposed sites, white and Hispanic skins reduced</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Drying</td>
<td>Higher in Caucasian and Asians than in Hispanics and blacks</td>
<td>73</td>
</tr>
<tr>
<td>Response to insult</td>
<td>Hypertrophic scarring</td>
<td>Higher in Asians than in Caucasians</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Pigmented dermatoses</td>
<td>Higher in Asians than in Caucasians</td>
<td>74,75</td>
</tr>
<tr>
<td></td>
<td>Wrinkling</td>
<td>Average onset is 10 yr later in Asians than in Caucasians</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Wrinkling</td>
<td>Average onset 20 yr later in blacks than in Caucasians</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Thermal tolerance</td>
<td>Blacks have a lower threshold than whites</td>
<td>77</td>
</tr>
<tr>
<td>Somatosensory function</td>
<td>Elastic recovery (tested on the cheek)</td>
<td>1.5 times greater in black as compared with white subjects</td>
<td>78,79</td>
</tr>
</tbody>
</table>

Abbreviations: SLS, sodium lauryl sulfate; TEWL, transepidermal water loss; UV, ultraviolet; UVA, ultraviolet A; UVB, ultraviolet B.
up to 29% of vulvar dermatitis (81). Drug-induced sensitivity is also possible, although no reports on that issue were uncovered. Interestingly, the thickness of the epidermis, in one study, was demonstrated to be inversely proportional to the number of years that the subject had smoked, with a \(p = 0.0001 \) (50).

The specific methodologies and conditions involved in the testing of skin sensitivity introduce a significant amount of variability into the published results; however, a recent study reveals that parameters of the testing can themselves induce sensitivity apart from that of the specific irritant employed. Sahlin et al. (82) evaluated the sting potential of the vehicle used in testing the adverse stinging reaction related to lactic acid application. The results showed that the ordinary oil-in-water emulsion induced stinging in and of itself; use of a water-in-oil emulsion created less discomfort. It was also observed that decreasing the mineral oil content in the oil-in-water emulsion resulted in decrease in the degree of sting experienced (82).

Anatomic Site

Differences in skin sensitivity between anatomical regions have been observed. Analysis of structural differences found that stratum corneum density varies tremendously by anatomical site—palms and soles are the thickest, whereas the genital area is the thinnest (83). The rate of turnover in the stratum corneum, 10 days in facial areas, is longer elsewhere (83,84).

The face is the most common site of skin sensitivity. In a study of 1039 men and women, 77.3% reported facial sensitivity, compared with 60.7% for the body, and 56.2% specifically with regard to genital skin (3). Saint-Martory also found the face to be the most commonly reported site of sensitivity, with hands, scalp, feet, neck, torso, and back also reported, in order of frequency (12). The nasolabial fold has been reported to be the most sensitive region (18) of the facial area, followed by the malar eminence (18), chin, forehead, and upper lip (12,18). Misery et al. (2008) found 44.22% of sensitive-skin subjects questioned experienced sensitivity of the scalp (85). Factors contributing to facial sensitivity are likely the number of products used on the face (particularly in women), a thinner barrier in facial skin, and a plentitude of nerve endings as well (21). Individual susceptibility appears to be dependent on anatomical site (86). Most studies have been conducted in facial skin because of its sensitivity [stinging sensations, particularly, are readily elicited on facial skin (87)] and the fact that it is readily accessible for both visual (88) and biophysical assessments (31).

The vulva is an area of particular interest, since it is formed partially from embryonic endoderm; it differs from skin at exposed body sites (22). Differences in irritation seem to be dependent on relative permeability of the irritant in vulvar skin; vulvar skin is significantly more reactive than forearm skin to benzalkonium chloride and maleic acid (56), but less reactive than the forearm to SLS (22). When both venous blood and menses were evaluated for irritant potential, the vulva was less responsive to both than was the upper arm (89).

Nonkeratinized vulvar skin exhibits clearly increased permeability related to the absence of keratin and loosely packed, less structured lipid barrier (22). In addition, the inner epithelia are thinner, representing a shorter distance to penetrate (22). Buccal tissue is often employed in a surrogate model for vulvar testing, as it has very similar structure and biochemistry (22). Buccal skin has been demonstrated to be 10 times more permeable than keratinized skin (90).

Although the vulvar area may be particularly susceptible to cutaneous irritation (91), little objective published data exists on the relationship between feminine hygiene products and sensitive skin (87). Irritant reactions to feminine-care products have been reported (81) with a few feminine products that contain chemicals known to be irritants in certain doses (92). However, the potential for heightened vulvar susceptibility to topical agents is not widely reported in literature (22). The contribution to irritation by topical agents, though, is substantial (23,25) and often underestimated (51). In fact, 29% of patients with chronic vulvar irritation were demonstrated to have contact hypersensitivity, and 94% of those were determined to have developed secondary sensitization to topical medications (81). Thus, reported sensitivity in the vulvar area, may often be related to underlying contact hypersensitivity because of excessive use of topical hygienic and medicinal preparations (4).

Recent studies have evaluated skin sensitivity in the vulvar area with regard to sensory responses to consumer products meant for the vulvar area. It was hypothesized that patients with erythema related to a previous genital infection may represent a population of sensitive subjects; however, no increase in sensory effects to exposure to feminine hygiene pads was observed (87).

In a similar population, however, in which observed erythema was evaluated against perceived sensory effects, women who perceived themselves as particularly susceptibility to facial erythema were significantly more likely to have medically diagnosed vulvar erythema, a potential indicator of a underlying biological origin (87).

Interestingly, a separate study evaluated perceptions of sensitive skin in women with urinary incontinence, expecting to observe an increased sensitivity of genital skin (93). Increased sensitivity specific to the genital area was not observed, but incontinent women were significantly more likely to assess themselves as having overall skin sensitivity than continent subjects (\(p = 0.014; 86.2\% \) incontinent subjects vs. 68.3% in controls) (93).

SENSORY EFFECTS AND OBJECTIVE SIGNS

It was observed early on that some subjects report a greater incidence of adverse reactions to certain products because of higher sensitivity (2,6,18,31,34). Some individuals possess exaggerated sensitivity to specific individual irritants (37). Despite the fact, however, that studies have demonstrated that sensitive-skin patients are capable of distinguishing products on the basis of blinded sensory endpoints (18,33), a clinically satisfactory description of observed sensitivities remains out of reach.

Tantalizing clues to the underlying mechanisms of sensitive skin, however, continue to be reported. If deficits in barrier function do play a role in skin sensitivity, regular use of moisturizer should improve sensitivity; patients who completed four of daily treatment with moisturizer improved (5). Evaluation of the potential role of the stratum corneum in sensitive skin using corneosurfametry demonstrated that subjects with demonstrated sensitivity to detergents had an increased reactivity to tested products as compared with the control group. It may be a specific subgroup of sensitive skin with some sort of defect in the stratum corneum that caused weakened resistance to surfactants (29).

Local anesthetics block response in lactic acid sting tests; stingers respond more vigorously to vasodilators (21). An Italian study compared self-reports of sensitivity with response in the lactic acid test as follows: stingers were found at very
similar prevalences to self-reported sensitivity (56.9% of women perceived skin as sensitive, 54.3% revealed to be stingers). In addition, those who believe skin to be sensitive were revealed to be more likely to be stingers (59%) than among nonstingers (48.9%) (16).

Simion, by exaggerated arm-washing with synthetic detergent bars, observed signs that correlated statistically with sensory perceptions (dryness, tightness, and itching). In addition, consumers were able to reproducibly distinguish between test products purely on the basis of sensory effects (19).

Another study evaluated specific biophysical parameters in 32 subjects medically diagnosed with sensitive skin in parallel with a nonsensitive-skin control group. Patch testing, skin hydration, sebum production, alkali resistance test, lactic acid sting test, methyl nicotinate 0.5%, acetyl-β-methyl chloride 1:1000, pH, dermographism, and measurement of total and specific Ig were performed (30).

Patch testing found that patients with sensitive skin were ten times more likely to respond to allergens in the European standard series \(p < 0.01 \) and three times more like to respond to cosmetic allergens \(p < 0.01 \) than those without sensitive skin (30). Sensitive subjects also had significantly less sebum production \(p < 0.01 \) and dryer skin \(p < 0.05 \) Sensitive patients had a four-fold risk of a decrease of alkali resistance \(p < 0.05 \) (30).

Vascular reactions to methyl nicotinate and acetyl-β-methyl chloride in sensitive-skin patients were observed to be characterized by a significant hyperreaction of skin blood vessels, with a more intense erythema after methyl nicotinate application (30). The risk of and intense vascular reaction to methyl nicotinate was 75 times higher in sensitive patients than in nonsensitive subjets, and nearly one-third of sensitive-skin subjects experienced an abnormal vascular reaction (skin blanching) after application of acetyl-β-methylcholine chloride (30). A strong association of sensitivity skin with fair skin was also observed (30). This may relate to well-established differences in skin structure and permeability across different skin types (30).

SENSITIVE SKIN: ZEROING IN ON BIOLOGICAL ORIGIN

Part of the reason for the observed breakdown between sensory effects and objective signs is the fact that an objective sign like erythema is the end result of a complex, multistep physiological process. Numerous underlying processes (e.g., changes in blood flow, moisture content, pH) would be expected to occur before the appearance of visible external changes (1).

A goal of our research has been to increase the ability to predict and quantify these subjective consumer responses. Our approach has been three fold: to exaggerate testing conditions to elicit corroborating physical findings, to increase the sensitivity of assessment of physical findings, and to find a way to quantify sensory endpoints (1).

Exaggeration of Test Conditions

One study evaluated four versions of facial tissues, with and without coating, with repeated wiping to accentuate irritation. Affected skin had been compromised by tape stripping prior to wiping protocol initiation. Erythema, as well as dryness, were evaluated daily by trained graders. In addition, panelists were also interviewed about specific aspects of product preferences. Statistical analysis revealed that the panelists’ subjective product preferences were more consistent in distinguishing between the test product than were either erythema or dryness (92).

A second method of accentuating test conditions, developed in our laboratories specifically for testing paper such as catamenial products, has proven very effective at accentuating irritant response to inherently mild products. The behind-the-knee (BTK) protocol uses the popliteal fossa as a test site and adds a relevant mechanical friction component to old testing. BTK testing consists of a product test placed behind the knee and held securely by an elastic knee band.

Levels of irritation produced in BTK testing are consistently higher than those achieved with standard patch testing, and have proven to be consistently reproducible (94). BTK testing, in conjunction with the other two approaches below, has proven useful in the development of potentially valuable protocols for sensitive-skin testing.

Quantifying Sensory Responses

A study similar to the facial tissue study above tested feminine hygiene products according to four combinations of test conditions (wet/dry, intact/compromised skin). Products tested were inherently nonirritating and were tested in parallel in arm patches and BTK. In addition, the study evaluated observed erythema grading against a patient log of sensory effects. Although no differences were observed between any combinations tested, a significant correlation of reported sensory discomfort with mean irritant scores was observed. Skin sites where patients experienced burning, itching, or sticking had consistently higher mean irritant scores (95). Ultimately, eight separate comparison studies were able to statistically associate perceived sensory effects with an increase in irritant scores (94).

Companion papers that utilized only BTK methodology (96) but also evaluated patient diaries in conjunction with the irritant testing also observed correlation between sensory effects and mean irritant scores (95).

Increasing Sensitivity of Assessment of Physical Response

Our laboratories evaluated several new methodologies in the pursuit of an increased sensitivity of the evaluation of the physical response. Visual grading of erythema has been relied on for a number of years; trained graders achieve a high degree of reproducibility with no specialized equipment. A new approach in our laboratories, however, utilized cross-polarized light, which allows visualization of the skin at a depth of 1 mm below the surface. Testing was performed with SLS in a standard patch test, and with two different feminine hygiene products (identified as A and B) behind the knee. With minor irritation produced by low-level SLS, subsurface visualization provided no improvement over visual scoring. In BTK subjects, however, enhanced visual scoring through subsurface visualization allowed the observation of significant differences in the irritation produced by the two different products, differences that were visible on the first day (97). Enhanced visual scoring was used successfully with both traditional patch testing and BTK (with SLS and catamenial pads) and provides a first link between sensory and physiological effects. We also investigated this tool in the genital area of symptomatic patients. Results concluded that enhanced visualization of the genital epithelial subsurface with cross-polarized light may assist in diagnosing subclinical inflammation in vulvar conditions heretofore characterized as sensory syndromes.

Further research combined the BTK-testing approach with enhanced visualization. Using enhanced visualization,
subclinical changes were observable after initial exposure; and enhanced visualization was able to correlate subclinical effects on skin to previously established consumer preferences between two products, a correlation that had not been verifiable in prior testing (33).

A second approach evaluated the potential for changes in skin temperature related to inflammation to act as a subclinical measure of skin irritation. Previous research has demonstrated a correlation between surface temperature measurements and inflammatory response (98). A high precision, handheld infrared thermographic scanner, recently developed, makes it feasible to conveniently measure local changes in skin temperature in situ (99).

Two catamenial products were compared in a BTK protocol. Skin surface temperature was measured using an infrared thermographic scanner. Subjects were also asked to keep a diary of skin discomfort experienced at test sites, specifically including itching, burning, itching, pain, edema, or any other issue. Skin temperature changes observed were closely associated with visual scores. In addition, the study incorporated diary-derived data on sensory effects experienced by panelists as an additional endpoint. The diaries of subjective sensory experiences over the course of the exposure made a clear distinction between the two test products that was consistent with both visual scoring and skin temperatures. A significant t-difference was also observed between mean visual scores of those who reported specific adverse sensations as compared with those who did not report negative sensations. Skin temperature means were significantly higher for those who reported the adverse sensations rubbing and chafing (interestingly, burning sensations were not associated with increase in skin surface temperature). Conditions in this protocol were optimized for using erythema as the primary endpoint; refining the protocol to optimize detection of differences in skin surface temperature would be a logical next step. Skin surface temperatures correlated well with visual signs of irritation, six of eight sensory effects were associated with higher visual scores (99).

An additional new technique in development uses a commercially available product called Sebutape® (CuDerm Corporation, Dallas, Texas, U.S.), an absorbent tape, which is an additional approach evaluated the potential for changes in skin temperature related to inflammation to act as a subclinical measure of skin irritation. Previous research has demonstrated a correlation between surface temperature measurements and inflammatory response (98). A high precision, handheld infrared thermographic scanner, recently developed, makes it feasible to conveniently measure local changes in skin temperature in situ (99).

Two catamenial products were compared in a BTK protocol. Skin surface temperature was measured using an infrared thermographic scanner. Subjects were also asked to keep a diary of skin discomfort experienced at test sites, specifically including sticking, chafing, burning, itching, pain, edema, or any other issue. Skin temperature changes observed were closely associated with visual scores. In addition, the study incorporated diary-derived data on sensory effects experienced by panelists as an additional endpoint. The diaries of subjective sensory experiences over the course of the exposure made a clear distinction between the two test products that was consistent with both visual scoring and skin temperatures. A significant t-difference was also observed between mean visual scores of those who reported specific adverse sensations as compared with those who did not report negative sensations. Skin temperature means were significantly higher for those who reported the adverse sensations rubbing and chafing (interestingly, burning sensations were not associated with increase in skin surface temperature). Conditions in this protocol were optimized for using erythema as the primary endpoint; refining the protocol to optimize detection of differences in skin surface temperature would be a logical next step. Skin surface temperatures correlated well with visual signs of irritation, six of eight sensory effects were associated with higher visual scores (99).

An additional new technique in development uses a commercially available product called Sebutape® (CuDerm Corporation, Dallas, Texas, U.S.), an absorbent tape, which is applied to skin for 60 seconds and then removed. Application of the tape to both healthy skin and compromised skin was followed by extraction of different cytokines from the Sebutape, which were then quantified. Levels of IL-1α, IL-1RA, and IL-8 were evaluated. Compromised skin was associated significantly with increased IL-1α levels, increased IL-8 levels, and increased IL-1RA/IL-1α ratio. This technique has not been substantially applied to the problem of sensitive skin as yet, but shows potential (100).

Links Between Sensitive Skin and Immunology

Evidence for a link between atopy and sensitive skin has accumulated (49). In an assessment of 1039 individuals (83.6% female) found that individuals who claimed overall to have sensitive skin were 5 times likely to have skin allergies confirmed by a doctor (p < 0.0001) (49) and also more than 3.5 times more likely to have relatives with sensitive skin (49). A large early epidemiological study in the United Kingdom also observed the incidence of sensitive skin to be higher in subjects with sensitive skin (6). In a study in older adults, those who claimed sensitive skin had a higher frequency of medically diagnosed skin allergies than younger people who claimed sensitive skin (52). Löffler et al. (2001) observed a link between sensitive skin and nickel allergy (15).

A study compared 25 Greek women with medically diagnosed atopic dermatitis with 25 healthy women. A significant association was found between the clinical diagnosis of atopic dermatitis and the self-diagnosis of sensitive skin (p < 0.001). All patients in the atopic dermatitis group described themselves as having sensitive skin to at least some degree, with 80% claiming either moderately or very sensitive. By contrast, 64% of individuals in the control group described their skin as sensitive to some degree, with only 16% claiming either very or moderately sensitive (7). Patients with atopic dermatitis were also significantly more likely to indicate a family history of sensitive skin than were nonsensitive individuals (68–24%, p = 0.004) 76% of atopic patients who claimed a family history identified a parent as having sensitive skin (7).

Atopic individuals were significantly more likely to report genital sensitivity after contact with hygiene pads, although not more likely to experience sensitivity to genital cleansing products, fragrances, or antiperspirants (7). In addition, the study demonstrated a link between clinically diagnosed atopic dermatitis and sensitive skin, with the frequency, severity, and history of skin sensitivity in patients with atopic dermatitis far more pronounced than in controls (7). This link has substantial biological plausibility, as contact allergy and skin sensitivity are phenomena that share similar cytokine inductions (49).

Of potential utility for large-scale screening in industry, postmarket surveillance, and epidemiological testing, a rapid algorithm containing only three questions has been developed. Testing of the algorithm in a capable of identifying 88% of atopic individuals out of a population of sensitive-skin patients (101).

Insight into Neurogenic Causality

Sensitive skin is predominantly sensory in nature and thus ultimately a neurological disorder. Sensory differences may be related to innervation (43). Dermal nerve fibers extend throughout viable epidermis as free nerve endings, but the epidermal component of this network is still poorly characterized (43). Epidermal nerve density variation could explain the different sensitivity thresholds in various anatomical sites (102). Hyperreactivity of the neural response of the skin is postulated to play a role. Possible mechanisms for neural system hyperreactivity include nerve fibers; endothelin receptors; burn, itch and heat receptors; cold receptors; and neutrophils (26).

Neurogenic inflammation probably results from release of neurotransmitters such as substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide, which induce vasodilation and mast cell degranulation. Nonspecific inflammation may also be associated with the release of interleukins (IL-1, IL-8, prostaglandin E2, prostaglandin F2, and tumor necrosis factor z) (85). Recent studies have evaluated what contribution neural dysfunction may play in the development of sensitive skin.

Functional magnetic resonance imaging (fMRI), which measured cerebral activation associated with skin discomfort, was used to evaluate neural reaction to application of lactic acid to the face in 18 women, with and without sensitive skin. Lactic acid-induced skin discomfort resulted in increased activity in the primary sensorimotor cortex contralateral to the application site as well as in a bilateral frontoparietal network that included...
the parietal cortex, prefrontal areas around the superior frontal sulcus, and the supplementary motor activity. In addition, in sensitive-skin patients only, group activity spread into the ipsilateral primary sensorimotor cortex and the bilateral peri-insular secondary somatosensory area, a phenomenon, which did not occur in the control group. Subjects with self-assessed sensitive skin were also observed to have significantly large greater increases in neural activity than those without sensitive skin, demonstrating an increase in neural activity specifically associated with sensitive skin (11).

Another study measured calibrated electrical stimulation of the skin, which stimulates sensory nerve fibers such as the myelinated A fiber, A delta fiber and unmyelinated c-fiber independently. In subjects with clinically documented sensitive skin (lactic acid sting test, cosmetic compatibility tests) versus nonsensitive controls (all subjects male), nerve fibers were stimulated by three different current strengths, and capsaicin (0.075%) was applied to the zygomatic arch. Sensory perception was verbalized by the subject and recorded. Baseline perception of current revealed no significant differences between sensitive and nonsensitive subject at either 2 kHz or 250 Hz, but at 5 Hz (a current known to selectively stimulate the c-fibers of sensory nerves), sensitive-skin subjects displayed a significantly lower perception threshold. In addition, stimulation of the skin by capsaicin, in nonsensitive subjects, had no effect on perception of the 5-Hz current, whereas sensitive subjects displayed a long-lived increase in the sensory perception threshold (still in place at last time point of 60 minutes). These findings imply that sensory perception in sensitive subjects is easily disturbed by weak stimulation, inducing a wide variability of response compared with nonsensitive subjects, an effect that appears to be c-fiber modulated. The study was conducted in only eight subjects (four with sensitive skin) and should be followed up in a larger population (103).

CONCLUSION: A VALID SYNDROME WITH MULTIPLE ORIGINS?

Sensitive skin, though now largely recognized as genuine syndrome of physiological origin, is still a subjective complaint with no consistent associations (15), no likely etiologies defined (28), no predictable or classical visible signs of irritation, no immunological verifiable response and no accepted and reproducible diagnostic test (26). Although it is clear that specific individuals clearly have heightened sensitivity to different kinds of sensory and physical irritants, observed reactions are not predictive of generalized sensitivity, and the relationship between observed sensitivities is unclear (14,33). Evidence suggests that sensitive skin may not be a single condition, but one that encompasses different categories of subjects and sensitivities based on different mechanisms (31)—not a single entity, but a heterogeneous syndrome (9). Multiple etiologies would not be farfetched, as the nervous system does not act in isolation but is interdependent with both the immune system and should be followed up in a larger population (103).

Table 8.4 Some Methodologies Used for Sensitive Skin

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Sensory affect evaluated</th>
<th>Physical effect evaluated</th>
<th>Relevant irritants</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactic acid (5)</td>
<td>Stinging</td>
<td>None</td>
<td>Cosmetics, other personal preparations meant to be left on</td>
<td>Highly sensitive and specific<sup>a</sup></td>
<td>Does not predict sensitivity to other irritants</td>
</tr>
<tr>
<td>Capsaicin (26)</td>
<td>Stinging</td>
<td>None</td>
<td>Cosmetics, other personal preparations meant to be left on</td>
<td>Sensitive, detection threshold well correlated (inversely) to perception of sensitive skin</td>
<td>Does not predict sensitivity to other irritants</td>
</tr>
<tr>
<td>Sodium lauryl sulfate (25)</td>
<td>Burning</td>
<td>Erythema</td>
<td>Industrial exposures, cleaning products</td>
<td>Sensitivity to one irritant not predictive of general sensitivity, relationship to sensitive skin in question</td>
<td>Requires specialized equipment</td>
</tr>
<tr>
<td>Cross-polarized light (97)</td>
<td>None</td>
<td>Subclinical erythema</td>
<td>Any potential irritant</td>
<td>Permits detection of physical changes not apparent by standard visual scoring, noninvasive</td>
<td></td>
</tr>
<tr>
<td>Thermoscan (99)</td>
<td>None</td>
<td>Temperature increases resulting from inflammatory processes related to skin injury</td>
<td>Any potential irritant</td>
<td>Noninvasive, objective, quantitative</td>
<td>Requires specialized equipment</td>
</tr>
<tr>
<td>Sebutape<sup>ii</sup> (100)</td>
<td>None</td>
<td>Measurement of cytokines produced by injured skin</td>
<td>Any potential irritant</td>
<td>Noninvasive, objective, potentially very sensitive</td>
<td>Requires training, specialized equipment; utility for sensitive skin still unassessed</td>
</tr>
</tbody>
</table>

^aLactic acid test positive in 90% of women who claim sensitive skin.

Source: From Ref. 5.
and the skin, sharing numerous cellular contact as well as the same language of cytokines and neurotransmitters. All three interact to affect cutaneous responses (30).

There is an urgent necessity to establish methodologies with the capacity to accurately identify sensitive skin (9), independent of self-assessed reports (26). Methods are needed that are capable of detecting very subtle skin benefits or potential for adverse effects. Testing has been done primarily on normal subjects, bringing into question the need to focus on examining populations that may be sometimes inherently more sensitive to irritant effects (22). Some studies did compare the irritation potential of products between self-declared sensitive-skin to nonsensitive-skin subjects (104,105). A summary of current methodologies used to identify sensitive skin is shown in Table 8.4.

Subclinical irritation may be the key to understanding sensitive skin (19), as sensations elicited by product exposure are generally discerned long before observable differences (19). One significant advance in the understanding of sensitive skin is the development of new, noninvasive techniques, for example, cross-polarized light-enhanced visualization, which has demonstrated good correlation with sensory perceptions and the ability to measure subclinical damage (97).

An immediate need is to build on what is known with improved techniques, carefully crafted protocols that evaluate appropriate exposures and study populations, and rigorous methodological and statistical procedures, bringing the study of sensitive skin out of the realm of fairy tales and into the realm of a genuine physiological disorder worthy of focused research. The challenge of the future is to unravel the biological link between subjective clinical signs and their physical sequelae as a means to develop appropriate diagnostic criteria as well as to understand the etiology of this still largely mysterious disorder.

REFERENCES

1. Farage MA. Are we reaching the limits or our ability to detect skin effects with our current testing and measuring methods for consumer products? Contact Dermatitis 2005; 52:297–303.
42. Goffin V, Pierrard-Franchimont C, Pierrard GE. Sensitive skin and stratum corneum reactivity to household cleaning products. Contact Dermatitis 1996; 34:81–85.

60. Weigand D, Mershon M. The cutaneous irritant reaction to O-chlorobenzylidene malonitrile (CS); quantitation and racial influence in human subjects. Edgewood Arsenal, Number 3432, 1970.

Hyaluronan (hyaluronic acid)

Birgit A. Neudecker, Robert Stern, and Howard I. Maibach

ABSTRACT

Hyaluronan (hyaluronic acid, HA) is a straight chain non-sulfated glycosaminoglycan polymer and the predominant component of the extracellular matrix (ECM). HA is present in almost every vertebrate tissue with its highest concentrations occurring in the vitreous of the eye, in the synovial fluid of the joint capsule and in the umbilical cord. However, over 50% of the total body HA is present in skin (1).

In the past decades, hyaluronan has emerged surprisingly with a variety of new properties and functions, being not only a passive structural ECM component but profoundly effecting cellular metabolism as a critical regulator (2).

It is now well established that HA is synthesized by HA synthases (HAS) and degraded by hyaluronidases (Hyals), both of which are multigene families of enzymes with distinctive patterns of tissue expression. HA is an agonist of the cell surface receptor CD44 (3) as well as the HA-mediated motility (RHAMM), which is an intracellularly located receptor (4). Both exist in complex various isoforms affecting multiple signaling pathways (2).

Hyaluronan size is critical for its various functions. High molecular weight size reflects intact tissues, antiangiogenic, and immunosuppressive states, whereas smaller HA fragments are inducers of inflammation and angiogenesis (5), generally considered a stress signal.

HA also plays a key role in malignant progression, and the aggressiveness of tumors correlate with levels of HA on cancer cell surfaces (2).

Because of its extraordinary capacity to retain large amounts of water, it is responsible for the water content of skin, thus contributing in an important manner to the visual appearance of the skin. The biology of HA is different between dermis and epidermis. In dermis, levels do not diminish with age but instead become increasingly associated with tissues and resistant to extraction in vitro (6). Furthermore, HA plays a critical role in wound healing and aging processes. Chronic inflammation and sun damage caused by UV-light lead to changes in skin HA distribution and loss of skin moisture. Understanding the metabolism of HA and its interactions with other cellular and extracellular components will help to find new possibilities in modulating skin moisture and age-related skin changes.

HYALURONIC ACID OR HYALURONAN—HISTORY

Hyaluronic acid (HA) is the predominant “mucopolysaccharide” of the skin and the major component of the extracellular matrix (ECM). Until the late 1970s, the old term “ground substance” was still used for the ECM, which was first attributed to an amorphous-appearing material between cells using light microscopy by the German anatomist Henle in 1841 (7).

It took until 1928, when Duran-Reynals (8–12) discovered a “spreading factor”: a testicular extract was shown to stimulate the rapid spreading of materials injected subcutaneously, and it functioned by causing dissolution of ground substance. The active principle in the extract was later shown to be a hyaluronidase, one of the class of enzymes that degrade HA.

In 1938, Karl Meyer (13) identified the substrate for the “spreading factor” as a hexuronic acid–containing material that also provided the turgor for the vitreous of the eye. He also proposed to use the term “mucopolysaccharides” to designate hexasamine-containing polysaccharides that occur in animal tissues, referring to the sugar polymers alone, as well as when bound to proteins.

However, it required 20 years before the chemical structure of HA was established (14).

The name HA was proposed from the Greek hyalos (glassy, vitreous) and uronic acid. In 1984 it was renamed to HA.

STRUCTURE OF HYALURONAN

By electron microscopy, HA is a linear polymer (15,16) composed of repeating alternating units of N-acetylglucosamine and glucuronic acid, all connected by β-linkages, GlcAβ(1–3) GlcNAcβ(1–4). Hyaluronan is the simplest of the glycosaminoglycans (GAGs), the only one neither covalently linked to a core protein nor synthesized by way of a Golgi pathway, and is the only nonsulfated GAG. Hyaluronan is thus the only GAG to date that is not also a component of a proteoglycan.

It has the anomalous ability of being both hydrophobic and hydrophilic, to associate with itself, with cell surface membranes, with proteins, or with other GAGs (17,18). The molecular domain of HA encompasses a large volume of water, and even at low concentrations, solutions have a very high viscosity. Dependent on pH, salt concentration, and associated cations, HA can take on a number of different shapes and configurations.

HA may reach a molecular mass of several millions. Although it has a simple chemical composition, HA has an extraordinarily high number of functions because of its molecular size. HA fragments constitute an information-rich system (19).

BIOLOGY OF HYALURONAN

Hyaluronan acts as an organizer of the ECM, being the central molecule around which other components of the ECM orient themselves (20). Hyaluronan is generally produced in the interstitium, in the mesenchymal connective tissue of the body, being mainly a product of fibroblasts. HA is found at high concentrations in the dermis where it regulates water...
HYALURONAN (HYALURONIC ACID) 85

SYNTHESIS

Hyaluronan is synthesized by members of the HA synthase family (HAS1, HAS2, and HAS3), three different isoforms that are located on the inner plasma membrane (41–43). The growing molecule is extruded via ABC-transporter (44) into the ECM under the influence of the HAS enzymes, permitting unconstrained polymer growth. The hyaluronan synthases produce different sizes of polysaccharide chains with average molecular weights of 2–4 × 10^6 Da for HAS1 and HAS2, and 0.4–2.5 × 10^5 Da for HAS3 (45,46).

Specific functions of the single members of the enzyme family have been only partly characterized. It is known that HAS1 and HAS2 produce high molecular weight HA that comprises, to a major extent, the three-dimensional structure of the ECM (47). HAS3 synthesizes HA of a lower molecular weight (48). Such low molecular weight HA has been shown to be more active during cell signaling (49–52). In case of low cell density, high HA synthesis correlates with a high proliferation rate and enhanced cell motility. Vice versa, high cell density corresponds with a low proliferation rate and low-level HA synthesis. Several growth factors such as EGF, PDGF, TGF-β1, TGF-β2, Igf-I, FSH, cytokines such as IL-1, interferon-γ are able to regulate HA synthesis via phosphorylation events (53–57). The various HA receptors also regulate synthesis of HA (58).

Glucocorticoids induce a nearly total inhibition of HAS messenger RNA (mRNA) in dermal fibroblasts. Extracts of dermal fibroblasts indicate that HAS2 is the predominant HAS in these cells. This may be the molecular basis of the decreased HA in glucocorticoid-treated skin. Levels of skin HA decrease after short-term glucocorticoid treatment because of a reduction in HA synthesis, whereas HA degradation is not changed (59).

THE HYALURONIDASES

Hyaluronan is degraded through the hyaluronidase (HYAL) family of enzymes (60). In vertebrate tissues, total HA degradation occurs by the concerted effort of three separate enzymatic activities, hyaluronidases, and two exoglycosidases that remove the terminal sugars, a β-glucuronidase, and a β-N-acetyl glucosaminidase. Endolysosomal cleavage by the hyaluronidases generates ever-increasing numbers of substrates for the exoglycosidases. HYAL1 and HYAL2 are acid active enzymes that are located in the lysosomal compartment and glycosyl phosphatidylinositol-anchored in the plasma membrane, respectively. In a recent study, however, HYAL2 could not be detected in the plasma membrane but in a cellular localization, which might depend on the cell type (60–64). HYAL1 generates tetrasaccharides, whereas HYAL2 produces HA fragments of 10–20 × 10^5 Da (29,65). Both enzymes exist as soluble isoforms (61,65,66). HYAL3 is less characterized. It is still a matter of debate as to what extent HA is degraded by HYALs extracellularly and whether HA fragments are retained or released within the tissue (66,67). To date, such degradation products of HA have been rarely detected in vivo (68).

Especially in cases of tissue injury, in addition to the hyaluronidase catabolism also nonenzymatic degradation occurs by free radical–related depolymerization (29). This mechanism of depolymerization requires the presence of molecular oxygen, resulting in HA oligomers of different length (69–72). Such HA fragments of small and of intermediate size are highly pro-inflammatory (73).

HYALURONIDASE INHIBITORS

Circulating hyaluronidase inhibitor activity has been identified in human serum over half a century ago (74,75). Modifications in levels of inhibitor activity have been observed in the serum of patients with cancer (76,77), patients with liver disease (78), and with certain dermatological disorders (79). Classes of lower molecular weight inhibitors of hyaluronidase have been identified; some of which are from plant origin such as flavonoids (80–82), aurothiomalate (83), hydrangenol (84), tannins (85), derivatives of tranilast (86), curcumin (87), and glycyrrhizin (88). Clinically, heparin, used as an anticoagulant, has potent anti-hyaluronidase activity (89), as does indometacin (90,91), a classic nonsteroidal anti-inflammatory agent, and salicylates (92).

HYALURONAN RECEPTORS

To date, three main groups of HA receptors have been identified: CD44, RHAMM (receptor for cell-mediated motility), and intracellular adhesion molecule 1 (ICAM1), with wide variations in locations, cell surface-associated, intracellular, both
cytoplasmic and nuclear. The most prominent is CD44, a transmembrane glycoprotein that occurs in a great variety of isoforms, products of a single gene with variant exon expression (93–96). Additional variations can occur as a result of post-translational glycosylation and addition of various GAG. CD44 is able to bind to a number of other ligands and has been shown to interact with fibronectin, collagen, and heparin-binding growth factors. Furthermore, CD44 plays a key role in cellular uptake of HA via internalization of the receptor with the attached HA. The complex is then catabolized in the lysosomes. CD44 has a high affinity to HA; other GAGs do barely compete with HA. However, small HA oligomers (decasaccharide size) are able to “disconnect” the attached HA (97).

CD44 plays an important role in epidermal differentiation being a marker of growth and normal differentiation. The presence of CD44 marks the onset of keratinocyte stratification and mesenchymal maturation in fetal human skin (98), and the receptor function is calcium independent.

CD44 is distributed widely, being found virtually on all cells except red blood cells. It plays a role in cell adhesion, migration, lymphocyte activation and homing, and in cancer metastasis. The appearance of HA in dermis and epidermis parallels the histolocalization of CD44. The HA in the matrix surrounding keratinocytes serves as an adhesion substrate for Langerhans cells with their CD44-rich surfaces, as they migrate through the epidermis (99,100). In skin pathophysiology, the effect of local and systemic immune disorders on such interactions between Langerhans cells and keratinocytes awaits explanation (101).

The other major receptor for HA is RHAMM (102,103), which is implicated in cell locomotion, focal adhesion turnover, and contact inhibition. It is also expressed in a number of variant isoforms. The interactions between HA and RHAMM regulate locomotion of cells by a complex network of signal transduction events and interaction with the cytoskeleton of the cells. It is also an important regulator of cell growth (104).

In fibroblasts, TGF-β triggers the transcription, synthesis, and membrane expression not only of RHAMM but also the synthesis and expression of HA, all of which occurs coincidently with the initiation of locomotion (8,105).

HYALADHERINS
Hyaluronan also circulates in a free form in the lymphatic or cardiovascular system. However, even in this relatively free form, there are a number of binding proteins that decorate HA. These are referred to collectively as hyaladherins (26,27). The hyaladherins associate with HA through electrostatic bonds (28). It is likely that some of the unique properties attributed to HA are in fact a function of the hyaladherins that are bound to the HA. Growth factors, collagen (106), and a number of other proteins have been identified. One of the major challenges and opportunities in dermatology is to identify the profile of hyaladherins specific for the HA of dermis and epidermis, to characterize these proteins, and to understand their function in relation to age-related changes.

HYALURONAN IN THE ECM
The ECM that surrounds cells and occupies the variable spaces between cells is composed predominantly of structural proteins such as collagen and elastin, as well as proteoglycans, and a number of glycoproteins. The basal lamina or basement mem-

brane that separates dermis and epidermis is composed of similar materials, and is therefore also considered an ECM structure. A number of growth factors are embedded in the ECM, concentrated by ECM components where they are protected from degradation. Such factors are presented to cells as mechanisms for growth control and modulators of cell function. Heparan sulfate-containing proteoglycans bind members of the FGF and EGF family (107), while HA can bind growth factors such as TGF-β (108). An HA-rich environment is required for the maintenance of the undifferentiated, pluripotential state, facilitating motility and proliferation, while the heparan sulfate proteoglycans promote differentiation. However, the concentration of HA in the ECM can vary widely. Diameters of collagen fibers can be modulated by levels of HA, the thinner more delicate fibers being favored in regions of high HA concentrations. In fibroblast cultures, the addition of exogenous HA to the medium decreases the diameter of the collagen fibers that accumulate (unpublished observations).

WOUND HEALING
In the earliest stages of wound healing, the ECM is very rich in HA, opening up intercellular spaces and creating a perfect environment for the high number of inflammatory cells to migrate into the temporary wound matrix. The initial granulation tissue formed is highly inflammatory with a high rate of tissue turnover mediated by matrix degrading enzymes and reactive oxygen metabolites produced by inflammatory cells. Low molecular weight fragments trigger the ongoing inflammation, thus playing a crucial role in organizing the granulation tissue. Hyaluronan may then also contribute to a major extend to stabilize granulation tissue by moderating inflammation, since it is able to function as a free radical scavenger (109). In the adult, HA levels rapidly reach a maximum and then drop rapidly (110). Decreasing HA levels are followed by increasing amounts of chondroitin sulfate, the appearance of fibroblasts, and then deposition of a collagen-rich ECM and wound healing results in scar formation (111). In the fetus, however, wound repair is associated with levels of HA that remain elevated, and the final result is a scar-free wound. Such observations were made in experimental fetal rabbit and sheep models as well as clinically in infants delivered following in utero surgery. It is on this basis that elevated HA in the wound matrix is assumed to be a key to decreased scarring, contrac-
tures, and adhesions in adult wound repair.

HA DISTRIBUTION IN EPIDERMIS
Hyaluronan plays an important role in normal epidermis regarding barrier function, reepithelization processes, and wound healing. Especially in lower layers, where proliferating keratinocytes are found (112), HA plays a key role guaranteeing cell nutrition and removal of metabolic degradation products. High levels of HA are able to weaken desmosomal bindings and adhesive junctions of neighboring cells, which has a direct impact on metabolism and lifespan of epidermal cells. Thus, HA can directly influence growth and differentiation of keratinocytes, from the basal layer cells to the corneocyte.

The degree of hydration of the ECM and the activity of the immune system are also closely related. When the extracellular space enlarges, immunologically active cells such as Langerhans cells and lymphocytes can migrate faster through the epidermis (100).
References

Contents

49. Kellogg DL Jr., Liu Y, Pergola PE. Gender differences in the endothelin-B receptor contribution to basal

INTRODUCTION

The anatomic facets of skin are infinite, making a complete review of age-related changes in skin structure problematic. This overview, therefore, focuses on certain readily quantifiable
aspects of skin as related to structure and function. This review focuses specifically on aspects of barrier structure and function, dermal structural support, and cutaneous perfusion. Where possible, we address differences between intrinsic, physiological aging, and extrinsic aging due to photoexposure, wind, relative humidity, and other environmental factors, although we acknowledge that this distinction is not always easily made.

Ultimately, we hope to unify each topic and the general understanding of skin structure and pathophysiology with respect to the aging process.

BARRIER STRUCTURE AND FUNCTION

Much of the pathophysiology of skin aging relates to changes in barrier structure and function. Many of these changes relate to altered homeostasis of stratum corneum (SC) lipid content and SC pH. While studies of aged barrier function through quantitative measures such as transepidermal water loss (TEWL) are variable and often conflicting, altered barrier function clinically manifests in increased xerosis and altered permeability of topical agents in aged skin.
SC Lipid Content and Homeostasis

The “brick and mortar” model is often employed to describe the SC’s protein-rich corneocytes embedded in a matrix of ceramides, cholesterol, and fatty acids, and smaller amounts of cholesterol sulfate, glucosylceramides, and phospholipids.

These lipids form multilamellar sheets amidst the intercellular spaces of the SC, and are critical to the SC’s mechanical and cohesive properties, enabling it to function as an effective barrier (1). Changes in SC lipid content have been inextricably linked to xerosis and eczema, as well as many other skin conditions (1). Table 2.1 summarizes data pertaining to skin lipids and age. Many authors agree that overall lipid content of human skin decreases with age (1,2,6), but in evaluating this literature as a whole, many confounding factors may hinder studies of skin lipids including seasonal and diurnal variation, general interindividual variation, and the use of different methodologies by different researchers. Rogers et al. found a 30% decrease in lipids of the face, hand, and leg in older subjects, but the older group only extended to age 50. No significant change was seen in proportional composition of lipid classes or ceramide species (1). Schreiner compared lipid composition in subjects aged 23 to 27 with that in subjects aged 63 to 69 (3). They did not see any overall difference in lipid
quantity or composition between the groups. However, the aged group consisted of only four subjects, and again, included a narrow age range. Saint Leger et al. studied the lower legs of 50 subjects and found that the lipid profile was constant from age 50 upward; overall, aging was associated with a slight decrease in sterol esters and triglycerides (2). Cua et al. noted significant regional variation within individuals as they studied 11 sites on 29 people, comparing individuals in their third decade of life with those in their eighth. They also found little relation between skin surface lipid (SSL) content and age, except on the ankle, where the elderly demonstrated decreased lipid content (3). Ghadially et al. showed that the internal structure of lamellar bodies and their numbers in the granular layer cytoplasm is similar in aged and young skin, but that there is a paucity of secreted lamellar body contents in focal interstices of elderly skin, resulting in discontinuous distribution of otherwise normal lamellar bilayers (4). Barrier disruption results in upregulation of enzymes involved in lipid synthesis (7), and lipid barrier repair after disruption may be delayed in elderly skin resulting in significantly decreased barrier function after minimal trauma (4,8,9). More important than overall quantitative lipid content may be homeostasis and ratio of cholesterol, ceramides, and free fatty acids to one another, particularly after barrier disruption (8,10-12). While impaired synthesis of aged human epidermal lipids following barrier disruption has not been directly shown, Ghadially et al. demonstrated impaired lipid homeostasis in a murine model (8), wherein after barrier damage, cholesterol synthesis does not keep pace with ceramide and free fatty acid synthesis, resulting in impaired barrier maintenance. Skin Surface pH While study of changes in lipid structure of the SC with age are limited by both interand intraindividual variation (13), and may not completely account for changes in barrier function with age, SC acidity is more readily studied and is at least equally influential in the affecting the barrier status of aged skin (14). Indeed, lipid processing is directly dependent on maintenance of optimally acidic pH via activation of pH-sensitive β-glucocerebrosidase (14). Furthermore, elevated pH leads to activation of serine proteases which prematurely degrade corneodesmosomes, another essential SC barrier component (14). pH increases may be related to decreased expression of an Na/H antiporter channel (NHE1) in aged skin (14). Of note, skin’s acidity is also an important part of the skin surface ecosystem and a contributor to defense against microbiological or chemical insults (15), though further discussion of immunity of aged skin is beyond the scope of
this chapter. Table 2.2 summarizes data pertaining to the relation between skin pH and age. pH appears relatively constant, at least from childhood through age 70 (16–18). However, skin surface pH rises significantly in adults near or older than 70 years of age. Some have noticed that this effect is especially marked in lower limbs, and therefore have attributed the increased pH to stasis and reduced oxygen supply frequently observed on the lower limbs in older individuals (19). Furthermore, pH measurements taken from the skin surface should be interpreted cautiously as “apparent pH;” typical pH measurements are actually measuring extracted material of SC diffusing into water applied at the SC surface, where hydrogen ions are not in solution (20). Table 2.1 Data: SC and SSL Content and Composition Source Methods Results Notes Rogers et al., 1996 (1) Included 28 female Caucasians aged 21–50. Studied lipid composition from eight sequential SC tape stripplings of face, hand, and leg. Corneocytes were removed from the tape stripplings by sonication in methanol, and lipid extracts were treated and separated using HPTLC on 20 10 cm plates. HPTLC plates were developed, dried, and stained, then quantitated using a scanning densitometer at 420 nm. Samples of ceramide fractions from the leg site were also used to analyze ceramide 1 esterified fatty acids in relation to age in the following groups: 26–29 (n = 9), 41–43 (n = 9), 57–60 (n = 10). All lipid classes decreased with increasing age (overall, saw a 30% decrease in lipid content in aged subjects). Decrease was most marked for all ceramide species (1–6) in the face and hand, and for cholesterol in the face (p < .05). Percentage ratios of each of the major lipid classes and of the individual ceramide species remained constant. Esterified FA analysis: Levels of ceramide 1 linoleate decreased with increasing age. There were no significant agerelated changes in other ceramide 1 esterified FA or in FFA species. This study included a fairly narrow age range and does not consider changes in elderly skin. Also, the authors only took 8 strippings from each site; this does not necessarily include the whole SC. This study did account for differences in amount of SC removed by measuring protein content in strippings and normalizing the mass of each lipid fraction removed. Saint Leger et al., 1988 (2) SC lipids were collected from the right and left legs of 50 subjects. The SC lipid profile was generally constant from age 50 upward. Aging was associated with a decrease in sterol esters and triglycerides. Changes in lipids did not seem to account for the increasing xerosis in aged populations. Study focusing on lower legs reveals no significant agerelated changes. Cua et al., 1995 (3) Included 7 females aged 24.3 1.1, 7 males aged 28.7 .5, 7
females aged 75.3 ± 2.4, and 8 males aged 73.8 ± 1.2 yr. Measured 11 anatomical regions’ SSL contents. SSL content was not statistically different between age groups on all regions except for the ankle, where lipid content was lower in the elderly (p < .05). No clear reason is provided as to why ankle SC lipid content may differ with age, whereas other sites did not. Ghadially et al., 1995 (4) Evaluation of SC lipid content in skin of 15 young (20–30 yr) and 6 elderly (>80 yr) subjects following barrier disruption using tape stripping and/or acetone. Structural analysis was performed on shave biopsy specimens of sun-protected volar skin using electron microscopy. Internal structure of lamellar bodies and their numbers in the granular layer cytoplasm is similar in aged and young skin, but that there is a paucity of secreted lamellar body contents in focal interstices of elderly skin. Altered secretion of lamellar bodies results in discontinuous distribution of otherwise normal lamellar bilayers was noted following barrier disruption. Limited number of subjects. Shave biopsy/not truly in vivo evaluation. Schreiner et al., 2000 (5) Included 10 normal subjects aged 25.5 ± 2.5, 10 subjects with dry skin aged 30 ± 6, and 4 subjects aged 66 ± 3 yr. Performed small angle X-ray diffraction and lipid analysis on whole SC samples from lower legs. Measured the percentage and quantity of different barrier lipid classes. No significant difference in total ceramides, free sterols, and FFA’s number between younger and older groups. While not statistically significant, there was an apparent increase in percentage of FFA and compensatory decrease in percent ceramides. According to this study, lipid compositions of different skin types do not differ significantly; the aged group only consists of 4 subjects. Note: The table presents data for age-related changes in lipid content and composition. See text for discussion. Abbreviations: SSL, skin surface lipid; HPTLC, high performance thin layer chromatography; FA, fatty acid; FFA, free fatty acid.

SC Hydration and Transepidermal Water Loss

While from the above discussion one might presume decreased quantitative measurements of barrier function with aged skin, research has thus far produced conflicting, and often confusing results. Numerous studies of TEWL have shown a decrease in this parameter in aged skin compared with young skin.
whereas others have demonstrated no significant measurable
difference in TEWL in older skin (5,16,25,28-31).
Measurements
of SC hydration via studies of capacitance and conductance
and/or spectroscopy have generally revealed significantly decreased
hydration with age (5,16,29,27,32-35), though a few studies have
failed to show significant difference between certain parameters
of hydration of aged and young SC (16,36). We suspect that variability in quantitative measurements
of TEWL and SC hydration can be explained by the sheer
complexity of skin physiology. Parameters of hydration, which
one might expect to be straightforward reflections of barrier
function, are undoubtedly also influenced by interindividual/
site variation of SC thickness, sebum secretion, cutaneous
perfusion, core body temperature, and external conditions
and humidity, among many other factors (37-39).
DERMAL STRUCTURE
Aside from the changes in SC barrier function in aged skin,
measurable alterations in the dermal structural network of
collagen, elastin, proteins, glycosaminoglycans (GAG), and
water lead to changes in elderly skin’s tensile strength and
resilience.
Table 2.3 summarizes data pertaining to skin collagen. Collagen, which comprises approximately 70% to 80% of the dry weight of the dermis, is primarily responsible for skin's tensile strength. In chronologically aged skin, the rate of collagen synthesis, activity of enzymes that act in the posttranslational modification, collagen solubility, and thickness of collagen fiber bundles in the skin all decrease (48,49). Also, the ratio of type III to type I collagen increases with increasing age (42,49). In photoaged skin, collagen fibers are fragmented, thickened, and more soluble (48). The increased fragmentation of collagen especially in photoaged skin is secondary to upregulation of collagen-degrading matrix metalloproteinases (MMP) by UV radiation (48-50). UV exposure acutely activates MMP via formation of reactive oxygen species including peroxynitrite (51), as well as by paracrine release of cytokines such as IL6 by keratinocytes (52,53), and more slowly via activation of multiple signaling pathways including MAP kinase pathways, ultimately stimulating increased transcription of MMP (54,55). MMP are also similarly, though more gradually, upregulated in chronologically aged photoprotected skin (51,54). From a biochemical standpoint, chronological aging induces increased markers of oxidation, glycoxidation, lipoxidation, and glycation in skin collagen (56). In particular, skin collagen's cross-linking lysine residues undergo significant oxidative changes with age. Lysine oxidase, a copper-dependent enzyme, converts lysine to allysine at all ages. Recently it has been shown that allysine is further oxidized to a stable end product, 2-aminoadipic acid. This oxidative change results in significant accumulation of 2-aminoadipic acid in collagen of aged skin; increased oxidative end product is also seen in diabetes, renal failure, and sepsis (56). Aside from increased degradation and fragmentation, aged skin exhibits decreased fibroblast function resulting in reduced collagen synthesis and replacement (57). At least one proposed mechanism involves UV-induced mitochondrial damage from reactive oxygen species triggering apoptosis of fibroblasts (54,58).

Table 2.2 Data: pH

<table>
<thead>
<tr>
<th>Source</th>
<th>Methods</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
</table>
Fluhr et al.,

2000 (16) Measured the volar forearm of 44 adults, aged 21-44 (mean 34.6), and 44 of the adults’ children, aged 1-6 (mean 3.5). Used a Skin ph-Meter to measure pH. No significant difference in pH of childrens’ skin vs. adults’ skin. This is not a broad enough age range to assess changes in elderly skin.

Diktein et al.,

1984 (17) Tested forehead skin of 500 female patients, aged 20-70. For pH measurement used planar dura probe electrode. Found no significant correlation between age and pH. This is a fairly large study over a fairly broad age spectrum.

Shoen, 1982 (18) pH is practically constant up to the age of 70 then rises significantly above the mean value of the “below 70” age group.

Wilhelm et al.,

1991 (19) Studied 11 anatomic locations in 14 young adults (26.7 ± 2.8 yr) and 15 aged adults (70.5 ± 13.8 yr); half of the subjects were male and half female. Measured skin pH in duplicate with flat surface glass electrode connected to a Skin pH meter. Mean pH varied from 4.8 (ankle) to 5.5 (thigh) in the young group and from 5.0 (forehead) to 5.5 (abdomen) in aged individuals. pH was significantly higher in the aged group on the ankle and the forehead. However, on all other anatomic regions, no significant differences in skin pH were noted. Authors possibly attribute the pH difference in the ankle to stasis and reduced oxygen supply frequently observed on the lower limbs in older individuals. Also, this data still agrees with above information because it includes adults over 70.

Note: The table summarizes data pertaining to age-related changes in skin pH. See text for discussion. Table 2.3

Data: Collagen Source Methods Results Notes Shuster et al., 1975 (40) 74 Caucasian males, 80 females aged 15-93
Biopsies were taken from the midpoint of extensor aspect of forearm using high-speed 5-mm punch. Some post mortem samples were included. Samples were defatted in acetone, dried to constant weight, hydrolyzed, and their hydroxyproline content was measured. Linear decrease in absolute collagen content with age, 1% per year. Collagen density decreases with age (p < .001). Saw a significant relationship between skin thickness and collagen content for all males (p < .001) and for females greater than 60 yr
old (p < .001). Collagen decreases with age. This method may be subject to preparation artifacts. Gniadecka et al., 1998 (41) Study of Caucasians included 10 people aged 74-87 and 10 people aged 22-29. Obtained Raman spectra from buttock skin and forearm skin, using NIF-Raman spectroscopy. Photoaged skin: collagen fibers are fragmented, thickened, and more soluble, elastin fibers form conglomerates, and amount of glycosaminoglycans increases. Chronologically aged skin: changes are more subtle. Despite an overall increase in number of collagen fibers, these are thinner and less soluble. Also see a relative increase with age in the collagen III/collagen I ratio. Raman spectroscopy allows a detailed analysis without preparation artifacts. The information here agrees with many of the other studies represented in this table. Lovell et al., 1987 (42) Strips of abdominal skin obtained at laparotomy or post mortem from 30 subjects, age 0-90 yr. Some samples were cut and acid hydrolyzed; hydroxyproline content was determined using an automated amino acid analyzer and the total collagen calculated from hydroxyproline estimations. Collagen content was calculated both per unit weight of freeze-dried skin and per unit surface area. Other skin samples were digested with CNBr, and type I: type III ratios were calculated using SDS polyacrylamide gel electrophoresis. Pepsin digestion and HPLC separation of denatured a chains was also used to calculate type I: type III ratios. Indirect immunofluorescence enabled analysis of frozen skin samples antibody-labeled for types I, II, IV, and V collagens. Scanning electron microscopy was used to study the diameters of bundles of collagen fibers. Hydroxyproline content and estimates of total collagen content did not vary significantly with age. SDS gel electrophoresis showed type III collagen content of skin samples from 2 young donors (age 5) was 20-23%. In people aged 14-65, measurements were relatively constant; showed content of type III collagen to be 18-21.5%. In people over 65 there was greater variation, levels of type III were increased and as high as 31%. The HPLC method was less conclusive because pepsin digestion and separation of collagen component chains was incomplete, especially in skin samples from older individuals. Immunofluorescence data showed no gross changes in distribution of the various collagen types during aging. Scanning electron microscopy: decrease in number of collagen fiber bundles per unit area in the papillary area with increasing age. The oldest subject (82 yr) had reduced bundle width (p < .0001) compared with 4 other subjects aged 15-50. Electron microscopy measurements represented a small study population and are therefore somewhat questionable (n = 5). Hydroxyproline
approximations of collagen content appear more reliable, as they include 29 subjects, dispersed between age 3 mo and 82 yr; however, this still reflects a small number of subjects in any given age range. The shift in collagen type with aging prompts the question of whether this was due to increased type III synthesis or decreased type I synthesis. This study does not provide an answer. Fisher et al., 1996 (43) Adult buttock skin (number of subjects not clarified) was irradiated with 2 MED UVB in vivo (twice the dose required to cause barely perceptible reddening). Irradiated and adjacent nonirradiated sites were removed at various times following irradiation and snap-frozen. RNA contents were then analyzed using northern blot. Band intensities were quantified using a PhosphorImager. Protein content in skin was quantified using western blot. Nuclear extracts from irradiated and nonirradiated skin were also temporally analyzed for AP-1 and NF-κB binding to double-stranded DNA probes were measured by electrophoretic mobility-shift assays. Transcription factors NF-κB and AP-1 showed 2.5-to 3-fold increased binding to DNA within 15 min of irradiation, lasting up to 4 hr after irradiation. Induction of interstitial collagenase, streptomelysin 1, and 92-kd gelatinase mRNAs was maximal (6–60 fold, p < 0.05) at 16–24 hr, and returned to near baseline within 48–72 hr. 72-kd gelatinase mRNA was detectable but was only elevated 1.6 fold at 24 hr post UVB exposure. Confirmation that mRNA rises corresponded with actual collagenase protein rises was done using western blot. Within minutes of UVB exposure, transcription factors AP-1 and NF-κB showed increased binding to DNA, stimulating synthesis of various collagenase mRNAs, which resulted in increased synthesis of collagenase proteins. Authors provide direct, in vivo mechanistic evidence of UVB exposure’s resulting in increased collagenases in skin. (continued) Histological data (41,59) reflects the impacts these biochemical changes ultimately have on the orientation and arrangement of collagen fibers in skin. Lavker et al. compared skin from the upper inner arm of old (age 70–85) and young (age 19–25) individuals using light, transmission electron, and scanning electron microscopy (59). In aged skin, the density of the collagen bundle network appears artifactually increased
because of a decrease in ground substance (59), and rather than appearing in discrete rope-like bundles of tightly packed fibers, collagen forms aggregates of loosely woven, mostly straight fibers in elderly skin. As fibers become straighter in aged skin, there is less room for the skin to be stretched, so tensile strength decreases (59). Hence both on biochemical and microscopic levels, reduced collagen deposition and enhanced degradation of collagen contribute to development of dermal atrophy, wrinkles, decreased tensile strength, and poorer wound healing in the elderly. Dermal Elastin Table 2.4 summarizes skin elastin data. The skin’s intact elastic fiber network, which occupies approximately 2% to 4% of the dermis by volume, provides resilience and suppleness. This network shows definite changes associated with aging, especially between the ages of 30 and 70. Accumulation of new elastin in response to photoaging is also apparent from Table 2.3 Data: Collagen (Continued)

Source Methods Results Notes

Fisher et al., 1997 (44) Caucasian adults underwent irradiation of skin at four separate buttock sites, with each site exposed one, two, three, or four times to radiation delivered at 48-hr intervals at .5 MED. Skin specimens were obtained from irradiated and adjacent nonirradiated sites at 24 hr after the last exposure. After a single exposure to UV irradiation, collagenase and 92-kd gelatinase activity was elevated 4.4 ± 0.2 times the value in nonirradiated skin and 2.3 ± 0.4 times, respectively. Collagenase and gelatinase activity remained maximally elevated after the second, third, and fourth exposures on days 3, 5, and 7, respectively. Repeated UV exposure leads to sustained induction of the MMP.

Varani et al., 2000 (45) 72 subjects provided skin samples from
sun-protected areas; age groups compared were 18–29, 30–59, 60–79, and 80þ. Levels of MMP-1 were assessed using western blot, and levels of MMP-9 and MMP-2 were assessed using gelatin zymography with scanning laser densitometry for quantitation. Levels of types 1 and 3 procollagen were measured using western blot. In the 80þ-yr-old group compared with the 18to 29-yr-old group, there was a 40%, 52%, and 82% increase in MMP 1, 9, and 2, respectively (p<0.01, 0.05, and0.001). In the 60to 79-yr-old group compared with the18to29-yr-old group, therewasa 23%,20%, and44% increase inMMP1,9, and 2, respectively (p < 0.05, NS, and p < 0.05, respectively). There was a 52% decrease in type1procollagenexpression in 80þ yr-olds vs. 18to 29-yr-olds (p ¼ 0.022). Chronological aging results in elevated expression of MMP and decreased expression of types 1 and 3 procollagen.

Varani et al.,

2006 (46) Young (18–29 yr) vs. old (80þ yr) subjects participated. Replicate 2and/or 4-mm punch biopsies of sun-protected hip skin were obtained from each individual. 4-mm punches were used for fluorescence microscopic and ultrastructural analysis and for assessment of type 1 procollagen levels. 2-mm biopsies were used for routine light microscopy and for isolation of dermal fibroblasts in culture. Fibroblasts from young skin produced greater type 1 procollagen than those from old skin (82 16 vs. 56 8 ng/mL, p < 0.05). A reduction in mechanical stimulation in chronologically aged skin was inferred from greater percentage of cell surface attached to collagen fibers (78% 6% vs. 56% 8%, p < 0.01) and more extensive cell spreading (1.0 0.3 vs. 0.5 0.3, p < 0.05) in young vs. old skin. Authors hypothesize that old fibroblasts have an agedependent reduction in the capacity for collagen synthesis while simultaneously experiencing a loss in mechanical stimulation resulting from fewer intact collagen fibers.

Sell et al.,

2007 (47) Human skin samples from 117 people, aged 10–90 yr, were obtained at autopsy. Amounts of 2-aminoadipic acid and 6-hydroxynorleucine (a marker of allysine) in the collagen were determined in acid hydrolysates of processed samples using ion-monitoring gas chromatography. Quantitative contents of 2-aminoadipic acid and 6-hydroxynorleucine were compared in young and old subjects as well as in those with histories of diabetes, renal failure, and sepsis. 2-aminoadipic acid (p < 0.0001), but
not 6-hydroxynorleucine (p = 0.14) significantly increased with age, reaching levels of 1 and 0.3 mmol/mol lysine at late age (mean 82), respectively. Significant increased in 2-aminoadipic acid, but not 6-hydroxynorleucine, were also seen in patients with diabetes (p < 0.0001, levels of 2-aminoadipic acid up to <3 mmol/mol), renal failure (levels of 2-aminoadipic acid up to 8 mmol/mol), and especially sepsis (p = 0.0001). 2-Aminoadipic acid, a panmarker for all forms of lysine oxidation, significantly increased in aging human skin. Levels of its precursor, allysine, are in steady-state suggesting ongoing oxidation of allysine to form the stable end product, 2-aminoadipic acid.

Note: The table presents data on age-related changes in elastin structure. See text for discussion.

Abbreviations: MMP, matrix metalloproteinases; MED, minimal erythemogenic dose; SDS, sodium dodecyl sulfate; HPLC, high performance lipid chromatography. upregulation of the elastin promoter activity and increased abundance of elastin mRNA (60,62). Bernstein et al. compared photoaged with intrinsically aged skin, and found a 2.6-fold increase in elastin mRNA, a 5.3-fold increase in elastin expression, and a 5-fold increase in elastin promoter activity in photodamaged skin (62). However, these apparent increases in elastin synthesis do not account for the massive accumulation of elastic material seen histologically in photoaged skin (62). Some attribute this to elastin degradation being slower than synthesis, leading to an accumulation of partially degraded fibers. Recent work has revealed that proteins such as elafin and lysozyme, expression of which is induced by UVA Table 2.4 Data: Elastin Source Methods Results Notes Robert et al., 1988 (57) Analyzed 6-mm punch biopsies of skin from buttock and upper inner arm of 50 individuals (40 males, 10 females). Used a specific elastic staining procedure, then automated computerized image analysis. Calculated percent surface area covered by elastic fibers, length, and number of elastic fibers per unit surface area in superficial (papillary) and deep (reticular) dermis as a function of age. Percent surface area coverage by elastic fibers increased with age in superficial and deep dermis: Males: superficial dermis, r = .66, p < .001. Deep dermis, r = .56, p < .01. Similar correlation in females did not reach significance because of small sample size. Mean fiber length also increased with age in the superficial and deep dermis: r = .06, p < .02. Number of elastic fibers per unit surface area showed no
significant change with age in either the superficial or deep dermis. Continuous increase with age in the length and relative surface area of elastic fibers. This appears to contradict these authors’ rheological studies on the same patients that show a continuous decrease in skin elasticity with age (60). The authors attribute this to the possibility of continuous enrichment with age in polar amino acids, carbohydrates, lipids, and calcium of the skin elastic fibers. These structural changes in elastic fibers may interfere with their proper functioning. Ritz-Timme et al., 2003 (60) 2.2 cm skin samples were taken from ventral abdomen during autopsy. Paraffin sections of all samples were examined histologically. Then elastin was purified and AAR was quantified. Specific ages are not given. In total skin, specimens displayed slight age-dependent increases in Dasparyl residues; in purified elastin the rate of increase was rapid and highly correlated with age (r = .98). This paper goes into great detail which is beyond the scope of this overview, but does provide interesting insight into elastin degradation. Ritz-Timme et al., 2002 (61) Review paper. Accumulation of new elastin in response to photoaging can be seen from upregulation of the elastin promoter activity and increased abundance of elastin mRNA. However, de novo synthesis of elastin in adult tissues is ineffective. This paper provides a review of aspartic acid racemization and its role in skin aging. Bernstein et al., 1994 (62) 16 males aged 49–66. 4-mm punch biopsies taken from the sun-damaged neck and photoprotected buttock. Studied samples using Northern blot analyses, transient transfections with a human elastin promoter/reporter gene, and immunohistochemical staining with elastin and fibrillin antibodies. Analyzed samples in pairs to determine effects of photoaging. Northern analysis of frozen sections: up to a 2.6-fold increase in elastin mRNA in exposed vs. nonexposed skin. Analysis of mRNA from fibroblast cultures: 5.3-fold increase in elastin expression and 2.5-fold increase in fibrillin expression in photodamaged skin. Transient transfection of cultured cells revealed 5-fold increase in elastin promoter activity. Score for elastin staining in superficial dermis, protected skin: .62 .52 exposed skin: 5.0 .76. (n = 8, p < .000,001). Score for fibrillin staining in superficial dermis protected skin: .75 .46. photoaged skin: 3.1 .64 (p < .0001). This study does not include a very broad age range. Also, since it used several different methods to establish mechanistic details, each method had a very small sample size (3 in Northern Blot analysis of total RNA from frozen sections, 3 in Northern Blot analysis of fibroblast culture, 2 for transient transfection method, and 8 for immunohistostaining method). The increase in elastin
promoter activity and mRNA do not account for the degree of accumulation of elastoid material seen histologically in superficial and mid dermis of photoaged skin. It is suggested that most of the material staining as elastin in photoaged skin is structurally abnormal. Authors propose that elastin degradation may be slower than production, with accumulation of partially degraded elastic fibers.

(continued)

radiation, prevent elastin degradation by human leukocyte (neutrophil) elastase (62). In purified skin elastin, the amount of racemized aspartic acid increases rapidly and is highly correlated with age (r = .98) (60). This indicates that skin’s elastin, like elastin in the aorta and lung, is long-lived and accumulates damage over time (57,59). Computerized image analysis of elastin-stained skin biopsies from photoprotected sites reveals an age-related increase in mean elastin fiber length and percentage surface area coverage in the dermis, but these fibers are thought to be abnormally enriched in polar amino acids, carbohydrates, lipids, and calcium (57). The finer oxytalan fibers in the papillary dermis are depleted or lost altogether; eluanin and elastic fibers become progressively abnormal (57). Elastin, therefore, exhibits numerous age-related changes, including slow degradation and accumulation of damage in existing elastin with intrinsic aging, increased synthesis of apparently abnormal elastin in photoexposed areas,
and abnormal localization of elastin in the upper dermis of photodamaged skin. These factors lead to the histologically evident elastoic accumulation and contribute to characteristic clinically appreciated changes of elderly skin being more lax and more prone to wrinkles.

Proteins, Glycosaminoglycans, and Water

Table 2.5 summarizes data pertaining to other skin protein structure. Through Raman spectroscopy, little difference is seen between photoexposed and protected areas in young individuals; the majority of proteins in young skin are in helical conformation. Intrinsically aged skin shows slightly altered protein structure, and photoaged skin reveals markedly altered protein conformation, with increased folding and less exposure of aliphatic residues due to water (41,64). Amino acid composition of proteins and free amino acids (FAA) in aged skin also differ significantly from that of young skin, including an increase in overall hydrophobicity of amino acid fractions from the elderly (56). Since FAA are believed to play a key role in SC water binding, this shift in their composition, combined with the evidence of altered tertiary protein structure, provides insight into the increased incidence of xerosis in aged individuals. The content and distribution of GAG, especially hyaluronic acid, also impact skin hydration (66). Table 2.6 summarizes data regarding GAG. Quantitatively, GAG increase in photoaged skin compared with young or intrinsically aged skin (64,66). This seems paradoxical, as photoaged skin appears leathery and dry, unlike newborn skin, which also contains high levels of GAG. Confocal laser scanning microscopy reveals that GAG in
photodamaged skin are abnormally deposited on elastoic material, rather than diffusely scattered as in young skin (66). This aberrant localization may interfere with normal water binding by GAG, despite their increased number. In young skin, most of water is bound to proteins and, appropriately, is called bound water (41). This is important for the structure and mechanical properties of many proteins and their mutual interactions. Water molecules not bound to proteins bind to each other, and are called tetrahedron or bulk water (41). Data pertaining to water structure and aging is summarized in Table 2.7.

Intrinsic aging does not appear to alter water structure significantly (64). However, in photoaged skin, Raman spectroscopy reveals an increase in total water content. Again, this seems paradoxical, as aged skin is often dry and weathered. However, structurally, significantly more of the water in aged skin is in tetrahedron form. Thus, as proteins are more hydrophobic and folded, and GAG are clumped on elastoic material, they interact less with water, and water in aged skin binds to itself instead. This lack of interaction between water and surrounding molecules in photoaged skin likely contribute to its tendency toward a more dry and wrinkled appearance.

Table 2.4 Data: Elastin (Continued)

Source Methods Results Notes

Seite et al., 2006 (63) 91 skin biopsies from unexposed (buttock area) skin aged 21–80 yr, 30 specimens from semiexposed (forearm) skin aged 22–64 yr, and 24 specimens from severe exposure (facial) skin aged 45–65 yr. UV exposure’s (280–400 nm) influence on lysozyme deposition measured using 122 samples from buttock skin aged 20–40 yr. Measurement of elastin and lysozyme via direct immunofluorescence with computer-aided quantitation. Reduced elastin content with age in buttock skin (groups aged 61–80 had significantly less elastin than groups aged 21–50 yr). Relative amount of elastin in the face of subjects aged 51–70 were abnormally high compared with buttock and forearm skin of those age groups. UVA (320–400 nm), especially long wave UVA (340–400 nm) induces lysozyme deposition in elastin fibers to a significantly greater extent than simulated solar radiation (280–400 nm). 25% of elastin fibers in buttock skin were covered with lysozyme, compared with 66% of elastin fibers in facial skin, supporting the association of lysozyme with solar elastosis. Lysozyme was shown to inhibit degradation of elastin fibers by human leukocyte esterase. Authors use an
ample sample size and explain their methodology thoroughly to reveal mechanistic explanation for solar elastosis based on increased deposition of lysozyme in sun-exposed skin; lysozyme inhibits human leukocyte esterase to prevent proper degradation of elastin and allow accumulation of partially degraded fibers. The lower elastin content in sunprotected, older skin compared with sun-protected younger skin implies that human leukocyte esterase naturally works uninhibited to reduce elastin content with age, however the UV-induced accumulation of lysozyme inhibits elastin's degradation with age in sun-exposed skin.

Note: The table presents data on age-related changes in elastin structure. See text for discussion. Table 2.5 Data: General Protein Structure Source Methods Results Notes Gniadecka et al., 1998 (64) Study of Caucasians included 10 people aged 74–87 and 10 people aged 22–29. Obtained Raman spectra from buttock skin and forearm skin, using NIF-Raman spectroscopy. Young group: Little difference in spectra of photoexposed vs. photoprotected sites. Most skin proteins were in a helical conformation. Older group: Intrinsically aged (buttock) skin: resembled young dorsal forearm or buttock, except for a significant (p ¼ .008) shift of amide I peak position toward lower frequencies in older skin, suggesting minor conformational changes of protein structure. Photoaged (dorsal forearm) skin: In addition to the amide I band, the amide III band was also significantly shifted to lower frequency compared with aged photoprotected and younger skin spectra. Also, decreased intensity of the amide III band indicated severe conformational changes in protein structure, with an increase in protein folding and less exposure of aliphatic amino acids to surrounding water. In young skin most proteins are in helical structure and we do not see much difference between sun-exposed and sun-protected regions. Chronologically aged skin has proteins in slightly altered conformation. Photoaged skin has proteins in markedly altered conformation, with increased folding and less exposure of aliphatic residues to water. This enables the proteins in photoaged skin to bind less water. Jacobson et al., 1990 (56) Amino acid composition was quantified in 3 fractions isolated from scales of SC from the lower leg. The three fractions studied were FAA, soluble hydrolysate, and whole cell hydrolysate. “Old” subjects (n ¼ 20) were 60 yr or older; “young” subjects (n ¼ 20) were 30 yr or younger. In normal subjects, each of the 3 fractions showed significant difference (p < .03) in amino acid composition as a function of age. The FAA and SH fractions revealed an increase in hydrophobic amino acids. This is an interesting
study that goes into great detail regarding specific amino acid composition, which is beyond the scope of this overview. Nonetheless, the general shift toward increased hydrophobicity is an important trend that should be noted.

Gniadecka et al., 1998 (41) Used NIR-FT Raman spectroscopy to examine 3-mm punch biopsies from buttock, lower leg, back, and arm in 44 individuals aged 18-35. Most proteins in the whole skin and SC were in a helix conformation. This was supported by the frequencies of amide I and III maxima and by a strong C-C stretch band at 935/cm. This data further supports that in young skin, proteins are mostly in a-helical conformation. Sander et al., 2006 (65) Evaluated buttock skin and photoexposed skin of 12 young (<30 yr) and 12 older (66-73 yr) subjects. ECM1 expression was investigated using immunohistochemistry with densitometric image analysis for semiquantitative results. Acute UV exposure was created by irradiating buttock skin over 10 days with a solar simulator. In normal human skin ECM1 is expressed mainly in basal cell layers of epidermal keratinocytes and dermal vessels. Intrinsically aged, UV-protected skin showed a significantly reduced expression in basal (*10% decreased staining intensity) and upper (*8% decreased staining intensity) epidermal cell layers compared with young skin (p < 0.05). In photoaged skin expression is significantly increased in the lower (*15% increased staining) and upper (*18% increased staining) epidermis compared with agematched UV-protected sites (p < 0.01). Acute photoexposure also results in marked increased epidermal ECM1 expression (*8-10%, p < 0.05). Semiquantitative data reveals acute and chronic UV-related stress appears to influence expression and distribution of ECM1. Future studies may reveal similar impacts of intrinsic and photoaging on other skin proteins. Note: The table presents age-related data on generalized dermal protein structure. See text for discussion. Abbreviation: FAA, free amino acids.

CUTANEOUS PERFUSION

The epidermal and dermal structural changes noted above are further accompanied by changes in the perfusion of elderly skin. Altered perfusion is implicated in temperature regulation, perfusion of nutrients, and wound healing of elderly skin. Cutaneous blood perfusion is intimately connected both to wound healing and thermal regulation, and has been
quantitatively studied in vitro as well as in vivo. Table 2.8 summarizes blood flow data determined from several methodologies. Results of studies using laser Doppler velocimetry (LDV) or laser Doppler flowmetry (LDF) are mixed; this often appears to be the result of varying age ranges and small sample sizes. Fluhr et al. found no significant difference in cutaneous blood flow of children versus adults, but this did not allow for an assessment of changes in elderly skin because the average age of the older group was only 44 years (5).

Table 2.6 Data: GAG

<table>
<thead>
<tr>
<th>Source</th>
<th>Methods</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernstein et al.,</td>
<td>1996 (66) Included 6 males aged 52–60, with significant photodamage. 4-mm punch biopsies were taken from the sun-damaged posterior neck and sun-protected buttock. Histometrically studied GAG content of papillary dermis using immunoperoxidase stains specific for hyaluronic acid and chondroitin sulfate. Expressed measurements as percentage of fields stained positively for these GAG. Studied location of GAG using confocal laser scanning microscopy, staining specifically for GAG and elastin. Significant increase in GAG staining in sun-damaged vs. sun-protected skin from the same individuals. Hyaluronic acid Sun protected: 13.7% 1% Sun exposed: 24.4% .5% (p < .05). Chondroitin sulfate Sun protected: 6.7% .25% Sun damaged: 23.37% .6% (p < .0001) Superficial dermal GAG in sundamaged skin are clumped and deposited almost exclusively on the solar elastico material, rather than diffusely between the fine network of collagen and elastic fibers as in normal (photoprotected) skin, wherein concentration of dermal GAG is greatest just beneath the epidermis and decreases gradually with increasing depth. One would expect that increased GAG content would give skin a youthful appearance, as it does in newborn skin. These authors state that the abnormal location of GAG in photodamaged skin may explain the apparently paradoxical weathered, appearance of photodamaged skin despite increased GAG. This study does not consider possible anatomical variation between neck and buttock, separate from the factor of photodamage. Comparison. Furthermore, the narrow 52–60 age range limits the study to one of photoaging and does not consider intrinsic aging. Takahashi et al.,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To quantify main disaccharide units of skin GAG, used high performance lipid chromatography after labeling with 1-phenly 3-methyl 5-pyrazolone. After comparing 6 “sun-exposed people” to 6 other “sun-protected people,” the authors compared sun-exposed and sun-protected skin within 6 individuals. Ages? Body site? Total amount of disaccharide units in sun-exposed skin was significantly greater than sunprotected skin (p < .05). Also saw a decrease in ratio of (d)Di-hyaluronic acid (HA)/dDi-dermatan sulfate (DS) in photoaged skin. This article addresses photoaging but not intrinsic aging. The increase in GAG in photodamaged skin agrees with results from Bernstein et al. (above). The significance of the increased hyaluronic acid/dermatan sulfate ratio is unclear.

Lochner et al.,

Full thickness punch biopsies isolated from human buttock skin of 5 young (21–35 yr) and 5 older (61–68 yr) subjects. Distribution and expression of collagens 1 and 3 and decorin mRNA were measured using laser capture microdissection-quantitative real time– polymerase chain reaction in young vs. old subjects. Decorin and collagen expression were also measured before and after single exposure with two minimal erythema doses of simulated solar irradiation after 24 hr. Decorin mRNA is expressed in the reticular but not the papillary dermis. Expression is 105% higher in older than in younger subjects. Simulated solar exposure resulted in downregulation of decorin mRNA in both groups (35% in young, 35% in older). Collagens I and III expression were down-regulated with increasing age (29% and 60% lower levels in collagens I, and III mRNA, respectively, in older subjects compared with young) and after single UV irradiation (21% decrease seen with collagen I and 60% seen with collagen III). Small sample size, but otherwise convincing evidence of decreased expression of decorin and collagens I and III with age and also with UV radiation. The exact mechanistic significance is unclear, but authors concluded that decreasing collagen-to-decorin ratio inflected by both age and UV irradiation may affect collagen bundle diameter in aging skin.

Note: The table summarizes data on age-related changes in GAG structure and localization. See text for discussion.

Abbreviation: GAG, glycosaminoglycans. Likewise, Kelly et al. found little difference in blood flow between young
(age 18–26) and elderly (age 65–88) subjects; however, the inclusion of only 10 subjects in each age group limits interpretation of results (71). An LDF study of 201 people aged 10 to 89 revealed that areas with high blood flow, such as the lip, cushion of the third finger, nasal tip and forehead, blood flow decreased with age (74). However, in areas where the cutaneous blood perfusion was initially lower, such as the trunk, no clear variation occurred with age (74). This study also measured cutaneous blood flow and surface temperature in finger cushions for 20 minutes after a 10-minute immersion in 108°C water. The decrease in blood flow after immersion was greater in people over 50, and the restorative ability poorer in those over 70, compared with subjects younger than 50 (71). Another LDV study found that skin’s vasodilation response to heat stress and vasoconstriction in response to cold challenge appears delayed in elderly (age 70–83) subjects, indicating a possibly reduced vessel density in aged skin (70). Again, this study only included 9 to 10 people from young and old age groups, so it may not provide the most conclusive answer to the question the effect of age on cutaneous perfusion. More recently, Thompson et al. explained that age-related decrements in sympathetic neurotransmission contribute directly to thermoregulatory impairment when ambient temperature causes whole-body cooling, whereas changes in local cold-induced intracellular signaling represent a more generalized age-associated vascular dysfunction (75). Intravital capillaroscopy measurements of 26 subjects using fluorescein angiography and native microscopy suggest a decrease in dermal papillary loops and little change in horizontal vessels (postcapillary venules, ascending arterioles, and part of subpapillary plexus) with increasing age (71). An immunohistochemical study of 19 individuals ranging from age 20 to 84 revealed little effect of intrinsic aging of buttock skin on blood perfusion, but progressive and marked decrease in cutaneous perfusion in the photoaged eye corners (72). A photoplethysmographic study including 69 individuals aged 3 to 99 revealed significantly decreased capillary circulation in forehead skin with advancing age. Of interest, recent data demonstrates that acute UV exposure actually increases angiogenesis via upregulation of VEGF via the MEK/ERK pathways and through TSP-1 downregulation via PI3K-Akt activation (76). However, the resultant newly increased vasculature is hyperpermeable and more prone to release inflammatory cells, which contribute to increased expression of proteases. Over time this damages the extracellular matrix and leads to a less permissive environment for maintenance of healthy vessels seen in chronically sun-damaged skin (76). Hence it appears
that increased age may be ultimately associated with decreased cutaneous perfusion, especially in chronically photoexposed areas. Furthermore, stresses such as temperature alterations are not met with the same adaptive responses in dermal blood flow in aged skin. These findings may provide partial physiological explanation for delayed wound healing in elderly skin (77–80).

Table 2.7 Data: Water Structure Source Methods Results Notes
Gniadecka et al., 1998 (64) Study of Caucasians included 10 people aged 74–87 and 10 people aged 22–29. Obtained Raman spectra from buttock skin and dorsal forearm skin, using NIF-Raman spectroscopy. Younger group Most water molecules in young skin were bound to other macromolecules (the 180/cm band was absent). Saw no significant difference in water content or structure in sun-exposed vs. sun-protected skin. Older group Intrinsically aged (buttock) skin: No significant difference in water content or structure compared with young skin. Photoaged (dorsal forearm) skin: Increased content of nonbounded water (180/cm band present). Total hydrogen bonded water is significantly decreased in photoaged skin (p < .03). Saw an overall (30%) increase in water content of photoaged skin. In young skin, water is primarily present in bound form. This does not appear to change with intrinsic aging. However, in photoaged skin, overall water content increases and proportionally shifts such that less of it is in bound form. Gniadecka et al., 1998 (41) Used NIR-FT Raman spectroscopy to examine 3-mm punch biopsies from the buttock, lower leg, back, and arm in 44 people aged 18–35. Over 90% of water in whole skin is present in the bound form. This data supports that in young people, water is mainly present bound to macromolecules. Wright et al., 1998 (69) MRI chemical shift imaging was used to noninvasively study nine volunteers of both sexes (ages?). Obtained localized IH spectra of the skin, quantified free water content, normalized to skin thickness. Relative concentration of free water in the skin, normalized to skin thickness, was slightly greater in older subjects and in tanned subjects. Need more details—will have paper by 9/13, will fill in details on proofs. Note: The table presents data pertaining to age and dermal water structure. See text for discussion. Abbreviation: IH, immunohistochemical.

Table 2.8 Data: Cutaneous Blood Perfusion

Source Methods Results Notes
Fluhr et al.,
2000 (16) Measured the volar forearm of 44 adults, aged
21–44 (mean 34.6), and 44 of the adults’ children, aged 1–6 (mean 3.5). Measured blood flow by laser Doppler flowmetry LDF-PF2. Children had significantly higher blood flow than adults. Children (%): 24.6 Adults: 18.7 p = .004. Adults are relatively young here; the oldest adult is 44 yr of age.

Tolino et al., 1988 (70) Studied 9 healthy men aged 70–83, and 10 men aged 20–30. Studied at ambient temperature of 20°C and 25°C during warm (41°C) and cool (12°C) water immersion challenges. Lower legs and right arm and hand were immersed. Blood flow was measured continuously in both forearms by laser Doppler velocimetry. Immersion in 41°C water lead to peak erythrocyte flux values of Young: 140.4
16.1 mV Elderly: 111.1 17.9 mV, p < .05. Before immersion in 12°C water, baseline flux were Young: 36.4 3.3 mV Elderly: 28.7 3 mV. After 12°C water immersion, fluxes fell to Young: 16.2 2.4 mV Elderly: 17.9 2.5 mV Fall of erythrocyte flux due to cold water submersion is greater in young subjects (p < .05). This study covers a wider distribution of age and may accurately reflect changes in elderly men’s skin. Authors conclude that peak vasodilator response to direct heat is blunted in aging and may correspond to loss of skin blood vessels. Also, the proportional response to direct cold challenge is less in the elderly than in the young.

Kelly et al., 1995 (71) 10 young (age 18–26) and 10 old (age 65–88) subjects. Used a laser Doppler flowmeter, attaching one probe to the forehead and one to the ventral forearm. Basal flow levels were recorded, then blood flow was occluded for 3 min. After 3 min pressure was removed, resulting in post ischemic reactive hyperemia. No significant difference was seen between old and young subjects in either the forehead or forearm in basal flow level, reactive hyperemic peak flow, time taken to return from the peak to a new baseline, and area under the post hyperemic curve. Time taken from pressure release to reach post hyperemic peak was less in the elderly forehead (p < .056), consistent with more rapid vasodilation. This was not seen in the forearm. This study finds no significant difference between blood flow in young and elderly except for more rapid vasodilation in response to pressure removal in the forehead, and this result was barely significant. Sample size was fairly small.

Kelly et al.,
1995 (71) Studied Caucasian men and women; 13 subjects aged 65–88 (mean 74.9), 13 subjects aged 18–26 (23.2). Studied forehead and ventral forearm using intravital capillaroscopy with fluorescein angiography. Counted dermal papillary loops as dots, representing nutritional exchange vessels. Counted horizontal vessels as lines, representing postcapillary venules, ascending arterioles, and part of subpapillary plexus. Elderly forehead: 40% decrease (p = .0001) in dermal papillary loops. No significant difference in horizontal vessels, compared with the young. Elderly forearm: 37% decrease in dermal papillary loops (p = .0005). No significant change in horizontal vessels, compared with the young. This study includes a broad age range and both sexes, but not a large sample size. Forehead data corroborates well with prior native microscopy data from same group.

Chung et al.,

Climatic influence on cosmetic skin parameters Mathias Rohr and Andreas Schrader

INTRODUCTION

Beside a good compatibility, which should be a matter of course for cosmetic products, the physiologic effectiveness, in particular moisture and smoothing effects on the skin, is the main interest for cosmetic products. Techniques such as fast optical in vivo topometry of human skin (FOITS) (1,2) and corneometry are used to investigate their effectiveness. A high degree of standardization is required to quantify the effects of cosmetics.

To obtain reproducible and statistically significant results, experimental conditions, such as a test panel controlled climatic conditions and a test design including a positive and a negative standard, are the basic starting tools. Nevertheless, as the following discussion will show, it is not only the normal standardization procedures, such as acclimatization of volunteers in special air-conditioned laboratories, which have to be taken into consideration when interpreting objective and subjective cosmetic parameters, but also the effect of the actual climate
during the application phase and especially during the days of measurement. The influence of the indoor climate in the laboratory as well as the outdoor climate will be analyzed. What will happen to the level of skin moisture during the preconditioning phase or what will happen at different seasons of the year? Will it be influenced by the level of relative room humidity and/or the actual climate conditions? Will the influence vary for different kinds of product? Will the influence on skin moisture and skin structure be comparable? Will the influence change for different types of volunteer? What is the best time for preconditioning? Could the regeneration of the stratum corneum be influenced by the climate? Will effects felt subjectively (washing the bend of the elbow) be equally dependent on climatic conditions as objectively rated parameters? A summary of individual results and averages of thousands of volunteers will be given. Both a positive standard (in the sense of increasing moisture and smoothness) and a negative standard (in the sense of increasing dehydration, roughness or side effects) are used to present the effect of climatic conditions on skin physiology tests.
MATERIALS AND METHODS

Climatic Data

To be able to correlate climate data with skin physiology parameters, the relative humidity and outside temperature are measured continuously at a station by a computer (CAN system, Lufft Company, Fellbach, Germany). Capturing the data by computer ensures that the climate is recorded day and night. Let us take climatic changes in Holzminden (longitude 9.27 east and latitude 51.49 north; Middle Germany) over a year as an example. As Figure 3.1 shows, temperature fluctuates between values of about -10 and 25°C in a year. Relative humidity is about 50% in summer and 90% in winter. Positive and Negative Standards Tests have been carried out with the same products repeatedly over a period of several years, and these will serve to demonstrate the effect of climatic conditions on skin physiology. The positive standard is a well-accepted former brand product that is currently unavailable on the European market. However, we have been making it at a constant quality level for years using the known formulation. This product, referred to hereafter as “standard L” (Table 3.1), is tolerated very well by the skin and demonstrates a moisture-retaining and skin-smoothing effect that can be easily classified in terms of physiologic effectiveness. This makes it an ideal standard, because other products can be classified as better or worse with respect to their effectiveness. Another aspect of demonstrating the effectiveness of products on skin physiology relates to negative effects that, for instance, can be induced by aggressive surfactants. Here, too, we have been using the same standard product for years. This is sodium dodecyl sulfate (SDS), which is referred to as the “negative standard” from now on. Laser Profilometry The laser profilometry technique is used to investigate the antiwrinkle effect. Skin replicas are taken from the test areas on the volar forearms by means of a white pigmented silicone substance.
(two components, Optosil 1, Bayer, Inc., Germany), before the first application and 12 hours after the last application. A round impression having a diameter of 18 mm is made using a label especially designed for this purpose. While the impressions are being made the volunteers are seated on chairs with adjustable armrests so that the angle between the upper arm and the forearm can be adjusted to 90°. Fixing the forearms in this way ensures that no factitious smoothing or roughening effects, due to stretching of the arms when the impressions are taken after application, are evaluated and included in the documentation. An automated laser scanner with an optical autofocus sensor is used for contactless scanning of the skin replicas (UBM, optical measuring system Microfocus, UBM RC14, Karlsruhe, Germany) (3). The measuring range of the laser scanner is 500 mm at a resolution less than 0.01% of the measuring range. The measuring spot (focus of the laser diode) has a diameter of about 1 mm. The z-resolution is increased to 25 mm by an additional shift of the z-axis if necessary. The resolution in the x and y-directions is identical to be independent of any predominant direction of wrinkles. The skin replica taken from the volar forearm of a volunteer is scanned over an area of 8 mm x 8 mm in the x and y-directions at a resolution of 25 points/mm. Thus 40,000 individual measurements are available, permitting an exact three-dimensional reconstruction of the skin surface (3,4).

Ra Parameter
The Deutsche IndustrieNorm (DIN) parameter Ra represents the mean roughness index according to DIN 4768. Ra indicates the arithmetic mean of the absolute values of the skin profile’s deviations from the center line over the total distance. If the overall structure of the profile remains unchanged (Rz constant) but the fine structure of the profile changes, then the Ra parameter will indicate smoothing or roughening by a reduced or increased value, respectively (5,6). Rz Parameter The Rz parameter represents a mean peak-to-valley height according to DIN 4768/1. If, in the two-dimensional case, a profile line is divided into five equal parts and the R max parameter is calculated for each part, Rz will be the arithmetic mean of these five individual values. The Rz parameter will indicate roughening of the skin profile by a significantly increased value if the profile is changed by the influence of a product (Fig. 3.2).

FAST OPTICAL IN VIVO TOPOMETRY OF HUMAN SKIN
After a successful validation phase, the first publication of the new FOITS technology can be found in 1997 (1). In comparison to the replica driven technique during the last decade, the touch-free technique of fringe projection became state of the art to investigate skin surface (2,7-9). Because of many technical advancements
(as, for example, improved camera resolution, the use of blue LED lighting systems, or LASER-supported and computer-optimized overlaying procedures), an easy-to-operate system could be realized during the last years. As scientific interest on the mechanisms of wrinkle evaluation is always been pushed, the technical developments led to a tool of high scientific standard (10–13). FOITS is a touch-free optical technique with a history of more than a decade to investigate skin surface structures in a direct three-dimensional measurement by fringe projection (14). The fringe-projection technique used is a combination of graycode and phase-shift technique (5). In less than a few hundred milliseconds, the absolute space coordinates are measured of all object points in the selected image area with great exactness. The FOITS measurement system consists of a projection unit and a CCD camera. Both are fixed under the triangulation angle. Concerning the gray-code method, grids with a rectangular brightness distribution by different numbers of lines are projected. The Figure 3.1 Climatic outdoor conditions at Holzminden, Germany, from August 2001 to 2002. Table 3.1 Declaration of Positive “Standard L” According to the International Nomenclature of Cosmetic Ingredients Ingredients Water Liquid paraffin Caprylic/capric triglyceride Hydrogenated coco-glycerides Glycerine Myristyl alcohol Isohexadecane Glyceryl stearate Cetyl alcohol Proprietary composition 4-Methylbenzylidene camphor Tocopheryl acetate Butyl methoxydibenzoylmethane Aloe barbadensis Isopropyl myristate Methylparaben Polyaminopropyl biguanide Bisabolol Soluble collagen Simethicone Sodium hydroxide Ethylenediaminetetraacetic acid Figure 3.2 Definition of DIN parameters Ra (A) and Rz (B) according to DIN 4768/1.

number of lines is doubled at each new projection. This gives a clearly defined hierarchy of lines for each image point. Regarding the phase-shift technique, only one grid with a sinus-like intensity distribution is projected several times with different phase positions. The FOITS technique is able to realize a depth sharpness area of ± 10 mm on an inspection area of 30 mm
40 mm. The resolution in the vertical z-direction with 0.2% of the measured area leads to an effective resolution of 4 mm in z-direction. A CCD camera with a horizontal and vertical resolution in x and y-directions of about 30 mm is used. It has to be pointed out that the resolution in z-direction is not limited by 256 gray steps of the CCD camera. The high resolution in the vertical direction is achieved by the analysis of the intensity and phase displacement of the projected grids. The surface structure of the analyzed area causes a deviation of the intensity and phase information of the projected grid structures from the theoretical model structure of a plane surface. With corresponding mathematical algorithms, the absolute three-dimensional coordinates of the inspected area can be calculated of these deviations. A synopsis of the most important experimental side parameters is shown in Table 3.2, starting from the beginning of first experiments up to these days (Fig. 3.3).

Figure 3.3 Presentation of various FOITS system from 1995 to today; example of FOITS data presentation on an individual subject. 3-DIM data presentation of the crow’s-feet area before and after four weeks of product application.

Table 3.2 Synopsis of the Technical Side Parameters of FOITS from the Beginning to Today

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technique</td>
<td>Gray-code and phase-shift technique</td>
<td>Contact free direct skin measurement in vivo</td>
<td>Halogen light</td>
</tr>
<tr>
<td>Superimposition</td>
<td>Mechanically aided by online overlay procedure</td>
<td>LASER</td>
<td>aided mechanically</td>
</tr>
<tr>
<td>Measurement area</td>
<td>Inner side of the forearm</td>
<td>Crow’s-feet, under the eye, cheek, glabella, lips, nasolabial, décolleté, forearm, leg</td>
<td></td>
</tr>
</tbody>
</table>
Area of inspection 875 mm² (25 mm × 35 mm) 1200 mm² (30 mm × 40 mm)

Area of analysis 20 mm × 20 mm (or as needed)

Resolution x-direction

y-direction

z-direction 40 mm 40 mm 4 mm 30 mm 30 mm 4 mm

Time to digitize the fine structure 320 msec 260 msec

Starting with analysis of the inner side of the forearm, the crow’s-feet area became the area of most interest later on. Increasing the power of FOITS technique as described in Table 3.2, more and more areas of analysis could be investigated like cheek, glabella area, under the eye, nasolabial area, lips, or all over the body areas like décolleté and legs. The latest technique used combines the fastest data measurement with the best superimposition technique to guarantee a perfect comparison of baseline and end value data. Superimposition is realized in a combination of LASER-aided mechanical alignment of the subject in a first step and a software-driven rotation and shifting procedure of measured data/pictures to find the optimum of superimposition.

Parameter of Analysis Bringing into focus the periorbital wrinkle area (crow’s-feet), the morphological structure of this test area has to be taken into account if wrinkles are investigated. Having this in mind, analysis is carried out perpendicular to the main wrinkle direction based on the Rz parameter (according to DIN 4668 (10)) or the frequency distribution of depth (FDD) analysis. Starting close to the eye, 50 separate lines with a distance of 400 mm are analyzed. The resulting roughness is shown as a function of line number (Fig. 3.4). Ten successive lines are averaged, resulting in five areas of evaluation. Separating the area of analysis into these five subareas (areas 1 to 5, see Fig. 3.4), the area close to the eye named area 1 represents the deepest structures while with area 5 smaller structures are quantified. An example of this analysis is given in Figure 3.3. In comparison, analysis of the lip area is shown. Because of the smaller test area at all only 4 areas are defined with 40 separate lines with a distance of 250 mm. As shown by Figure 3.1, correlation of line number and Rz results in a more flat link for the lip area in comparison to the crow’s-feet area. To document the surface structure by a global parameter, the frequency...
The FDD is calculated in the range from \(-600\) mm to \(600\) mm (after polynomial correction) by using interval steps of \(5\) mm. The defined evaluation area is equivalent to a surface of \(2\, \text{cm} \times 2\, \text{cm}\) and represents according to the technical resolution of the camera \(640,000\) single points. Therefore, a calculated FDD parameter is based on a rearrangement within these \(640,000\) values of depth. Working with a distribution function the zero level has to be kept in mind carefully. Thus, the zero level of each volunteer is defined as the first plane representing a level of about \(0.1\%\) of all single values (about \(600\) counts). This plane is set as zero and Figure 3.4 Definition of subarea of analysis. Rz as a function of subarea lines of an individual example in the crow’s-feet area and lip area.

all further calculations are done with these resulting standardized values. From the surface structure, a frequency distribution of all depths is obtained as shown exemplarily in Figure 3.5 (red curve). According to the selected zero level, a classification of depth is made as follows:

- \(0\) to \(50\) mm ? microstructure (about \(5\%\))
- \(55\) to \(170\) mm ? fine structure (about \(65\%\))
- \(<170\) mm ? rough structure (about \(30\%\)) The given proportion will give a rough estimation of structure ranges found in the crow’s-feet area of women with distinct wrinkles and Caucasian skin. Taking into account a product smoothing effect, the green FDD curve as shown in Figure 3.3 can be expected. Consequently, an improvement of skin structure is defined by a shift of maximum and a change of width of the distribution function. A reduction of rough structures can be expected, while for fine and micro
structures an increase is obtained in case of structural improvements.

Corneometer

Water differs markedly from most substances as far as its dielectric constant is concerned. A quantitative proof of changes to the water content of the skin can thus be achieved by means of capacity measurements in a noninvasive manner (15,16). A corneometer (Courage + Khazaka Co., Köln, Germany) is used to measure the water content (Table 3.3). A measuring capacitor reacts to the samples in the volume to be measured by

Figure 3.5 Histogram of depth of a surface profile (crow’s-feet area), classification of structural regions as well as visualization of smoothing effect/age effect-baseline: 65-year-old subject, end value: 15-year-old subject. Table 3.3 Summary of Experimental Conditions for the Various Skin Physiology Tests
Investigation brief description Corneometer 20–30 volunteers 2–3 wk of application; twice a day Baseline measurement on the forearm Final value 12 hr after the last application Statistical analysis of data Corneometer kinetic frequent measurements up to 5 hr Laser profilometry 30 volunteers 3 wk of application; twice a day Silicone replica of the forearm (baseline) Silicone replica 12 hr after the last application (final value) Robot-controlled laser profilometry Analysis of Ra and Rz FOITS frequent measurements up to 4 hr No replica Analysis of Ra and Rz Washing test on the bend of the elbow 20 volunteers 5 days of application Twice a day, 2 minute of washing Subjective rating of side effects in a direct comparison Reddening/stinging/skin tautness/itchiness Skin roughness/dull feeling/bad skin feeling Statistical analysis of reaction points DHA decoloring 20 volunteers, aged >50 years Measurement of skin color by Chromameter (baseline) Application of DHA to inner side of forearm Application of test product twice a day for 18 days
Measurement of skin color every day Analysis of decay curves Abbreviation: DHA, dihydroxyacetone. way of capacitance changes (depending on water content). Those capacitance changes registered by the measuring head capacitor are processed fully automatically by the equipment to form a digital measured value. There is no conductive (galvanic) connection between the object measured and the measuring equipment. Consequently, almost no electricity flows through the object measured. Properties such as ionic conductivity and polarization effects have no influence on the measurement result. The fact that the electronics adapt to the moisture circumstances almost without inertia means that the measuring process is very fast and that it is possible, to a considerable extent, to eliminate effects on the results caused by involuntary movements or moisture accumulation during the measuring process. All tests mentioned in this discussion were carried out in an electronically controlled air-conditioned laboratory that ensures that room temperature and air humidity are kept constant. The volunteers were kept seated in this laboratory at 22°C (±1) and 60% or 50% (±5%) relative humidity for 45 minutes before the test and during the complete standard test procedure. To quantify the influence of this procedure of standardization, frequent measurements were carried out immediately after the volunteers arrived at the institute and for up to five hours. To show the basic influence of the indoor climate, no product application was performed during the time of the investigation. In a second series of measurements, five different brands and five different formulations with an increasing amount of glycerine (3-25%) as an active ingredient were investigated in a short time test design up to four hours after product application. To quantify the influence of the indoor climate on the product rating, the second test series was carried out twice. In a first run, the relative humidity was set at 60%; in a second run the relative humidity was reduced to 50%. Transient individual side effects that may have an influence on the skin are standardized in this way. However, this procedure does not compensate for climatic conditions such as for winter or summer. Regeneration Dihydroxyacetone (DHA) is a substance that is tolerated very well and is approved in the cosmetics industry as a suntan substance. It tans by means of the Maillard reaction, forming combinations with amino acids in the skin that do not wash off. The color disappears within approximately three weeks as a result of desquamation of the colored horny cells. The tan of the skin decreases accordingly. For this investigation, the desquamation effect, and consequently the rate of regeneration, is
measured in the laboratory color room by measuring the
decoloring with a Minolta Chromameter CR 300 (L-a-b color
room). The yellow value b differentiates best, and this is
used to establish the color decay curves (17,18). The
region that is tested is again the volar forearm. Areas of
4 cm 4 cm in the middle of the region of application are
colored with DHA after a defined washing procedure to
standardize the baseline conditions. In the coloring
process, a special emulsion with 10% DHA is applied to the
area to be tested. The amount applied is 6 mg/cm 2 . In
addition, an adhesive bandage saturated with DHA emulsion
is applied for 24 hours. Over the next 10 days, the
volunteers continue to use the products twice a day. The
forearms are permitted to be washed only twice a day with
warm water. Surfactants and abrasive cleansing agents are
not allowed to be used. Measurements are taken directly
before DHA coloring, and then every day over the next 18
days with the exception of weekends. For each time and area
of measurement, three values are recorded at different
places in the measurement area and averaged. The b-values
of all 30 volunteers per product are averaged, and the
standard deviations, percentage changes, and percentage
differences standardized to the coloring are calculated.
The color decay curves can be described under normal
conditions with the following exponential function:
\[b = a_1 e^{-a_2 t} + a_3 \]
Further statistical treatment is described in
detail in Refs. 3 and 9. Washing Test on the Bend of the
Elbow To assess the skin tolerance, the cleansing effect,
and the acceptance of surfactant products, we carry out the
washing test on the bend of the elbow. In a practical test,
the bend of the elbow is washed under intensive conditions.
Twenty volunteers take part in this test. In each
application, the bend of one elbow is lathered vigorously
with the first sample and washed for two minutes by hand.
After being rinsed with lukewarm water, this bend of the
elbow is again lathered and washed for two minutes. This is
followed by a period of drying also lasting two minutes.
After the second rinsing with lukewarm water, the area in
question is dabbed dry carefully with a towel, ensuring
that there is no rubbing. The bend of the other elbow is
treated in exactly the same way with the negative standard
SDS (19,20). To determine any side effects induced by the
test products, the volunteers are asked at the end of the
test about any reactions they noticed directly after
washing. The following parameters are ascertained:
reddening, stinging, skin tautness, itchiness, skin
roughness, dull feeling, and bad skin feeling. The ratings
are given on the basis of a coded volunteer questionnaire.
RESULTS AND DISCUSSION Outdoor Climate One of the major
factors in cosmetic skin physiology is the
moisture-retaining effect of a product. Figure 3.6 shows a summary of this for 1992–1995. The data have been summarized on a monthly basis in each case. Figure 3.6 shows the percentage increase in moisture that is induced by the positive standard L after correction for changes in the corresponding untreated area. The recorded averages are based on at least 100 volunteers a month. Calculations led to an average moisture increase of approximately 12.7% for all data recorded. To make it easier to compare seasonal dependency of the achievable moisture increase, Figure 3.7 shows the difference from the overall average after the data have been standardized on the basis of the overall average. A change of 0% corresponds to the abovementioned overall average of approximately 12.7% moisture increase. A bar in the positive direction thus shows an increase in moisture that is higher than the average, whereas a bar in the negative direction indicates a reduced level of effectiveness. Figure 3.7 shows that from November to February, there was about 15% above the average moisture increase, whereas in the summer months of June, July, and August, the level of effectiveness was approximately 50% below the average achievable moisture increase. Figure 3.8 shows the relative change of the laser profilometry parameters Ra and Rz both for the positive standard L and for the untreated area in a way that is comparable to Figure 3.6. At this juncture, we must point out that the area referred to as “untreated” has not been treated with a cosmetic but has been subjected to a washing procedure to obtain better results, as described in the “Materials and Methods” section. Figure 3.8 clearly shows how important this prior treatment is. Whereas the Ra and Rz parameters for the positive standard fluctuate between −6% and 6% from January to October 1994 to 1996 without showing a definite trend, these parameters fall noticeably for the untreated area from January to August followed by a rise in September and October. After allowing for the untreated area, the profilometry tests result in the dependency that is shown in Figure 3.9A. Again, the positive standard L was found to be less effective on average in the summer months of June, July, and August than in the other months. The data clearly show that the seasonal dependency was based both on the reduced positive effectiveness of standard L in the summer and on the reduced negative sensitivity of the untreated area (prior treatment with a surfactant of all areas tested). External climatic conditions thus have a distinct influence on the cosmetic effects that can be achieved. The basic level of the skin is increased in the summer months to such an extent that, first, skin moisture and smoothing can be increased further by cosmetics to only a limited degree and, second, that the deliberate use of
substances that are detrimental to the skin also has a limited negative effect. This leads to an apparent reduction of cosmetic effectiveness. In addition to these objective skin physiology parameters, subjective information gained from volunteers’ answers to questions indicates a comparable dependency on external climatic conditions. Figure 3.10 shows the total negative reaction points that volunteers gave for reddening, stinging, skin tension, itchiness, skin roughness, dull feeling, and bad skin feeling in the elbow washing test. The negative reaction points

Figure 3.6 Percentage increase in moisture, after correction for the untreated area, of positive standard L monthly summary (12 hours after last application, 4460 volunteers, 1992-1999).

Figure 3.7 Standardized differences of moisture for the positive standard L after correction for the untreated area (12 hours after the last application, 3100 volunteers, 1992-1995).

Figure 3.8 Percentage of differences for the DIN parameters Ra and Rz for the positive standard L and the untreated area in a summary of laser profilometry data (1000 volunteers in general, 12 hours after the last application, 1994-1996). For the negative standard fluctuated between 11 and 18 in May, depending on the comparative product. Since the comparative product is of crucial importance in rating effects subjectively, the same test setup was repeated in November with the same comparative products. Here, the average total negative reaction points for the comparative product SDS were distinctly higher in all four groups taking part in the test. Whereas the average for May was approximately 15 negative reaction points, this rose to approximately 23 reaction points in November under otherwise identical conditions as far as the volunteers’ subjective feelings were concerned. These data, based on 80 volunteers, clearly show that it is possible and necessary to correlate information derived from volunteers’ subjective ratings with climatic conditions and to consider this along with the objectively demonstrable parameters for skin
Another example of how external climatic conditions make it almost impossible to evaluate the results of skin physiology investigations is given by the turnover of the stratum corneum on the basis of DHA decoloring tests. When the stratum corneum has been colored with DHA, it can generally be expected that there will be a constant exponential reduction of skin coloring of both the untreated area and the areas that have been treated with the test products (17). Figure 3.11 shows average curves that have been standardized to the maximum coloring, on the basis of 20 volunteers for two test products (A and B) containing α-hydroxy acids and one untreated area. The observation period was 18 days. In contrast to theoretical expectations and preliminary experiments, this investigation revealed a fall in skin coloring from about 70% to about 30% on day 8. Both before and after this sudden change, the curve is in keeping with theoretical expectations. When all potential technical sources of error had been eliminated, the solution to this problem was found in the temperature and relative humidity data for the days of measurement, as shown in Figure 3.12. As the curves show, relative humidity fell from about 90% to about 60%, whereas the temperature rose from about 0°C to 6°C over the same period of just a few hours, and then fell to 18°C after a short time. Since temperature/humidity fluctuations were far less extreme in the rest of the test period, it seems reasonable to suppose that the strong fluctuations of temperature and humidity correlate with the recorded inconsistency in the DHA color decay curves. This inconsistency induced by extreme climatic fluctuations made it necessary to repeat the test, because it was no longer possible to carry out an exponential analysis of the decay curves. As the measured curve was constant before and after day 8 but higher humidity fluctuations accompanied by lower temperature fluctuations were recorded on day 7, it can be assumed that humidity is of greater importance in examining the regeneration of the stratum corneum and that the outside temperature plays only a subordinate part in the quality of
Indoor Climate

Figure 3.13A presents the results of the “no product Corneometer kinetic” (i.e., without application of a product). The kinetic measurements were carried out on four different test areas (forearm—lower, middle, and upper—and upper arm). In Figure 3.13B, the forearm data are summarized on the basis of the first measured value. The first group had starting values below 40 Corneometer Units (CU), the second group summarized the volunteers between 40 and 55 CU, and the third group was based on starting values above 55 CU. Analyzing the data of different test areas resulted in a decrease of about 2 CU for the upper forearm and a little less for the other test areas independent of the absolute level, which was different for each test site (lower forearm < middle forearm < upper forearm ≈ upper arm). These data were

Figure 3.11 Exponential decay curves of the dihydroxyacetone (DHA) decoloring test standardized to the maximum coloring characterized by changing of the b-value of the L-a-b color room.

Figure 3.12 Climatic data of temperature (grey) and relative humidity (black) from day 6 to day 8 during the dihydroxyacetone (DHA) investigation. calculated without taking into account the individual skin type of the volunteers. Figure 3.13B reflects this, showing the individual starting conditions. As can be seen from the differences from baseline, the group with 40 to 55 CU did not show any changes above about 1% during five hours of investigation. The group below 40 CU showed a constant increase of approximately 2%, whereas for the group with high starting values above 55 CU, a decrease of up to 10% was obtained. Independent of the test site the preconditioning phase seems to be most effective for a high skin moisture level at the beginning of the study. A dry skin might be less influenced by the indoor climate. The data to determine the optimal time of preconditioning to generate stable skin conditions are represented in Figure 3.14. Figure 3.13 (A) Kinetic...
Corneometer—data summarized for different test areas, without any product application (n = 120). (B) Kinetic Corneometer—difference from baseline; data summarized for different volunteers, without any product application (n = 120). As shown in Figure 3.14A, the difference from baseline

(-D- curve: mean overall) became stabilized at 30 minutes and

remained constant from 60 minutes on. Thus, 45 minutes of

acclimatization seems to be the best choice—a time not too short

for “moist” skin and not too long to reflect a reliable test design. The data describing the skin surface are given in

Figure 3.14B. No significant changes occurred during the four-hour kinetic investigation. Differences between lower and upper forearm were comparable to the Corneometer measurements. Nevertheless, summing up the Rz and Ra values for up to four hours, no trend in the changes was observed. Consequently, the influence of the indoor climate seems to be of minor impact if compared to skin moisture. In any case, changes of the skin structure are obviously on a much slower

Figure 3.15A shows the difference between baseline and end value four hours after unique product application in absolute CU. The dark blue bars represent the data at an indoor climate of 60% relative humidity, whereas the light blue bars are obtained at 50% relative humidity. With the exception of product no. 1, no difference occurred from changing the indoor humidity. For product no. 1, a tendency was calculated for the comparison of both measurements. Taking product no. 1 as a hint that an influence might be
possible, a second run of five formulations with an increasing amount of glycerine was carried out under the same conditions. In this case, significant changes occurred for the first two low glycerine concentrations (concentration below saturation). At 50% relative humidity, the level of measured absolute units decreased Figure 3.15 (A) Corneometer for brands 1-5. Difference from baseline after correction by untreated. (B) Corneometer for increasing concentration of glycerine (bar 1, 3% increasing to bar 5, 25%). Difference from baseline after correction by untreated.

significantly. Thus, the selectivity became better if the relative humidity was reduced and the product contained hygroscopic active ingredients. The hygroscopic ingredient seems to pick up the air humidity like a sponge as long as it is in the upper stratum corneum. Nevertheless, the origin of moisture should be irrelevant for the skin, but in the case of ranking and differentiating products as fast as possible after the product application, it might be helpful to measure at 50% relative humidity.

CONCLUSION

The data recorded, both from objective skin physiology parameters such as moisture and smoothness and from subjective factors in the elbow-washing test, clearly show that such tests are influenced considerably by climatic conditions. Differences, such as between summer and winter, cannot be compensated for by acclimatization in air-conditioned laboratories. Along
side standardized measurement conditions, it is therefore essential to record the quality of the test panel not only by including an untreated area but also by means of a positive or negative control. Only in this way is it possible to establish a classification system for test products that is not dependent on a particular season and allows the quality of cosmetic products to be rated objectively. As demonstrated by the obtained results, the indoor climate also plays an important part in cosmetic efficacy testing.

Beside the outdoor climate, which might have an effect on a long-term basis, the indoor climate (specially the time of pre-conditioning) is decisive for short-term and kinetic investigations. While the influence of the moisture level is strongly dependent on the starting value, the changes of the skin topometry seem to be not so marked. On the basis of the Corneometer kinetic data, 45 minutes of preconditioning appears to be an optimal compromise between effect, standardization, and costs. The laboratory conditions (relative humidity) may also be of great influence. Depending on the active ingredients (hygroscopic or not), a ranking of products might be of
greater selectivity if a lower level of relative humidity is used. All in all, the presented data underline the importance of a standardized procedure to investigate cosmetic effects on a statistical and reproducible level.

15. Schrader K. Untersuchungen wasser-retinierender Kosmetika auf der Haut. Parfümerie Kosmet 1981; 62:265-272. 16. Pie´rard GE, Pie´rard-Franchimont C. Dihydroxyacetone test as a substitute for the dansyl chloride test. Dermatology 1993; 186: 133-137. 17. Rohr M, Schrader A, Schrader K. The multifunctional effects of AHA. Parfümerie Kosmet 1996; 77:762-767. 18. Neter J, Wassermann W, Kutner MH. Applied Linear Statistical Models, Regression, Analysis of Variance and Experimental Design. 2nd ed. Homewood: Irwin, 1984. 19. Schrader A, Ecken H, Rohr M. Die Prüfung der Wirksamkeit reizlindernder Stoffe an der menschlichen Haut am Beispiel verschiedener Kamillenextrakte. SÖFW J 1997; 123:9-11. 20. Schrader K. Praxisbezogene hautphysiologische Untersuchungskriterien mit Seifen und Syndets. Parfümerie Kosmet 1998; 71:686-695. 4 Photodamage Karen Connolly, Camile L. Hexsel, and Henry W. Lim INTRODUCTION Electromagnetic radiation emitted by the sun includes ultraviolet (UV) (290–400 nm), visible (400–760 nm), and infrared radiation (IR) (760 nm–1 mm) (1,2). Table 4.1 outlines the spectrum of solar radiation, wavelength and depth of penetration and energy levels of each spectrum. Sunlight reaching the surface of the earth consists of 5% ultraviolet radiation (UVR), 50% visible light, and 45% infrared (2). The subdivisions of UVR are defined as UVA (320–400 nm), UVB (290–320 nm), and UVC (200–290 nm) radiation with UVA further divided into UVA1 (320–340) and UVA2 (340–400 nm) (3). As one moves along the spectrum from the long-spectrum UVA to short-spectrum UVC, energy carried by each photon increases, hence accounting for the minimal erythema dose for UVB (MED-B) of 20 to 40 mJ/cm 2 for skin type I, and MED for UVA of 20 to 40 J/cm 2 . As wavelength increases, the depth of penetration into skin also increases (3). Although UVC’s short wavelength and high energy content could potentially be the most damaging for skin, it is filtered out by the earth’s ozone layer and does not have a measurable effect under normal circumstances. It is, however, found in some industries in the form of germicidal lamps (1). IR radiation is further subdivided into IRA (760–1400 nm), IRB (1400–3000 nm), and IRC (3000 nm–1 mm). With IR radiation, depth of penetration decreases as wavelength increases (4). In this chapter, the acute and chronic effects of UV, visible light, and IR on the skin will be discussed. ACUTE EFFECTS OF UVR Acute effects of UVR include erythema, edema, blisters, immediate and persistent pigment darkening followed by delayed tanning or neomelanogenesis, acanthosis, and dermal thickening. Exposure to UV can also induce immunosuppression, vitamin D synthesis, and development of photodermatoses (5). UV-Induced Erythema UVR-induced erythema and edema are
primarily induced by UVB, which starts at 3 to 4 hours after UVB exposure, and peaks at 8 to 24 hours; it lasts 24 to 48 hours or longer in lightskinned individuals. In contrast to UVB, UVA-induced erythema peaks at 1 to 2 hours after exposure and subsides gradually over 24 to 72 hours. Because of the longer wavelength of UVA, it takes 1000-fold more fluence to induce erythema by UVA, compared to UVB (5). Table 4.2 outlines the timeline of UVR-induced erythema. The familiar erythematous and edematous sunburn can be described on the basis of the cellular mechanisms involved: These include vascular leakage and dilatation, influx of an inflammatory infiltrate, apoptosis of cells, and proliferation of keratinocytes. These effects begin with the absorption of UVR by the skin, a process called phototransduction. The main targets for absorption are chromophores, which determine the depth of penetration of radiation. DNA is the major UV chromophore in human skin. Formation of cyclobutyl pyridine dimers (CPDs) is a hallmark of DNA damage and occurs at a peak action spectrum of 300 nm in the UVB range (6,7). One favored mechanism is that DNA damage activates cell death pathways via p53. This is followed by a reactive epidermal hyperplasia as early as six hours following UVR insult (8). A number of inflammatory mediators are produced by keratinocytes upon UVB exposure, and many of these, including nitric oxide and prostaglandins, play a role in UVB-induced erythema (3,9). Other inflammatory cellular events induced by UVB radiation include degranulation of mast cells, release of TNF-α (10), upregulation of IL-8 (11), and subsequent infiltration of the dermis by neutrophils (12). Formation of sunburn cells, or damaged and apoptotic keratinocytes, followed by intercellular edema is another key feature of UV damage.

UV-Induced Pigmentation Another effect of solar radiation is increased pigmentation (Table 4.3). This process can be divided into three processes: Immediate pigment darkening (IPD), persistent pigment darkening (PPD), and the delayed tanning (DT) reaction (13). IPD occurs within seconds after UVA and visible light irradiation, and resolve in two hours; it is due to photooxidation of preexisting melanin. PPD is also a result of a photooxidation and redistribution of preexisting melanin; PPD persists from 2 to 24 hours after irradiation. Both of these responses occur more intensely with UVA exposure as opposed to UVB (14), and PPD has also been shown to be linearly dependent on the fluence of UVA reaching the skin surface (15,16). Recently, it has been demonstrated that exposure to visible light of individuals with skin types IV to VI also induces IPD and PPD (17). In contrast to IPD and PPD, DT involved neomelanogenesis; it peaks at 72 hours (5) to 1 week after UV radiation and declines over at least 10 weeks (18).
UVB-induced DT requires a preceding erythemal response and has a sun protection factor (SPF) of 3. UVA-induced DT tanning appears usually three days after exposure (5). Visible light-induced DT was observed by one week after exposure (17). UVR has been shown, through damage to epidermal cell DNA, to increase synthesis of tyrosinase, a rate-limiting enzyme for melanogenesis. It has also been shown that DNA damage causes an increase in the activity of receptors for melanocyte-stimulating hormone, a melanotropic hormone (19,20).

Immunosuppression

A number of immune cells are present in normal human skin, including keratinocytes, Langerhans cells, the resident dendritic antigen presenting cells, dermal and plasmacytoid dendritic cells, T cells, mast cells, and macrophages (21). UVR can induce local and systemic immune suppression, even at suberythrogenic levels. UVR-induced immunosuppression appears to be somewhat dose-dependant and varies on the basis of UVA or UVB exposure (22). The interplay between UVA and UVB has not been entirely described, but it appears that different doses of UVA determine whether it acts as an immunosuppressant or immunoprotectant (21). UVB exposure has been shown to suppress Th1 cytokine responses to application of a contact hypersensitivity-inducing antigen up to three days following the UVB exposure, while UVA can produce a more short-acting Th1 cytokine response at higher doses (23). Both UVA and UVB can induce reduction of epidermal Langerhans cells (24). Other effects of UVR on immunosuppression include the
release of immunosuppressive cytokines and mediators, induction of regulatory/suppressor T cells, suppression of antigen presentation, and induction of immunologic tolerance (25). The concept of UVR-induced immunosuppression has particular relevance to the development and persistence of skin cancer in humans, since UVR prevents rejection of highly immunogenic UV-induced tumors in mice that have been irradiated. These tumors are rapidly rejected in nonirradiated mice, suggesting that UVR allows persistence of UV-induced neoplasms (26).

Vitamin D Synthesis In recent years, it has been recognized that low levels of vitamin D may be associated not only with proper maintenance of blood levels of calcium and phosphate for bone health, but also as protective for certain malignancies, cardiovascular diseases, bone disease, type 1 diabetes, and possibly autoimmune conditions (27,28). There are three sources for obtaining vitamin D precursors: cutaneous vitamin D metabolism, oral ingestion of vitamin D supplements/food supplemented with vitamin D, and natural animal sources of vitamin D (29). The action spectrum of cutaneous vitamin D photosynthesis is in the UVB range, with a peak at 300 nm. The pathway involves conversion of cutaneous 7-dehydrocholesterol to cholecalciferol, which undergoes further metabolism in the liver to 25-hydroxyvitamin D, and in the kidneys to the active metabolite, 1,25-hydroxyvitamin D (29,30). The metabolite commonly measured to assess vitamin D status is serum 25-hydroxyvitamin D (30). Production reaches a maximum at less than one minimal erythema dose, which can be achieved for approximately two to eight minutes outside on a sunny day for a light-skinned individual (27). This estimate varies on the basis of season, time of year, time of day, skin type, and latitude. The other routes for obtaining vitamin D are through oral ingestion of vitamin D supplements, vitamin D-fortified foods like milk and milk products, or vitamin D-rich natural food sources such as fatty fish. Sun and UV exposure has been advocated by some, including the tanning industry, as a necessary means for
obtaining vitamin D levels. However, the peak action spectrum for vitamin D photosynthesis is around 300 nm, similar to the peak wavelengths for erythema and pigmentation responses, and formation of CPDs. UVR is a well-known carcinogen (27); recently, WHO has classified tanning beds as carcinogenic (31). Studies have shown that even with abundant unprotected sun exposure (several hours per day), some individuals do not synthesize adequate levels of vitamin D, especially darkerskinned individuals (27,32). Therefore, for individuals at risk for vitamin D insufficiency, it is recommended that oral vitamin

Table 4.1 Components of Solar Radiation, Wavelength, and Depth of Penetration

<table>
<thead>
<tr>
<th>UVC</th>
<th>UVB</th>
<th>UVA</th>
<th>Visible</th>
<th>Infrared</th>
</tr>
</thead>
<tbody>
<tr>
<td>200–290 nm</td>
<td>290–320 nm</td>
<td>320–400 nm</td>
<td>400–760 nm</td>
<td>760 nm–1 mm</td>
</tr>
</tbody>
</table>

Subdivisions

- UVA1: 320–340 nm
- UVA2: 340–400 nm
- IRA: 760–1400 nm
- IRB: 1400–3000 nm
- IRC: 3000 nm–1 mm

Energy Highest

Depth of penetration Shallowest

Abbreviations: UV, ultraviolet; IR, infrared.

Table 4.2 Timeline of UVR-Induced Erythema

<table>
<thead>
<tr>
<th>Peak erythema</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial erythema</td>
<td>Immediately after exposure 1–2 hr 24–72 hr</td>
</tr>
<tr>
<td>Peak erythema</td>
<td>3–4 hr after exposure 8–24 hr 24–48 hr</td>
</tr>
</tbody>
</table>

Abbreviations: UVR, ultraviolet radiation; UV, ultraviolet.

Table 4.3 Timeline of UVR-Induced Pigmentation

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Main contributing range of UVR</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPD</td>
<td>Photooxidation of preexisting melanin</td>
<td>Within seconds of exposure UVA and visible light 2 hr</td>
</tr>
<tr>
<td>PPD</td>
<td>Photooxidation and redistribution of preexisting melanin</td>
<td>2–24 hr UVA and visible light 2 to 24 hr</td>
</tr>
<tr>
<td>DT</td>
<td>Neomelanogenesis</td>
<td>72 hr–1 wk UVB, UVA and visible light Up to 10 wk</td>
</tr>
</tbody>
</table>

Abbreviations: IPD, immediate pigment darkening; PPD, persistent pigment darkening; DT, delayed tanning; UVR,
ultraviolet radiation; UV, ultraviolet. D 3 at 1000 IU daily be taken; they should not be advised to obtain vitamin D from natural or artificial UV (33). CHRONIC EFFECTS OF UVR Photoaging Clinical features of photoaging, along with differences from normal intrinsic aging, are outlined in Table 4.4 (34–36). Histopathologically, photodamaged skin presents with hyperkeratosis and acanthosis. In addition, classic characterized effects of photoaging are due to damage of the dermal connective tissue and include the presence of numerous hyperplastic fibroblasts, irregular and disorganized collagen bundles that acquire a distinctive basophilic staining, increased and amorphous elastin, thickened vessels, and increased glycosaminoglycans and inflammatory cells. UV radiation results in generation of reactive oxygen species (ROS) and free radicals, as well as increased activation of growth factor receptors in keratinocytes and fibroblasts, resulting in upregulation of matrix metalloproteinases (MMPs), which degrade various components of the extracellular matrix, such as elastin and collagen (36–38). UVB is mostly absorbed in the epidermis. It plays a role in photoaging by induction of transcription factors, such as nuclear factor-k B and other proinflammatory cytokines, expression of MMPs, induction of CPDs, as well as generation of pyrimidine-pyrimidone photodimers, photoisomerization of transto cis-urocanic acid, and generation of ROS (39). Furthermore, amino acids that cross-link collagen and elastin, melanin (6), tryptophan, and tyrosine (40) are additional potential targets of UVB radiation. Compared to UVB, UVA generates more oxidative stress, is more phototoxic, and is 10 times more efficient in causing lipid peroxidation. UVA also induces MMP synthesis, and the formation of nicks in the DNA, mitochondrial DNA base deletions in the fibroblasts, and the formation of 8-hydroxythioguanine. Telangiectasias are thought to occur from the effect of UVR in increasing vascular endothelial growth factor and platelet-derived endothelial growth factor, and from downregulation of angiogenesis inhibition (39). Photocarcinogenesis and Development of Actinic Keratosis As previously discussed, UVB is especially important in the formation of CPDs and UVA in the development of ROS, which can further damage DNA. Many studies have implicated these entities directly in the carcinogenesis of skin cancers and actinic keratoses. Actinic keratoses (AKs) are a reflection of over exposure to sunlight, occurring in up to 50% of fair-skinned population greater than 40 years (41). They are precursor lesion to carcinoma in situ and eventually squamous cell carcinoma (SCC). AKs occur in individuals with light skin, since melanin in dark-skinned individuals
provide natural photoprotection. An important risk factor for development of AKs and skin cancers is age, as the rates of incidence increase exponentially as age increases. Age-related differences in the immune system may play a role (42). AKs are located in sun-exposed sites (43), and the incidence of AKs in people who work outdoor or spend lots of recreational time in the sun is higher than in people who work indoors (41). Support for AK and SCC lying on a biologic continuum relies on the progression of AK to SCC: about 0.1% to 10% will progress in a 1-year period (44), and 6% to 10% over 10 years (45). Although AKs are not thought to progress to become basal cell carcinomas (BCCs), a high number of AKs is a risk factor for BCCs as well. As opposed to cumulative, chronic UVR being responsible for the development and progression of AK and SCC, it is thought that intermittent, intense sun exposure, and childhood UVR with sunburns are more important risk factors for development of BCC and melanoma (46-52). Although it is agreed that development of melanoma is related to sun exposure, the association is not as clear as with other skin cancers (47). Major risk factors include total sun exposure, altered or irregular patterns of exposure, fair-skinned complexion, history of painful sunburns before the age of 20 years, freckling, and location close to the equator (42,49,53). Melanoma and other skin cancers have been induced by UVR in animals (54,55). Additionally, the incidence of these entities is inversely related to latitude (49). Melanomas most commonly affect the back in males and the lower legs in females, and are more common in people with indoor jobs, supporting the idea that it is intermittent, intense exposure and not chronic cumulative exposure to UVR that is involved in its pathogenesis (46). Mutation of critical genes is thought to be the mechanism through which UVR induces development of AK and skin cancers. The p53 tumor suppressor gene plays an important role in the pathogenesis of skin cancers and other malignancies. The normal function of this gene is to serve as a guardian for the genome by inducing apoptosis in a cell in which its DNA has been damaged. Signature mutations of the p53 gene that are induced by UVR are found in up to 80% of AKs and 90% of SCC. It is also thought to be involved in BCC. The p16 tumor suppressor gene is implicated in the development of melanoma (56). The Hedgehog pathway and PTCH1 gene are thought to be involved in the pathogenesis of BCC (57). CUTANEOUS EFFECTS OF VISIBLE LIGHT Visible light accounts for the spectrum of solar radiation ranging from 400 to 760 nm and produces the general illumination visible to the human eye. Solar radiation reaching the earth’s surface consists of about 50% visible light (39). The biological effects of visible
light on human skin have not been fully studied. Chromophores that absorb wavelengths along the visible light spectrum include β-carotene, protoporphyrin IX, melanin, water, riboflavin, bilirubin, and hemoglobin. Among them, several have an action spectrum that includes UVR wavelengths. The existing studies focusing on visible light have shown that it can produce erythema, pigmentation, and ROS (58). Table 4.4 Clinical Differences Between Chronologic Aging and Photoaging

<table>
<thead>
<tr>
<th>Chronologic Aging</th>
<th>Photoaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigmentation</td>
<td>Regular</td>
</tr>
<tr>
<td>Diffusely irregular</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>Thinning of skin, increased laxity</td>
</tr>
<tr>
<td>Thinning of skin, increased laxity</td>
<td></td>
</tr>
<tr>
<td>Texture</td>
<td>Smooth and atrophied</td>
</tr>
<tr>
<td>Leathery, wrinkled, dry, and rough</td>
<td></td>
</tr>
<tr>
<td>Blood vessels</td>
<td>Decrease in number Telangiectasias</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Absent</td>
</tr>
<tr>
<td>Telangiectasias</td>
<td>Present</td>
</tr>
<tr>
<td>Distinctive features</td>
<td>Present Distinctive features</td>
</tr>
<tr>
<td>Cutis rhomboid nuchae</td>
<td></td>
</tr>
</tbody>
</table>
Erythema

INTRODUCTION The skin provides a protective shield between us and environmental toxicity. This is evident in certain occupations where there is constant exposure to hazardous substances. Precautionary measures such as glove use minimizes the risk of incurring contact dermatitis (CD), but in many professions this is impossible because of the loss of dexterity. An alternative measure is to utilize barrier creams (BC), which may play an important role in the prevention of CD (1-7). BC are also used to protect the face and neck against chemical and resinous dust and vapors (8). Many prefer to use BC rather than gloves because they do not want the hand continuously sealed inside a glove that can inhibit skin barrier function (6). In addition, many gloves do not resist the penetration of low molecular weight chemicals and some allergens are soluble in rubber gloves that may penetrate the glove and produce severe dermatitis (6,9,10). Allergy to rubber latex has become a growing problem (6,10). Furthermore, because of continuous gloves wearing, workers can develop serious symptoms (i.e., contact urticaria syndrome) including generalized urticaria, conjunctivitis, rhinitis, and asthma, etc. (6,11). Additionally, BC can be used against chemical warfare agents (12,13). However, their utilization remains the subject of a lively debate; some suggest that the inappropriate BC application may exacerbate rather than prevent irritation (1-3,6,14-16). The accuracy of measurements depends on the use of appropriate methodology and hence various in vitro and in vivo methods have been developed to evaluate their efficacy. This chapter reviews methodology and efficacy of BC. IN VITRO METHODS In 1946, Sadler and Marriott (17) introduced facile tests to evaluate the efficiency of BC. One method used the fluorescence of a dyestuff and eosin as an indicator to measure penetration and the rates of penetration of water through BC; this is rapid and simple, but provides only a qualitative estimate. Suskind (18) performed a simple method to measure the relative efficacy or repellency of formulations with film immersion test in a specific exposure. Formulation containing 52.5% silicone in bentonite, and 30% silicone in petrolatum were effective against a range of aqueous irritants and sensitizers. Langford (19) conducted in vitro studies to determine the efficacy of the formulated fluorochemical (FC)-resin complex included solvent penetration through treated filter paper, solvent repellency on treated pig skin, and penetration of radiotagged sodium lauryl sulfate (SLS) through treated hairless mouse skin. He also conducted an in vivo study on 75 persons who had previously experienced irritation on their hands due to continued contact with
solvents. 83% of the panelists stated the cream was effective in protecting their hands. Reiner et al. (20) examined the protective effect of ointments on guinea pig skin in vitro and in vivo. The permeation values of a toxic agent through unprotected and protected skin within 10 hours determined radiologically and enzymatically. Permeation of the toxic agent was markedly reduced by polyethylene glycol ointment base and ointments containing active substance. In in vivo experiments on guinea pigs mortality was greater after applying the toxic agent to unprotected skin. All formulations with nucleophilic substances markedly reduced the mortality rate. Loden (21) evaluated the effect of BC on the absorption of \(\text{H}^3 \) water \((\text{C}^{14}) \)-benzene and \((\text{C}^{14}) \)-formaldehyde into excised human skin. The control and the BC-treated skins were exposed to the test substance for 0.5 hour, whereupon absorption was determined. The experimental cream “water barrier” reduced the absorption of water and benzene but not formaldehyde. One cream slightly reduced benzene and formaldehyde absorption. Two other creams did not affect the absorption of the substances studied. Treffel et al. (22) measured in vitro on human skin the effectiveness of BC against three dyes (eosin, methylviolet, and oil red O) with varying n-octanol/water partition coefficients (0.19, 29.8, and 165, respectively). BC efficacy was assayed by measurements of the dyes in the epidermis of protected skin samples after 30-minute application. The efficacy of BC against the three dyes showed in several cases data contrary to manufacturer’s information. There was no correlation between the galenic parameters of the assayed products and the protection level, indicating that neither the water content nor the consistency of the formulations influenced the protection effectiveness. Fullerton and Menne (23) examined the protective effect of ethylenediaminetetraacetate (EDTA) barrier gels against nickel contact allergy using in vitro and in vivo methods. In an in vitro study, about 30 mg of barrier gel was applied on the epidermal side of the skin and a nickel disk was placed above the gel. After 24-hour application, the nickel disk was removed and the epidermis separated from the dermis. Nickel content in epidermis and dermis was quantified by adsorption differential pulse voltammetry (ADPV). The amount of nickel in the epidermal skin layer on barrier gels treated skins was significantly reduced compared with the untreated control. In vivo patch testing of nickel-sensitive patients was performed using nickel disks with and without barrier gels. Test preparations and nickel disks were removed one day post application, and the test sites were evaluated. Reduction in positive test
reactions was highly significant at barrier gels treated sites. Zhai et al. (24) utilized an in vitro diffusion system to measure the protective effective of quaternium-18 bentonite (Q18B) gels to prevent 1% concentration of [35 S]-SLS penetration by human cadaver skin. The accumulated amount of [35 S] SLS in receptor cell fluid were counted to evaluate the efficacy of the Q18B gels over 24 hours. These test gels significantly decreased SLS absorption when compared with the unprotected skin control samples. The percent protection effect of three test gels against SLS percutaneous absorption was from 88%, 81%, and 65%, respectively. Millerioux et al. (25) validated screening tests by utilizing two in vitro skin permeation models: split-thickness skin from pig ears and semipermeable silicone membranes disposed in Franz-type diffusion cells. The protective efficacy of three formulations, oil-in-water and water-in-oil emulsions, and perfluorinated compounds-based cream against the neurotoxic organophosphorus compounds (OP) was evaluated. Results indicated that the least effective formulations could be quickly identified by performing in vitro permeation tests with silicone membrane and by evaluating interfacial interactions between formulations and OP. Among the tested formulations, the
perfluorinated compounds-based cream could have a broader spectrum of efficacy than emulsions against OP and other toxic chemicals.

IN VIVO METHODS

Schwartz et al. (26) introduced an in vivo method to evaluate the efficacy of a vanishing cream against poison ivy extract utilizing visual erythema on human skin. The test cream was an effective prophylaxis against poison ivy dermatitis compared with unprotected skin. Lupulescu and Birmingham (27) observed the ultrastructural and relief changes of human epidermis following exposure to a protective gel and acetone and kerosene on humans. Unprotected skin produced cell damage and a disorganized pattern in the upper layers of epidermis. Protective agent prior to solvent exposure substantially reduced the ultrastructural and relief changes of epidermis cells. Lachapelle et al. (3,28–31) utilized a guinea pig model to evaluate the protective value of BC and/or gels by laser Doppler flowmetry and histological assessment. The histopathological damage after 10 minutes of contact to toluene was mostly confined to the epidermis while the dermis was almost normal. The dermal blood flow changes were relatively high on
the control site compared with the gel pretreated sites. Frosch et al. (1,15,16,32,33) developed the repetitive irri-
tation test (RIT) in the guinea pig and in humans to evaluate the
efficacy of BC using bioengineering techniques. The cream
pretreated and untreated test skin (guinea pigs or humans)
were exposed daily to the irritants for two weeks. The
resulting irritation was scored on a clinical scale and assessed by
biophysical techniques’ parameters. Some test creams sup-
pressed irritation with all test parameters; some failed to
show such an effect, and even exacerbated (16). Zhai and Maibach (2) utilized an in vivo human model to
measure the effectiveness of BC against dye indicator
solutions:
methylene blue in water and oil red O in ethanol, representa-
tive of model hydrophilic and lipophilic compounds.
Solutions
of 5% methylene blue and 5% oil red O were applied to
untreated and BC pretreated skin with the aid of aluminum
occlusive chambers for zero and four hours. At the end of the
application time, the materials were removed, and
consecutive skin surface biopsies (SSB) obtained. The amount of dye pen-
etrating into each strip was determined by colorimetry. Two
creams exhibited effectiveness, but one cream enhanced
cumulative amount of dye. Zhai et al. (5) introduced a
facile approach to screening protectants in vivo in human
subjects. Two acute irritants and one allergen were
selected: SLS representative of irritant household and
occupational CD, the combination of ammonium hydroxide (NH
4 OH) and urea to simulate diaper dermatitis, and Rhus to
evaluate the effect of model protective materials. Test materials were spread over onto test area, massaged, allowed to dry for 30 minutes, and reapplied with another 30-minute drying period. The model irritants and allergen were applied with an occlusive patch for 24 hours. Inflammation was scored with an expanded 10-point scale at 72 hours post application. Most test materials statistically suppressed the SLS irritation and Rhus allergic reaction and not NH4 OH and urea induced irritation. Wigger-Alberti et al. (34) determined which areas of the hands were likely to be skipped on self-application of BC by fluorescence technique at workplace. Results showed the application of BC was incomplete, especially on the dorsal aspects of the hands. Draelos (35) conducted a randomized, double-blind, split-body study in 80 men, women and children (neonate) with the following dermatological conditions: household dermatitis, occupational hand dermatitis, latex glove irritant CD, diaper dermatitis, cutaneous wounds, and allergic CD. The subjects were given two identical jars (one jar containing petrolatum-based cream, and the other contained hydrogel-based barrier/repair cream) and were instructed to apply one cream to half of their bodies, while the other cream to the other half for four weeks. Results showed 62% of the subjects preferred hydrogel-based barrier/repair cream over the petrolatum-based cream (p = 0.005), as well as the investigator’s assessment (p = 0.000 01) in terms of the overall skin appearance. McCormick et al. (36) performed a double-blind, randomized trial comparing a novel BC versus an oil-containing lotion in 54 health care workers for two months. Results showed that both creams substantially protected the health care workers against drying and chemical irritation, preventing skin breakdown and promoting more frequent handwashing. The skin protection efficacy of dexpanthenol was investigated by Biro et al. (37) in a double-blind, randomized, placebo-controlled study design in 25 healthy volunteers. They compared a cream containing 5% dexpanthenol with its vehicle moisturizing base, and applied to the flexor forearms twice daily for 26 days—one arm treated by the test product, while the other treated with placebo. In days 15 to 25, 2% SLS were treated on both forearms. Measures of skin physiology included sebumetry, corneometry, pH values and clinical appearance (photographs). Results showed, though not significantly, a decreasing trend of the pH values and decrease in sebum content during SLS treatment but normalized when SLS was discontinued. Hydration of the stratum corneum remained stable throughout the study in the dexpanthenol group, while corneometry for the placebo group showed a significant (p < 0.05) decrease at the end
of the SLS treatment on day 23. This study demonstrates the capability of dexpanthenol to protect skin from experimentally induced skin irritation. Perrenaud et al. (38) conducted a double-blind cross-over study comparing a new registered BC containing 5% aluminum chlorhydate as active ingredient with its vehicle in 21 apprentice hairdressers who are frequently exposed to repeated shampooing and hair care products for a period of two months. The subjects were randomly assigned into two groups then each subject was given identical 50-g tubes at the onset of the study, after two weeks, and at the start of the second phase. The contents of the tubes were unknown to the investigators and subjects. The participants recorded their daily comments. Evaluation of the creams’ efficacy included (i) clinical scores (dryness, redness, and breaks rated as 0 % none to 3 % maximum) assessed by the researchers; (ii) biometric measurements using evaporimeter, corneometer, and chromameter; and (iii) recording of subjective opinions. Result for clinical evaluation showed low scores—nearly everyone had a “0” or “1” score. Only corneometric values showed a significant difference, that is, the scores for the control group were significantly (p < 0.01) higher than the test product. De Pae`pe et al. (39) investigated the beneficial effects of a skin tolerance-tested moisturizing cream on the barrier function in experimentally elicited irritant and allergic CD in 24 white female volunteers. Skin compatibility tests with the raw cosmetic materials and the final test product were initially performed in a large population to verify that the test product was well tolerated. Irritant CD was elicited using 1.25% SLS patch tested for 24 hours on the volar forearms of 12 white female volunteers in two sites (one site for treatment with the test cream, while the other site left untreated). A third site was patch tested with filter paper soaked in pure water. Following patch removal, the forearms were washed, and application of 0.03 mL test cream was initiated the next day, twice daily for 14 consecutive days. There were significant (p < 0.05) decreases in transepidermal water loss (TEWL) values of the treated site when compared to the untreated site on days 3, 8, and 15. Allergic CD was elicited using nickel-mediated contact allergy patch (CAP) test in another 12 white female volunteers with well-established histories of nickel (Ni) contact allergies. Two patches contained 0.3 mL of 5% nickel sulfate in petrolatum and a third patch contained 0.3 mL of physiological serum (0.9% NaCl) served as control. Patches were removed after 48 hours and test sites were cleaned with dry tissue, then 0.3 mL of the test cream was applied on the test sites twice a day for four consecutive days. Results revealed that a significant (p < 0.05)
decrease in TEWL values of the treated site when compared with the untreated site on days 3, 8, 15. Diepgen et al. (40) investigated six skin care products (Locobase Pro cream, Debba Wet, Taktosan, Pluctect Dual, Locobase fatty cream, and Kerodex 71) for their compatibility with normal and diseased skin, as well as their efficacy as protective skin barriers in 40 healthy volunteers in a double-blind study. The chamber scarification test (33) was used to compare the test products with known positive (aqueous SLS 0.5%) and negative (paraffin oil) controls and to rank the irritancy potential of products in 20 healthy volunteers. Approximately 0.1 mL of each product was applied in the scarified normal skin of their flexor forearms of the participants using Finn Chambers 1. Patches were removed after 23 hours (day 1) and read an hour later, and immediately before reapplication of the samples for days 2 and 3. Reactions were scored visually using a five-point scale (“0” = no reaction to “4” = confluent, severe redness with edema or bullae). Results revealed that out of the eight samples applied, Debba Wet had the highest sum of scores (“12”) in five subjects, while positive control only reached a maximum score of “10” in three subjects. Both Debba Wet and SLS 0.5% were considerably more irritating (p < 0.0001) than the other test products. The ranking of the test products was as follows: Debba Wet (score average = 11) SLS 0.5% aqueous (score average = 7.4) Taktosan cream (score average = 3.7) Locobase fatty cream (score average = 3.3) Kerodex 71, Pluctect Dual, Locobase Pro cream, and paraffin oil (score average = 2.2-3.0). On the other hand, the repeated-exposure short-time occlusive irritation test (ROIT) was used to assess the efficacy of the six products and yellow Vaseline as protective skin barriers in another 20 healthy volunteers. ROIT involved multiple short application times using low concentration of irritants. Aqueous SLS 0.5% was used as the irritant and was patch tested using Large Finn Chambers on the volar forearms of the subjects. For each site, the following were applied: irritant alone, water alone, one was left blank, while the rest of the sites were first pretreated with the seven test creams 10 minutes prior to irritant application. The placing of the test products was changed from person to person according to a rotation system. The whole procedure was repeated every 3 to 3.5 hours for three consecutive days. Parameters utilized were TEWL (measured by Tewameter TM 210), erythema (measured by ChromaMeter CR 300), and clinical visual scoring (numerical scale: “0” = no reaction to “3” = pronounced erythema and edema, extensive scaling, possibly vesicles, bullae, pustules, and/or pronounced crusting). Final results for the comparison of delta TEWL values between the test areas and the untreated sites
showed significantly (p < 0.05) increased values for Vaseline, Taktosan, and Debba Wet. There was no significant difference among the TEWL values for Locobase Pro cream, Pluteck Dual, Locobase fatty cream, and Kerodex 71 when compared with normal skin. The increase in TEWL values were not significant (p > 0.05) between SLS-exposed sites and pretreated sites. Clinically, treatment with the SLS increased the visual scores. Likewise, Vaseline, Taktosan, and Debba Wet did not offer protection from skin irritation. Modak et al. (41) demonstrated that the use of topical formulation with zinc gel delayed or prevented latex sensitivity in 22 volunteers known to have mild to moderate latex intolerance. Three cubic centiliter (cc) of both zinc gel formulation and placebo creams were applied to the subjects divided into three groups: group A (zinc gel formulation applied on the right hand and placebo cream on the left hand in 10 subjects who used powdered latex gloves); group B (no cream on the right hand and zinc gel formulation on the left hand in another 10 subjects who used powdered latex gloves); and group C (no cream on the right hand and zinc gel formulation on the left hand in 2 volunteers who used powder-free latex gloves). Latex gloves were then worn by the subjects until they perceived discomfort or until three to four hours that had passed if without symptoms. Investigators rated the subjects using numerical scale: “0” = no visible reaction to “3” = severe itching, redness, and papules all over the hand within 30 minutes. Results showed that zinc gel formulation protected 21 out of 22 volunteers from latex sensitivity. Only one subject had a score of “1” belonging to group A. Additionally, the investigators extracted latex proteins from the gloves, and treated with zinc gel formulation diluted in distilled water. Results revealed that zinc gel formulation-treated latex proteins decreased (mean % 0.28) as compared with the untreated ones (mean % 1.14), by %74%. Lastly, zinc gel formulation was compared with three other creams and a control (no cream applied) to evaluate its barrier efficacy. Zinc gel formulation proved superior among the three creams. Rosado et al. (42) utilized dynamic methods to assess the efficacy of a urea containing moisturizing cream to the lower
of 12 volunteers with severe dry skin. After two weeks of
application with test BC, a plastic occlusion stress test
(POST)
was performed in the treated and control untreated site and
a
mathematical model was adjusted to the resulting desorption
curves. Results indicate that, after treatment of the skin
with the
cream for two weeks, statistically different kinetic
parameters
are obtained in the treated site, which suggests an improve
ment in the water dynamic balance and skin barrier. They
concluded that the method has enough sensitivity to assess in
vivo the effect of moisturizers on human skin, and also
that this
evaluation can be performed in a shorter period than that
required by the regression method.

IN VITRO AND IN VIVO METHODS
Teichmann et al. (43) investigated the reservoir and barrier
functions of the skin in two study designs because the former
function is dependent on the latter function. Study design A
was carried out in six healthy volunteers according to the
method described by Teichman et al. (44) and to a pig skin, to quantify stratum corneum penetration. Patent Blue V (C 54 H 26 CaN 4 O 14 S 4) in water (the penetrant) was applied to the human skin in increasing amounts—10 and 40 mg/cm 2 of the 0.5% concentration, and 40 mg/cm 2 of the 2% concentration.

After one hour, substances were wiped to avoid occlusion, and then tape stripping was performed on the fifth hour. Results for the 10 mg/cm 2 of the 0.5% concentration revealed the amount of stratum corneum extracted were 5.1 1.25 mg/cm 2 —no penetrant was recovered, that is, no excess amount developed.

However, after the applications of 40 mg/cm 2 of the previous concentration and the 2% concentration, (21.5 1 and 27.7 1.5 mg/cm 2 of extracted stratum corneum, respectively), excess amounts of the penetrant were recovered (6.7 2.8 and 27.7 1.5 mg/cm 2 , respectively). The same procedure was performed on the porcine skin to obtain a histological diagnosis and showed that a large amount of Patent Blue V was located on the skin surface and the upper parts of the stratum corneum, and greater amounts were also found in the furrows. Study B was performed in another six healthy volunteers and investigated three BCs (commercial BC, beeswax, Vaseline) using the
penetration behavior of Patent Blue V in water in the different
BC-pretreated skin, and one untreated site by tape stripping.

Results revealed that the commercial BC did not demonstrate
barrier function—similar to the untreated site (p > 0.05); while
beeswax and Vaseline were significant (p < 0.05) in their
efficacy of barrier function. Chilcott et al. (12)
conducted an in vivo and in vitro study
evaluating the efficacy of a BC (70% w/w Fomblin TM HC/R and
30% w/w lubricant grade polytetrafluoroethylene) versus
chemical warfare agent in domestic white pigs. The in vivo
study involved 18 pigs prepared as previously described (13)
and divided into three groups: control group (no agent, no BC),
positive control group (with agent, no BC) and pretreated
group
(application of agent 15 minutes post application of the
BC).

Where appropriate, 40 mL of the BC and 14 C-VX (*6-hour 2LD
50)
were applied over the inner ear of the animals. Indicators of
mortality included a decrease in serum acetylcholinesterase
(AChE) and a large pupil diameter. Animals in the control and
BC-treated groups survived the three-hour exposure period,
while five out of the six animals in the positive control group
died after a mean time of 65 13 minutes. Correspondingly, there was a significant (p < 0.05) decline in serum AchE while

INTRODUCTION

Manufacturers of consumer products consistently look for new ways in which their products may provide benefits to the consumer. A growing trend for absorbent consumer products is to incorporate lotions and emollients on the surface to improve overall consumer comfort during product use. There are a number of examples of such products currently on the market. Facial tissues impregnated with lotion have been shown to facilitate the healing of redness and dryness that may occur to the area around the nose as a result of repeated wiping when suffering from a cold or allergy (1). Benefits of topical administration of skin protectants from baby diaper topsheets clinically reduced skin erythema and skin barrier damage in infants (2). Petrolatum emollient impregnated in diapers reduced skin surface roughness, skin erythema and diaper dermatitis compared with identical diapers without emollient (3,4). A combined zinc oxide/petrolatum (ZnO/Pet) formulation was demonstrated to actually protect skin from damage when subsequently challenged with a model irritant (0.5% sodium lauryl sulfate) under 24-hour occlusive patch (5).

The protective effects of this technology also provide advan
tages in feminine protection products. Preliminary clinical studies in nonmenstruating women showed that the ZnO/Pet lotion effectively transferred to vulvar skin during pad wear in a dose and time-dependent manner. The safety and efficacy of the emollient-impregnated pads was subsequently confirmed in clinical studies (6). Lotion transfer is primarily a surface phenomenon. Mol ecules of lotion on the surface of the product transfer to the surface of the skin. Once on the skin surface, the lotion acts as a barrier to moisture loss and provides lubrication (7). It follows that, for lotion technologies to provide benefits for absorbent products, the lotion must first be able to transfer to the skin surface. While this point may seem obvious, it provides a unique challenge when dealing with absorbent products. After all, the main function of the product is to absorb material, not release it to the skin. A reliable means to measure the relative quantities of various lotions which transfer from absorbent products, and the potential effects of other product characteristics, is key in the development of lotion-containing products that will provide skin benefits. We have developed a modification of the behind-the-knee (BTK) protocol to evaluate lotion transfer from
emollient coated menstrual pads. The BTK protocol using the popliteal fossa as a test site was originally developed to evaluate both the inherent chemical irritation, and the potential for mechanical irritation of substrates and products that come into prolonged or repeated contact with the skin (8). However, we have found that this method can effectively measure the amount of lotion formulations that transfer to the skin with greater reliability than measurements conducted in the course of clinical in-use studies (9). In a series of studies, we examined the influence of various aspects of menstrual pad construction and chemical composition on the transfer of lotion to the skin. It is important to note that this method measures transfer of lotion from the menstrual pads, and is capable of detecting small differences in the amount of lotion transferred. This model is not a measure of efficacy. In fact, in our experience, consumers do not notice small differences in the amount of lotion transferred, nor do we see differences in efficacy with small changes in the amount transferred. However, when making decisions about improvements or other changes to the product which may involve considerable expense and resources, having a sensitive measure of lotion transfer is invaluable in guiding the product development process toward the most cost-effective efforts. METHODS Both the BTK and clinical in-use protocols were conducted in accordance with the Declaration of Helsinki, and were reviewed and accepted by the Institutional Review Board of the research facility (10). All subjects reviewed and signed an informed consent prior to the study. Subjects were excluded from participation in the study if they had a history of sensitivity to skin tapes, bandages or adhesives, if they had any condition in the test area which would prevent the collection tapes from adhering to the skin (i.e., piercings, wounds, etc.), or if they were currently menstruating. BTK Protocol The BTK protocol has been described previously (7,9). Panels of healthy adults were enrolled for participation. Subjects were instructed to refrain from using lotions, creams, or any other skin preparation on the area of the skin to which product was to
been applied. Subjects with preexisting irritation or discomfort in the area behind the knee or leg varicosities were excluded. To absorb lotion transfer, two sections of waterproof, thin film dressing tape (Tegaderm™ tape, 3M™, St. Paul, Minnesota, U.S.) were applied on the popliteal fossa of each leg, as in the examples shown in Figure 6.1. Test pad samples were placed horizontally and held in place on the popliteal fossa by an elastic knee band of the appropriate size. Samples were placed randomly on the right or left test sites. Following application of the pads, subjects left the test facility and participated in normal daily activities. After three hours, the test sample was removed, and one piece of collection tape was removed from each test site for analysis. A fresh test product was applied for three more hours (i.e., a total of six hours of application), following which, the second collection tape was removed and analyzed. Clinical In-Use Protocol The clinical in-use protocol has also been described previously (9). Healthy, adult, nonmenstruating female subjects, aged 18 to 55, were enrolled. At least 24 hours prior to tape application and pad wear, subjects were required to discontinue the use of all lotions, ointments, creams, powders, soaps/body washes, feminine wipes or toilet paper with lotion in the vulvar area. The subject was asked not to bathe or shower during the 24-hour periods when the collections tapes were in place. The subjects were randomized into three groups of 12 each, and each group was assigned to wear two of the six test products (i.e., feminine protection pads with lotion) in random order. A crossover design with a 24-hour washout period was used for the pairwise comparisons so that each subject served as her own control. Consequently, the study had two phases, each involving 24 hours of pad wear time with one of the two comparison products to which the subject was assigned. Immediately prior to the start of phase one, pubic hair present on the site of application was clipped by the study technician. Four sections (22 mm × 44 mm) of the thin film dressing tape were applied to each side of the labia majora (two per side) oriented parallel to the vaginal opening (Fig. 6.1). Panties and test pads were dispensed, and the subjects wore the pads for three hours. During this time, subjects participated in normal activities of daily living. After three hours of wear, two of the four tape sections (in random order) were removed for determining lotion transfer. An activity log for the three hour wear time was completed. After removal of two sections of collection tape, the same fresh test product was reapplied as needed by the test subject for the remainder of the total 24-hour test period (approximately 21 additional hours of wear time). Subjects were given enough test products so that
they could change pads at approximately three to five-hour intervals and once after overnight wear during the test period. The subjects kept a test product use log to record the times when each test product was removed, and the total number of pads used. After the pads had been worn for a total of 24 hours, subjects returned to the test facility, and the two remaining sections of collection tape were removed, to complete phase one. Following the 24-hour washout period, the entire process was repeated for phase two using a different product. Test Products Menstrual pads are constructed of a surface layer (topsheet), an absorbent core, and a moisture-impermeable backing (11–13). The topsheets are made from nonwoven polyethylene-based or polypropylene-based copolymeric fabrics, perforated polyethylene films, or some combination of these. The absorbent core may consist of cellulose fluff pulp, or absorbent gel materials (AGM) designed to hold larger volumes of fluid. In addition, some menstrual pads contain emollients on the surface to reduce skin irritation during use. These are applied in stripes on the topsheet that may vary in number, position and size. For these studies, two series of products were tested. Key characteristics are provided in Table 6.1. In the first series (product codes 1 through 7), identically constructed menstrual pads were used, with the same absorbent core, topsheet, lotion formulation and configuration of the stripes. The only difference was the amount of lotion applied to the surface of the pad. The second series was designed to test the potential influence of differences in pad construction, that is, the type of absorbent core and the configuration of the lotion applied to the pad. This series was also evaluated in a clinical in-use study for comparison. Lotion Measurement Lotion was quantified by gas chromatography with flame ionization detection. The thin film dressing tapes containing lotion from either the BTK or clinical in-use wear protocols were Figure 6.1 Diagram of tape and sample placement. In the BTK study, two tape placement options are shown in which sections of sterile, waterproof, thin film dressing tape are applied on the popliteal fossa of each leg. Test samples are applied directly on top of the collection tape. In the clinical study, four sections (22 mm x 44 mm) of the thin film dressing tape were applied to each side of the labia majora (two per side) oriented parallel to the vaginal opening. Abbreviation: BTK, behind-the-knee.

extracted for 30 minutes on a wrist action shaker using 10 mL of diluent. The extracts were passed through a 0.45-mm filter
nm Acrodisc 1 Syringe Filters with GHP Membrane, Pall Corporation, East Hills, New York, U.S.). Samples and standards were then passed through a gas chromatographic column (a constant flow of 1.5 mL/min, initial oven at an initial temperature of 100°C, with an increase in temperature of 10°C/min up to 200°C, then 15°C/min up to the detector temperature of 325°C). Behenyl alcohol, a component of all the lotion formulations, served as a marker for lotion transfer. A calibration curve was generated on the basis of the three standard concentrations of behenyl alcohol (0.1, 0.05, and 0.004 mg/mL behenyl alcohol in 1 L of hexane containing 50 mg tricosanol). The mass of lotion transferred was determined from the mass of behenyl alcohol and its concentration in the lotion formulation. Recovery was 90% to 110% on the basis of spiking of the collection tape.

Statistical Analyses

For the BTK protocol, one-way ANOVAs were conducted for the three- and six-hour data. A two-way ANOVA was used to compare time (two measurements), treatment (six pads), and their interaction. For the clinical in-use protocol, the 3 and 24-hour data
were analyzed using two-way ANOVA, involving period (i.e., before and after crossover), treatment, and their interaction. For the combined data, a two-way ANOVA was used involving hour (i.e., 3 and 24-hour measurements) and treatment. It should be noted that the clinical in-use study was a crossover design. Subjects used one test product in phase 1, and another product in phase two after a 24-hour “washout” period. To determine whether the washout period was effective, results were evaluated separately for the same products used during the first test period (phase 1) versus the second test period (phase 2). For two products (S and C), significant differences were found between the amount of lotion transferred when the products were used first (phase 1) compared with the same products used second (phase 2), indicating the washout period was not effective. Therefore, the three-hour data were treated separately. For the 24-hour data, there were no significant differences for products tested during phase 1 versus phase 2. Therefore, the 24-hour data for both phases were combined. RESULTS Transfer as a Function of the Amount of Lotion on the Pad

As mentioned in the introduction of this chapter, lotion transfer is a surface phenomenon. There will be a range of concentrations of lotion on the pad where the amount of transferred lotion will increase proportionally. There will also be a range of concentrations where no additional lotion will transfer, that is, where the surface of the collection tape is full. In this range, additional lotion, either from an increase in concentration on the pad or from multiple applications of fresh pads, will not result in additional lotion transferred to the collection tape. Test product series I was constructed to evaluate the effective concentration range for lotion transfer (Table 6.1). These menstrual pad samples were identical in every way except in the amount of lotion on the pads, which ranged from 0.8 to 62 mg/pad. As shown in Figure 6.2, for this range of lotion
concentrations, the amount of lotion which transferred to the collection tape in the BTK after a three-hour application was directly proportional to the amount which was applied to the pad. The six-hour sample application showed similar results (data not shown). The data shown in Figure 6.2 indicate that the range of lotion quantities tested (0.8–62 mg/pad) resulted in effective transfer of the lotion to the surface in a linear fashion. Influence of the Absorbent Core on Lotion Transfer The two basic options for absorbent cores have very different chemical and absorbent characteristics. Cellulose material

Table 6.1 Characteristics of Test Products

<table>
<thead>
<tr>
<th>Amount of lotion</th>
<th>Test product code</th>
<th>Absorbent core</th>
<th>Pad thickness (mm)</th>
<th>Total on pad (mg/pad)</th>
<th>Amount per unit area (mg/cm²)</th>
<th>Number of 5-mm stripes of lotion</th>
</tr>
</thead>
</table>
| Test product series I
| 1 | Cellulose 7 | 0.8 | 0.0 | 5 | | 5 |
| 2 | Cellulose 7 | 11.2 | 0.3 | 5 | | 5 |
| 3 | Cellulose 7 | 23.3 | 0.6 | 5 | | 5 |
| 4 | Cellulose 7 | 33.0 | 0.9 | 5 | | 5 |
| 5 | Cellulose 7 | 41.8 | 1.1 | 5 | | 5 |
| 6 | Cellulose 7 | 53.3 | 1.4 | 5 | | 5 |
| 7 | Cellulose 7 | 62.0 | 1.7 | 5 | | 5 |
| Test product series II
| Q | Cellulose 9 | 57.0 | 1.1 | 7 | | 7 |
| E | Cellulose 6 | 57.0 | 1.7 | 6 | | 6 |
| S | Cellulose 7 | 63.7 | 1.7 | 5 | | 5 |
| K | AGM 2 | 30.1 | 1.4 | 4 | | 4 |
| B | AGM 2 | 33.9 | 1.0 | 6 | | 6 |
| C | AGM 2 | 40.0 | 1.2 | 6 | | 6 |

Note: The amount of lotion on each pad (mg/pad) was determined by gas chromatography with flame ionization.
detection. It is also expressed as the amount of lotion per unit area of the lotion-containing stripes (mg/cm²). For all products, the topsheets were made of polypropylene/polyethylene nonwoven fabric, and the lotion was a petrolatum based formulation.

Abbreviation: AGM, absorbent gel materials. absorbs by capillary action whereas AGM absorbs by ionic action. If the lotion is composed of nonpolar components, AGM will have a lower affinity for the lotion and, therefore, release it more easily. Thus, the type of absorbent core would be expected to influence the amount of lotion that will transfer from the product. A second test product series was constructed to compare a number of product differences, including a comparison of the cellulose and AGM cores (Table 6.1). Because of the superior absorbent qualities of the AGM, the three AGM pads were only 2 mm thick, whereas those with cellulose cores ranged from 7 to 9 mm thick. The lotion concentrations and configuration differed. These products were tested in both the BTK and a clinical in-use study to measure lotion transfer. In the BTK, pads with an AGM core transferred more lotion than those with the more traditional cellulose absorbent core. Figure 6.3A shows data from both the threeand six-hour collection. As shown, even though the cellulose pads had more lotion applied to the surface, they tended to transfer less lotion to the collection tapes than the AGM pads. The clinical in-use study results showed a similar trend, although the data were less consistent (Fig. 6.3B). No particular trend was obvious at the three-hour collection point. However, after 24-hour exposure, the AGM pads released similar amounts of lotion compared with the cellulose pad, even though the stating amounts on the AGM pads were greatly reduced compared with the cellulose pads. Influence of Pad Thickness on Lotion Transfer The most likely explanation for the results shown in Figure 6.3 are the chemical differences between the AGM and cellulose materials. However, an alternative possibility is that the AGM pads transfer more lotion because they are thinner. If this were the case, and thinner pads transfer lotion better, one would expect that the intermediate pads (i.e., pad E, 6 mm thick, and pad S, 7 mm thick) would transfer more lotion than the thickest pad (pad Q, 9 mm). This was not the case, as shown in the Figure 6.4. Among the cellulose core products (S, Q, and E), the one with the most lotion on the pad to start (pad S with 63.7 mg lotion and a thickness of 7 mm) transferred directionally more
lotion to the skin in both the BTK and clinical, although the differences were not statistically significant in either protocol. The thicker cellulose pad Q (9 mm) and the thinner cellulose pad E (6 mm) both transferred an amount that was directionally less than pad S, and roughly equivalent to each other. Influence of Lotion Configuration on Lotion Transfer The amount of lotion transferred did not seem to be dependent on the configuration of the lotion on the pad in the series of products tested. These products had varying numbers of 0.5-cm-wide stripes, that is, from seven to four, yet the amount of lotion transferred did not vary directionally with the number of stripes for the group of products as a whole, nor when the cellulose (Q, E, and S) and AGM (C, B, and K) products were considered separately (Fig. 6.5). Lotion Transfer Efficiency BTK Protocol Vs. Clinical in-Use Protocol The efficiency of lotion transfer for both test protocols was determined as a percentage of the entire lotion reservoir available for transfer (amount of lotion on pad in mg/cm²). These results are presented in Figure 6.6. With the cellulose pads, both methods resulted in the transfer of 3.0% to 5.8% of the total amount of lotion available on the pad (per unit area) to the collection tapes. For the AGM pads, the transferred ranged from 2.2% to 7.7%. The transfer efficiency in the BTK protocol was higher than that of the clinical in-use protocol for all three AGM pads, and for the cellulose pad S. In fact, for pad C, the transfer was more than double in the BTK (7.0% compared with 3.3% in the clinical). For two cellulose pads, the transfer efficiency was similar for the two protocols (E and Q). Similar patterns were observed for the transfer efficiency at 6 hours for the BTK and 24 hours for the clinical (data not shown).
Comparison of the Two Test Protocols:

BTK Vs. Clinical

When the two test methods were compared, the BTK seemed to yield more consistent results when used as a means of determining the amount of lotion that transfers from feminine protection pads. As shown in Table 6.2, the lotion transfer from the second product application (six-hour time point) was approximately double the transfer from the first application (Table 6.2). This would be expected since the six hours of application used two fresh pads. In the clinical in-use protocol, the amount of lotion transferred was inconsistent (Table 6.3). The study measures only one parameter: transfer to an impermeable tape on the surface of the skin. It does not measure parts of the process that may reduce the apparent concentration of lotion on the surface, such as absorption of the lotion into the skin, or any transport or metabolism of lotion components from the epidermis or dermis. Obviously, some external factor, such as sweating, must have had an effect on the amount of lotion either transferred to the tape, or the amount remaining on the tape at the three-hour time point in the clinical study. Supporting this notion is the observation that with some individual panelists, the amount of lotion

Figure 6.3 Lotion transfer as a function of absorbent material. Lotion transfer from the second series of test products was evaluated using the BTK and the clinical in-use protocols. The figure shows the amount of lotion transferred (in mg/cm²) compared with the starting amount of lotion on the pad (in mg/pad) for both types of absorbent cores: cellulose and AGM. (A) Lotion transfer after three and six hours in the BTK protocol. Pairwise comparisons resulted in the significant differences shown. (B) Lotion transfer after 3 and 24 hours in the clinical in-use protocol. Pairwise comparisons resulted in no significant
differences. (Only phase 1 of the crossover study is reported for the three-hour time point.) Abbreviations: AGM, absorbent gel materials; BTK, behind-the-knee; SE, standard error. Transferred after 24 hours was actually less than that transferred after 3 hours (data not shown). Of course, vulvar skin differs from the stratified squamous epithelium that would be found behind the knee (14). However, in this study, lotion transfer is to a tape applied to the surface of the skin, not to the skin itself. Therefore, physiological and/or biochemical differences between the skin of the vulva and the popliteal fossa cannot account for the different results observed with the two test methods. In both experiments, transfer of the lotion would depend only on the characteristics of the product itself, that is, the lotion formulation, the amount and configuration of the lotion, the topsheet, the thickness of the pad and the absorbent core. Therefore, the extent of transfer should be additive for each product. In the clinical protocol, the amount of lotion transferred was not additive. Panelists used a total of 6.4 to 6.8 pads (sample applications) in each of the six test groups, but the increase in lotion transferred was 3.4 to 4.6 fold (Table 6.3). As summarized in Table 6.4, the results of the BTK produced the same rank order of test products in terms of lotion transferred at the three and six-hour time points. In most cases, the differences were significant. In contrast, the clinical in-use protocol produced a different rank order in the transfer amount, depending on the order of testing (i.e., phase 1 vs. phase 2), indicating the washout period was not effective. The 24-hour time point produced yet another rank order. Figure 6.4 Lotion transfer as a function of pad thickness. Lotion transfer (in mg/cm²) from the second series of products, as measured in the BTK and clinical in-use studies after three hours of collection, is shown as a function of the thickness of the test pads (in mm). Abbreviations: AGM, absorbent gel materials; BTK, behind-the-knee; SE, standard error. Figure 6.5 Lotion transfer as a function of lotion configuration. Lotion transfer (in mg/cm²) from the second series of products, as measured in the BTK and clinical in-use studies after three hours of collection, is shown as a function of the lotion configuration on the pad, that is, the number of stripes of lotion. Abbreviations: BTK, behind-the-knee; SE, standard error. The clinical protocol is subject to a number of variables that do not impact the BTK protocol (reviewed in Table 6.5). First, as
already mentioned, the number of pads used differs for different panelists, although this did not seem to account for any trends in the data. Differences in daily activities may also influence transfer amounts. In addition, even though the panelists all wear the identical type of panties issued by the test facility, the amount of pressure on the test site would vary depending on the fit of the panties.

Figure 6.6 Efficiency of lotion transfer for the two test protocols. The total fraction of the lotion transfer after three hours for both the BTK and clinical protocols was determined by dividing the amount transferred by the initial amount of lotion available per unit area. Abbreviations:

AGM, absorbent gel materials; BTK, behind-the-knee; SE, standard error.

Table 6.2 Results of Lotion Transfer Analysis Using the BTK Test Protocol

<table>
<thead>
<tr>
<th>Product code</th>
<th>Absorbent</th>
<th>3 hr of application (mg/cm²) Mean SE</th>
<th>6 hr of application (mg/cm²) Mean SE</th>
<th>Total sample applications Fold increase (6 vs. 3 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C AGM</td>
<td>85.3 5.2</td>
<td>a 105.8 8.0 b 2 2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B AGM</td>
<td>80.1 6.4</td>
<td>c 170.0 7.6 d 2 2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S Cellulose</td>
<td>78.8 6.2</td>
<td>e 149.9 11.6 f 2 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q Cellulose</td>
<td>62.4 4.4</td>
<td>g 111.5 7.3 2 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E Cellulose</td>
<td>52.6 3.4</td>
<td>h 105.8 5.6 2 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K AGM</td>
<td>48.2 3.3</td>
<td>i 105.6 5.2 2 2.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The BTK protocol was conducted as described in the materials and methods. Three panels with 18 subjects each were used to compare lotion
transfer from pairs of products (E vs. K, B vs. C, and Q vs. S). Two sections of tape were applied on the popliteal fossa of each leg, with test pads were placed horizontally and held in place by an elastic knee band. After three hours, one piece of tape was removed from each test site for analysis and fresh test product was applied for three more hours (i.e., a total of six hours of application). Results are given as mg lotion per unit area of tape (mg/cm²).

a C is significantly different from Q (p < 0.0016), E (p < 0.0001), and K (p < 0.0001).

b C is significantly different from S (p < 0.0019), and from Q, E, and K (p < 0.0001 for all three).

c B is significantly different from Q (p < 0.0134), E (p < 0.0002), and K (p < 0.0001).

d B is significantly different from Q, E, and K (p < 0.0001 for all three).

e S is significantly different from Q (p < 0.0184), E (p < 0.0003), and K (p < 0.0001).

f S is significantly different from Q (p < 0.0007), E (p < 0.0002), and K (p < 0.0002).

g Q is significantly different from K (p < 0.0467).

83(suppl 3):85.

INTRODUCTION The human nail, equivalent to claws and hooves in other mammals, acts as a protective covering for the delicate tips of the fingers and toes against trauma, enhances the sensation of fine touch, and enables one to retrieve and manipulate objects. The nail is also used for scratching and grooming, as a cosmetic organ, and, by some, to communicate social status. The appearance of the nail plate is a thin, hard, yet slightly elastic, translucent, convex structure (1). Disorders of the nail resulting from conditions such as infections or physical-chemical damage can result in painful and debilitating states, and often change the nail plate’s appearance. Onychomycosis, the most common nail plate disorder (2), thickens the nail, makes it white and opaque, and may causes pain while wearing shoes. Onychomycosis is a fungal infection of the nail plate—usually caused by the species Epidermophyton, Microsporum and Trichophyton—and affects 14% of the human population. Aging increases the incidence significantly, with the rate estimated at 40% in persons 70 years of age (3). To cure the infection, the patient is obliged to take oral systemic medication for an extended period, generally months, or undergo surgical nail removal (4). These
treatments have adverse effects such as pain (surgery) and systemic side effects (oral treatment). Thus, topical therapy is a desirable approach, but has met with limited success. Topical therapy is limited by the infection’s deep-seated nature and by the ineffective penetration of the deep nail plate by topically applied drugs (5,6). How can topical drugs be delivered effectively into the nail? And, perhaps as importantly, how can the drug content in the human nail be assessed to validate nail drug delivery? Our challenge was to develop a system to assay drug content in the inner nail bed in which infection often resides. We developed a micrometer-controlled drilling instrument that removes and collects from the inner nail bed, a powder sample from which—by mass balance recovery—we assay the amount of penetrated radiolabeled drug. With this procedure, the effectiveness of topical nail drug delivery can be assessed (7,8). This paper reviews the results of studies undertaken with drilling system. REVIEW OF NAIL PHYSICAL AND CHEMICAL PROPERTIES THAT AFFECT TOPICAL PENETRATION The human nail anatomy consists of nail plate, nail bed, and nail matrix. The nail plate consists of three layers: the dorsal and intermediate layers derived from the matrix, and the ventral layer from the nail bed (9,10). The upper (dorsal) layer is only a few cell layers thick and consists of hard keratin. It constitutes a main barrier to drug diffusion into and through the nail plate. The intermediate layer constitutes three quarters of the whole nail thickness and consists of soft keratin. Below the intermediate layer is the ventral layer of soft keratin—a few cells thick—that connects to the underlying nail bed, in which many pathological changes occur. Thus, in the treatment of nail diseases, achieving an effective drug concentration in the ventral nail plate is of great importance. The nail bed consists of noncornified soft tissue under the nail plate. It is highly vascularized. Beneath the nail bed is the nail matrix, which is a heavily vascularized thick layer of highly proliferative epithelial tissue that forms the nail plate. The human nail is approximately 100 times thicker than the stratum corneum, and both are rich in keratin. However, they exhibit some physical and chemical differences (11,12). The nail possesses high sulphur content (cystine) in its hard keratin domain, whereas the stratum corneum does not. The total lipid content of the nail ranges from 0.1% to 1%, as opposed to approximately 10% for the stratum corneum. This suggests that the role of the lipid pathway in the nail plate is probably of much less importance than that in the stratum corneum. The human nail acts like a hydrophilic gel membrane, while the stratum corneum acts like a lipophilic partition membrane. Under average conditions, the nail
contains 7% to 12% water, in comparison to 25% in the stratum corneum. At 100% relative humidity, the maximal water content in the nail approximates 25%, in sharp contrast to the stratum corneum that can increase its water content to 200% to 300%. The rate of chemical penetration into/through the human nail depends on its water solubility (11) and its molecular size (12). Topical therapy for onychomycosis has been largely ineffective, and this failure may be due to minimal drug penetration into the nail plate (5). The nail’s unique properties, particularly its thickness and relatively compact construction, make it a formidable barrier to the entry of topically applied agents (6). The concentration of an applied drug across the nail dropped about 1000-fold from the outer to the inner surface (13). As a result, the drug concentration presumably had not reached a therapeutically effective level in the inner ventral layer. The existing clinical evidence suggests that a key to successful treatment of onychomycosis by a topical antifungal product lies in effectively overcoming the nail barrier. Currently available topical treatments have limited effectiveness, possibly because they cannot sufficiently penetrate the nail plate to transport a therapeutically sufficient quantity of antifungal drug to the target sites (14) and eradicate the infection. To achieve an effective chemical concentration into/through the human nail plate, penetration enhancers that tend to promote diffusion through the skin’s horny layer have been studied. However, these studies were conducted on a few limited nail penetration models that may not provide an intimate contact between the receptor compartment and the nail surface, and the nail plate can be easily hydrated beyond normal levels (6,11,12,14,15). Moreover, nail samples prepared with scalpel or sand paper are time consuming and may not be accurate to represent the three-nail compartment structure (10,16).

METHODOLOGY

Chemicals/Formulations

[14 C]-Urea (speci c activity 55 mCi/mmol, 99% purity), [714 C]
salicylic acid (specific activity 55 mCi/mmol, 99% purity), and

[3H(G)]-ketoconazole (specific activity 5 Ci/mmol, 99% purity)

were purchased from American Radiolabeled Chemicals, Inc. (ARC, St. Louis, Missouri, U.S.). [14C]-AN2690 was synthesized by Amersham Biosciences UK Ltd. (Buckinghamshire, U.K.).

[14C]-Econazole [chlorophenylbenzyl14C]-(D,L)-econazole (chemical name: 1-[2-[(4-chlorophenyl)-methoxy]-2-(2,4-dichlorophenyl)ethyl]-1H-imidazole), [14C]-ciclopirox (pyridinone-6) (14C)-ciclopirox) was obtained from Perkin-Elmer Life Sciences, Inc. (Boston, Massachusetts, U.S.). [14C]-Terbinafine free base and

[14C]-terbinafine hydrogen malate were obtained from Novartis Pharma AG (Basel, Switzerland). The radiochemical purities and specific activities of all chemicals were >98% and >98%, respectively. Penlac 1 nail lacquer (ciclopirox 8% topical solution) was manufactured by Dermik (Berklyn, Pennsylvania, U.S.). 2-nonyl-1,3-dioxolane (SEPA), a penetration enhancer, and all necessary lacquer components were provided by MacroChem Corp. (Lexington, Massachusetts, U.S.).

Formulations
Nails have a high content of disulfide bonds (10.6% vs. 1.2% for human skin), which make the nails both strong and impene-trable. To deliver a therapeutically sufficient quantity of an antifungal drug to fungally infected sites, such as nail plate, bed, and matrix, a suitable carrier is needed to enhance drug penetration through the nail barrier. In the case of urea, ketoconazole and salicylic acid, a lotion (Pennsaid lotion, Dimethaid Research Inc., Markham, Ontario, Canada) containing the penetration enhancer dimethyl sulfoxide (DMSO) had previously been shown to enhance skin penetration (7,8,17). To test these three drugs, we prepared three formulations with [14C]-urea, [3H]-ketoconazole, and [14C]-salicylic acid at 0.002%, 0.1%, and 0.07%, respectively and corresponding saline controls with each drug at the same concentrations (7). For the antifungal drugs econazole, terbinafine free base, and terbinafine salt, we used a nail lacquer formulation, which is a popular choice for topical antifungal treatment. Nail lacquer contains a film-forming agent and a solvent, in addition to the antifungal drug and, possibly, a penetration enhancer. Once the lacquer is applied, it forms a thin, water-insoluble film contain
ing the supersaturated antifungal drug. This provides a chemical

gradient to drive drug flux as the drug is released. Thus, a

lacquer formulation is suitable for topical treatment of nail
diseases. We selected a commercial lacquer formulation, EcoNail

(EcoNail is a trademark of MacroChem Corp.). The components of this lacquer formulation include econazole with penetration enhancer, 2-n-nonyl-1,3-dioxolane (18%), and were assembled into a test formulation in the lab prior to use (8). The control is the

same formulation minus 2-n-nonyl-1,3-dioxolane. [14C]-Ketoconazole was mixed with a filming solution, Time Off Nail (Neutrogena Corporation, Los Angeles, California, U.S.) to be a final 2% nail lacquer formulation. 2% [14C]-Ketoconazole commercial cream was purchased from TEVA Pharmaceuticals USA (Sellersville, Pennsylvania, U.S.) and used for control. AN2690 (5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole) was obtained from Anacor Pharmaceuticals, Inc. (Palo Alto, California, U.S.). Trace amount of [14C]-AN2690 was mixed with propylene glycol/ethanol (1:4, v/v) to a final 10% (w/v) test formulation (18). Penlac nail lacquer (ciclopirox 8% topical solution) was manufactured by Dermik (Berwyn) (19). Trace amount of [14C]-ciclopirox was mixed with the lacquer to be a control. Human Finger Nail Plates Nail plates were collected from adult human cadavers and stored in a closed container at 0°C. Before each experiment, nail samples were gently washed with normal saline to remove any contamination, then rehydrated by placing them for three hours on a cloth wetted with normal saline. Nail samples were randomly selected and allocated to test groups. Nail thickness was measured by a Sony microdigital meter (Sony Magnescale Inc., Japan) before testing to determine the drilling depth for each nail. Five nails were used for each formulation tested. Dosing and Surface Washing Procedures A 10 mL dosing aliquot of each
of the test formulations was applied to the surface of a nail plate with a microsyringe. Topical application was usually conducted in the morning. For twice daily dosing, a second one was done in the evening, 8 hours after morning application. Surface washing to remove the residue dose was done in the morning, 24 hours after the previous morning application, and 10 minutes prior to the next one if necessary. The nail was washed with cotton tips in a cycle as follows to simulate daily bathing: a dry tip, then a tip wetted with 50% Ivory liquid soap (Ivory is a registered trademark of Procter & Gamble, Cincinnati, Ohio, U.S.), then a tip wetted with distilled water, then another tip wetted with distilled water, then a final dry tip. The nails treated with lacquer also received an alcohol wash to remove residual lacquer that was insoluble in soap and water. The samples from each cycle from each nail were pooled and collected by breaking off the cotton tip into scintillation glass vials. An aliquot of 5.0 mL methanol was added to each vial to extract the test material. The radioactivity of each sample was measured in a liquid scintillation counter. Nail Incubation To keep the nail at physiological levels of temperature and humidity, we incubated it in a Teflon one-chamber diffusion cell (Permegear, Inc., Hellertown, Pennsylvania, U.S.). The nail surface (top center) was open to air and the inner surface made contact with a small cotton ball acting as a nail supporting bed (Fig. 7.1). The cotton ball was wetted by normal saline. The incubation period started 24 hours prior to the first dose and ended 24 hours after the final dose. A small cotton ball wetted with 0.1 mL normal saline was placed in the chamber beneath the nail plate to serve as a “nail bed” and provide moisture for the nail plate, and hydration was monitored and controlled during the experiment (7,8). This cotton ball method prevented the overhydration of a liquid interface. Cotton is a hydrophilic fiber that can contain high degree of moisture content, and absorbs water-soluble substances. It also absorbs lipophilic substances, which can fill the lumen and lie between the numerous internal layers of the cotton (20). Thus, the cotton ball is an ideareceiving medium for in vitro transungual delivery. Nail Sampling The objective was to determine drug concentration within the nail where the disease resides. Treatment is applied to the nail surface. The drilling system samples the inner core of the nail without disturbing the nail surface. The two parts (surface and inner core) can be assayed separately. The surface contains only residual drug after washing. The drilled out core (from the ventral side) is thus a true drug measurement at the target site where the disease resides (Fig. 7.2). Drug penetration into the nail was
sampled by a unique micrometer-controlled nailsampling instrument that enabled finely controlled drilling into the nail and collection of the powder created by the drilling process (7,8). The nail-sampling instrument (Fig. 7.3) has two parts, a nail sample stage and a drill. The nail-sampling stage consists of a copper nail holder, three adjustments, and a nail powder capture. The three adjustments control vertical movement. The first coarse adjustment (on the top) is for changing the copper cell and taking powder samples from the capture. The other two adjustments (lower) are used in sampling. The second coarse adjustment allows movement of 25 mm, while the fine adjustment provides movement of 0.20 mm. The nail powder capture is located between the copper cell and the cutter. The inner shape of the capture is an inverted funnel with the end connected to a vacuum pump. By placing a filter paper inside the funnel, nail powder samples can be captured on the filter paper during sampling. The nail is fastened in a cutting holder below the cutter and surrounded by a funnel containing a filter paper. The funnel is attached to a vacuum pump. During drilling, the vacuum draws the powder debris onto the filter paper so that it can be collected and measured and increase total collection for mass balance determination. After completion of the dosing and incubation phase, the nail plate was transferred from the diffusion cell to a clean cutting holder for sampling. The nail plate was secured in position so that the ventral surface faced the cutter and the dorsal-dosed surface faced the holder. The cutting holder was moved to bring the plate surface just barely in contact with the cutter tip. The drill was then turned on and a fine adjustment moved the stage toward the cutter tip, removing a powder sample from the nail. In this way, a hole approximately 0.3 to 0.4 mm in depth and 7.9 mm in diameter was drilled in each nail, enabling the harvest of powder sample from the center of Figure 7.1 Nail support and incubation system. The cotton ball prevented the overhydration of a liquid interface. Cotton is a hydrophilic fiber that can contain high degree of moisture content, and absorbs water-soluble substances. It also absorbs lipophilic substances, which can fill the lumen and lie between the numerous internal layers of the cotton (20). Thus, the cotton ball is an idea-receiving medium for in vitro transungual delivery. Source: From Ref. 7. Figure 7.2 Nail and nail drilling tip.

each nail’s ventral surface. We refer to these samples as having

been taken from the “ventral/intermediate nail plate.”
After the nail had delivered its ventral/intermediate nail plate powder samples, it was removed from the sampling instrument. The nail outside the dosing area was cut away and discarded. The nail within the dosing area but outside the sampling area was trimmed away and saved; we refer to this as the “remainder nail plate.” It surrounds the dorsal layer above the sampling area where the powder samples were taken; we refer to this as the “sampling area dorsal nail plate.” The ventral/intermediate nail plate powdered samples, the sampling area dorsal nail plate, and the remainder nail plate were individually collected into a glass scintillation vial and weighed. The nail samples were then dissolved by adding 5.0 mL of a Packard Soluene-350 (Packard Instrument Company, Meriden, Connecticut, U.S.). The total mass of nail collected was measured by the difference in weight of the plate before and after drilling (7,8). RESULTS Nail Incubation Conditions Table 7.1 shows that the average hydration of the wetted cotton balls 1.09 ± 6.2 AU that resembles the average hydration of human nail bed, 99.9 ± 8.9 AU measured from fresh human cadavers, where AU is Arbitrary Units, a digital expression of capacitance. During the experiment, the holding tank temperature was 25 ± 2°C and relative humidity was 50%.

Figure 7.3 The nail-sampling system. The instrument has two parts, a stage and a drill. The stage consists of a copper nail holder, three adjustments, and a nail powder capture. During drilling, the vacuum draws the powder debris onto the filter paper so that it can be collected and measured and increase total collection for mass balance determination.
Table 7.1 Hydration of Nail Plate and Nail Bed

Measurement of Hydration (AU) c

<table>
<thead>
<tr>
<th>Source</th>
<th>Time</th>
<th>Nail plate</th>
<th>Nail bed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human cadavers</td>
<td>6 24-hr postmortem</td>
<td>7.6</td>
<td>0.9 99.9</td>
</tr>
<tr>
<td>Diffusion cells</td>
<td>8 Twice/day for 7 days</td>
<td>8.5</td>
<td>2.4 109.9</td>
</tr>
</tbody>
</table>

a During the experiment, the holding tank temperature was 25 ± 2°C and relative humidity was 44 ± 8%. The importance of this controlled temperature and humidity is to mimic normal physiological condition of the human nail to prevent overhydration that was easily occurred in nail in vitro studies.

b Hydration of the nail plate and the supporting cotton bed was measured with a Corneometer CM 820 (Courage + Khazaka, Cologne, Germany).

c AU is Arbitrary Units, a digital expression of capacitance. Thus, the CM820 Corneometer gives only an estimate of the nail (or other membrane such as stratum corneum) hydration. Agache et al. (21) used a sorption-desorption test to assess the water content of the stratum corneum. They correlated the results measured with the CM820 Corneometer (as AU unit) and TEWL (g/m²/hr) measured with an evaporimeter and found that water retained in the SC (mg/cm²) = In(AC/3.8)/0.0436. From Ref. 21. 44 ± 8%. Thus, there was no statistical difference between hydration conditions for nails treated with either the test formulation or the saline control. This incubation device is nonocclusive and hydration controlled, and approximate normal physical condition is reached. Accuracy of Nail-Sampling Process The advantage of the micrometer-controlled drilling and nail powder removal system is the accuracy of the sampling process. The sampling instrument allowed well-controlled, accurate, and reproducible sampling of the inside of the nail. Table 7.2 shows that the average depth of nail sampling from the inner center surface was well controlled at 0.26 ± 0.05 mm, which was close to the expected depth of 0.24 mm. The weight of the nail samples collected was consistent for all experiments. Mass Balance of Radioactivity Recovery Table 7.3 summarizes the econazole mass balance recovery.
following the 14-day nail treatment. Overall recovery of applied dose was 90.8 ± 16.4% for the test formulation and 96.4 ± 7.3% for the saline control, indicating that essentially the entire dose was accounted for. Table 7.3 also indicates what happens to chemicals applied to the nail. Approximately 72% was washed from the surface. The dose absorbed from the surface of the nail penetrated to the sampling area dorsal nail plate (11.4%), the ventral/intermediate nail plate (1.4%), and the supporting bed (0.7%), which is the cotton ball on which the nail rested. Note that econazole recovery in the test formulation is greater for both the ventral/intermediate nail plate and the supporting bed, which is an effect of the drug delivery enhancer. At the sampling area dorsal nail plate, there is more econazole from the saline control because the dose remained on the nail surface. Effects of Dosing and Washing Frequency Figures 7.4 and 7.5 show the weight of normalized [14C]econazole equivalent in different layers of the nail plate and cumulative [14C]-econazole equivalent collected in the cotton ball-supporting bed following different frequency of topical administration. Table 7.2 Nail Core Sampled from the Ventral (Inner) Surface Center of the Human Nail Plate Nail core sampled from the ventral (inner) surface center of the nail plate a Test number Whole nail thickness (mm) Depth of core (mm) % Whole nail thickness Total core sample removed (mg) Powder sample collected (mg) Urea (control) 0.65 (0.09) 0.25 (0.03) 39.52 (8.05) 16.4 (4.3) 5.2 (0.8) Urea (test) 0.71 (0.07) 0.27 (0.03) 37.97 (2.69) 17.6 (4.3) 6.4 (1.3) Ketoconazole (control) 0.68 (0.05) 0.28 (0.03) 41.88 (1.16) 14.3 (6.7) 6.7 (2.6) Ketoconazole (test) 0.73 (0.03) 0.28 (0.02) 38.62 (2.69) 14.1 (5.1) 4.3 (1.6) Salicylic acid (control) 0.77 (0.07) 0.25 (0.08) 32.62 (9.38) 12.1 (2.4) 6.0 (0.5) Salicylic acid (test) 0.60 (0.12) 0.21 (0.06) 35.03 (6.45) 23.4 (8.3) 7.8 (0.8) Average 0.69 (0.09) 0.26 (0.05) 37.61 (6.20) 16.3 (6.2) 5.5 (1.6) a Nail sample, approximately 0.24 mm in depth and 7.9 mm in diameter, was drilled from the center of the ventral surface of the nail. The amount of nail sample removed was measured by difference in weight and depth of the drilled area before and after sampling. Each number represents mean (±SD) of five samples. The data demonstrated the repeatability and accuracy of the nail-sampling system. Source: From Ref. 7. Table 7.3 Mass Balance Recovery of Econazole Following 14-day Human Nail Treatment with a Test Formulation Containing a Penetration Enhancer and a Control Without a Penetration Enhancer a Carbon-14 recovery as percent of dose Sampling area Test formulation Control formulation Dorsal/intermediate nail plate 11.4 (3.6) 20.1 (2.9) Ventral/intermediate nail plate (powdered samples) 1.3
Supporting bed (cotton ball) 0.7 (0.3) 0.0 (0.0) Surface washes 71.7 (12.5) 72.8 (5.1) Total 90.8 (16.4) 96.4 (7.3)

From Ref. 8. The data represent the mean (SD) of each group (n = 5). The test formulation group contains 18% 2-n-nonyl-1,3-dioxolane and the control formulation contains no 2-n-nonyl-1,3-dioxolane. The data demonstrated not only the importance of the penetration enhancer but the high recovery rate of two groups when using the nail-sampling system.

Figure 7.4 Nail penetration profile of [14C]-econazole following a 14-day treatment/incubation period in vitro. Each bar represents the mean (SD) of six samples. The frequency of topical dosing was different but the surface wash was the same, once daily. (*) The group received twice daily topical doses was statistically significant higher than the one treated once daily dose (p < 0.05).

Figure 7.5 Nail penetration profile of [14C]-econazole following a 14-day treatment/incubation period in vitro. Each bar represents the mean (SD) of 6 samples/group. Each group was received once daily topical application for 14 days. The frequency of surface washing for each group was different. The group was received daily washing was no statistically significant than the corresponding bar from the once weekly washing one (p > 0.05). Dosing or surface washing treatments. As expected after twice daily application (and surface washing once daily) for 14 days, the [14C]-econazole content in all nail and cotton ball samples were significantly higher than those in the dosing and washing once daily group (p < 0.05), whereas comparison of the once daily dosing and washing treatment group and the once daily dosing and once weekly washing group did not show significant difference for all collected samples (p > 0.05). Enhancer Effects Table 7.4 summarizes the penetration of ketoconazole, urea, and salicylic acid into the human inner nail plate. Each test formulation contained a drug delivery enhancer (7,8) and was compared to a control formulation without any penetration enhancer. In each case, the test formulation enhanced drug delivery (p < 0.05). Table 7.5 comprises antifungal efficacy of
econazole, terbinafine base, and terbinafine salt following topical applications. Each test antifungal agent contains 18% 2-n-nonyl-1,3-dioxolane (SEPA), a skin penetration enhancer, and the control (no 18% 2-n-nonyl-1,3-dioxolane).

All test formulations show the antifungal efficacy coefficient (E) was significantly higher than that of corresponding control (p < 0.05). Topical Formulation Comparison Table 7.6 comprises [14C]-ciclopirox penetration into/through nail plate in vitro from three topical formulations, market gel, experimental gel, and lacquer. The order of deeper penetration, amount detected in the ventral/intermediate nail center, and cotton ball supporting bed samples was from the highest to the lowest, market gel, lacquer, and experimental gel, respectively. Figure 7.6, however, shows that the deeper penetration of a lacquer formulation of ketoconazole was greater than that of cream when comparing their antifungal efficacy coefficient (p < 0.05). Table 7.4 Radiolabeled Drug Penetration into Human Nail from a Test Formulation Containing DMSO, a Penetration Enhancer Vs. a Control Without a Penetration Enhancer Radioactivity content in ventral/intermediate center layer of the nail plate b Test chemicals Penetration enhancer a Unit c Test formulation Control formulation Significant (p < 0.05) Ketoconazole DMSO mg eq/g 53.9 (10.6) 34.0 (15.9) Yes Urea DMSO mg eq/g 0.3 (0.1) 0.2 (0.1) Yes Salicylic acid DMSO mg eq/g 10.2 (0.6) 7.0 (1.1) Yes a DMSO is a transdermal delivery enhancer. The enhancement mechanism of transungual delivery is not clear. However, it did enhance the nail penetration of the test chemicals. b From Ref. 7. The data represent the mean (SD) of five samples per formulation group. The nail sample drilled as powder from ventral/intermediate layer of human nail plate. c mg eq/g % microgram equivalents drug per gram of nail sample. Because radioactivity is used, the drug mass is referred to as “equivalents” because radioactivity was measured, not the drug itself. Abbreviation: DMSO, dimethyl sulfoxide. Table 7.5 Comparison of Econazole Concentration and Relative Antifungal Efficacy with a Test Formulation Containing 2-n-Nonyl-1,3-Dioxolane, a Penetration Enhancer and a Control a Parameter b Test formulation Control formulation Significant (p < 0.05) Econazole in the deeper layer (mg/cm^3) 14,830 (341) 2,371 (426) Yes E D (MIC D = 1 mg/mL) c 14,830 2,371 Yes E Y (MIC Y = 100 mg/mL) c 148 23.7 Yes Terbinafine salt in the deeper layer (mg/cm^3) 5946 (1029) 463 (271) Yes E D (MIC D = 0.04 mg/mL) d 5946 463 Yes E Y (MIC Y = 1.77 mg/mL) d 134 10 Yes Terbinafine base in the deeper layer (mg/cm^3) 727 (372) 407 (106) Yes E D (MIC D = 0.04 mg/mL) d 1527 156 Yes E Y (MIC Y = 1.77 mg/mL) d 34 3 Yes a The data represent the mean (SD) of each group (n =
5). The test formulation group contains 18% 2-n-nonyl-1,3-dioxolane and the control formulation contains no 2-n-nonyl-1,3-dioxolane. b The deeper layer is the center of the ventral/intermediate layer of the nail plate. The data represent the amount drug in the sample after a 14-day dosing period. The amount of antifungal agents in the tested nail layer (mg/cm^3) was computed from the average of the cumulative amount of the test agent permeated into the area (area thickness) of the deeper layer of the nail (dorsal/intermediate layer). c From Ref. 8. E is antifungal efficacy coefficient and MIC is the minimum inhibitory concentration of the tested antifungal agent. D is dermatophytes and Y is yeast. d From Ref. 22. Abbreviation: MIC, minimum inhibitory concentration.

DISCUSSION

Topical therapy for onychomycosis is not yet maximally effective, and this failure may be due to inadequate penetration of drugs into the nail plate. The nail’s unique properties, particularly its thickness and relatively compact construction, make it a formidable barrier to the entry of topically applied agents.

The concentration of an applied drug across the nail drops about 1000-fold from the outer surface to the inner surface. As a result, the drug concentration presumably does not reach a therapeutically effective level in the ventral/intermediate layers. To optimize the nail penetration of topical treatments, it is important to consider the nail’s unique barrier properties and develop an antifungal drug formulation that has matching physicochemical properties. Nail lacquer formulations, a popular choice for topical...
antifungal treatment, typically contain a film-forming agent, solvent, antifungal drug, and possibly a penetration enhancer. Once the lacquer is applied, it forms a thin film containing a supersaturated antifungal drug. This film provides a chemical gradient to drive drug flux as the drug is released. For an example, [14 C]-ketoconazole lacquer yields a significant number of antifungal efficacy coefficients than that in cream (p < 0.05, Fig. 7.6). However, the nail deeper penetrations of [14 C]-ciclopirox from the commercial available formulation, Penlac nail lacquer (ciclopirox 8% topical solution), was statistically lower than that of market gel formulation (ciclopirox 0.77% topical solution) (Table 7.6) (19). When compared with other antifungal topical formulations, such as [14 C]-AN2690, 10% (w/v) in propylene glycol/ethanol solution, it decreased (p < 0.05) the deeper nail layer penetration rate (Fig. 7.7) (19). Transungual enhancement has been examined: dimethyl sulfoxide (DMSO) and 2-n-nonyl-1,3-dioxolane used as

Table 7.6 Summary of Weight Normalized [14 C]-ciclopirox Equivalent in the Nail and Supporting Bed Samples After 14-Day Treatment Normalized [14 C]-ciclopirox equivalent a

<table>
<thead>
<tr>
<th>Items (unit)</th>
<th>Marketed gel</th>
<th>Experimental gel</th>
<th>Lacquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorsal/intermediate center within surface of nail (mg eq/mg)</td>
<td>71.7 (16.8)</td>
<td>103.4 (38.1)</td>
<td>2162.1 (526.4)</td>
</tr>
<tr>
<td>Lacquer vs. experimental gel Lacquer vs. marketed gel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventral/intermediate center within infection prone area (mg eq/mg)</td>
<td>0.3 (0.2)</td>
<td>0.2 (0.1)</td>
<td>0.3 (0.1)</td>
</tr>
<tr>
<td>Marketed gel vs. lacquer Marketed gel vs. experimental gel Experimental gel vs. lacquer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration through the nail into the supporting bed cotton ball (mg eq/sample)</td>
<td>46.3 (4.1)</td>
<td>6.0 (1.3)</td>
<td>15.5 (3.1)</td>
</tr>
<tr>
<td>Marketed gel vs. lacquer Marketed gel vs. experimental gel Experimental gel vs. lacquer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a From Ref. 19. The data represents the mean (SD) of each group (n = 5).

Figure 7.6 Comparison of antifungal efficacy coefficient of two ketoconazole formulations, lacquer and cream. Each bar
represents the mean (SD) of 5 samples/group. Each group received once daily topical dose and washing for a seven-day treatment. The lacquer group shows that the antifungal efficacy coefficient was statistically significant higher than that of the cream group (p < 0.05). Transdermal delivery enhancers were tested for enhancement of antifungal agents penetrating into and through the nail plate in vitro. The two enhancers increased the deeper nail penetration of [14C]-ketoconazole (Table 7.3), [14C]-econazole, [14C]-terbinafine salt, and [14C]-terbinafine base (Table 7.5) when significantly compared to the controls (p < 0.05). DMSO has been previously reported to facilitate the penetration of some topical antimycotics (15,23). The enhancement function of 2-n-nonyl-1,3-dioxolane has not previously been determined. The mechanism of 2-n-nonyl-1,3-dioxolane in skin penetration was suggested to reversibly fluidize the stratum corneum lipids and alter barrier function (24). However, [14C]-dioxolane, the radioactively labeled 2-n-nonyl-1,3-dioxolane, had minimal penetration to and through the human nail plate in vitro (8). Since 2-n-nonyl-1,3-dioxolane can function as an adhesion promoter and a plasticizer for the film-forming polymer of the nail lacquer (25,26). The enhancement function of 2-n-nonyl-1,3-dioxolane for the tested antifungal agents was possibly to soften the lacquer film to increase releasing per unit time (8). As shown in Table 7.5, the amounts of [14C]-econazole, [14C]-terbinafine free base, and [14C]-terbinafine salt detected from the deeper layer, ventral/intermediate nail layer in the test groups containing 18% 2-n-nonyl-1,3-dioxolane, were significantly greater than that of in the controls (p < 0.05). The results suggest that the enhanced level of these antifungal agents in the ventral/intermediate layers and supporting bed dramatically increased, which exceeds the minimum inhibitory concentration (MIC) of econazole for most common onychomycosis organisms (Table 7.5). MIC is a laboratory index in the determination of antifungal potency. Martin and Lippold (11) introduced an efficacy coefficient E to better estimate and compare the relative efficacy of antifungal agents. The efficacy coefficient E is the ratio of the flux of an antimycotic drug through the nail plate to the MIC. For econazole, the range of MIC for dermatophytes species is 0.1 to 1.0 mg/mL and for yeast species it is 1.0 to 100 mg/mL (27). After 14 days of exposure, the econazole content measured in the test group was 11.15 ± 2.56 mg/mg for the ventral/intermediate layers.
This content multiplied by the density of the nail sample (1.332 mg/cm^3, measured under current experimental conditions) yields 14,830 340 mg/cm^3 of econazole, almost 15,000 times the MIC for most dermatophytes species and 150 times that for most yeast species (Table 7.5). This study demonstrated that with our in vitro nail study methodology, the nail plate can be scientifically studied, and with proper formulation one can deliver a variety of chemicals, be they drugs or nail modifiers (cosmetics). The nail is now ready for serious attention and treatment just as hair and skin have been in the past. The nail barrier can be breached. These findings presumably relate to delivery of cosmetic agents for the management of nail abnormalities, such as nails that are peeling or fragile. R&D on these agents will be simplified when the rules describing the relationship of Figure 7.7 Cumulative amounts of AN 2690 and ciclopirox (mg equivalent) in cotton ball supporting bed samples following a 14-day treatment. The test formulations were dosed daily, and the dose residue was washed 24 hours later and 10 minutes prior to the next application. Each bar represents the mean (SD) of 6 samples/group. Each bar of the AN2690 group was statistically higher than the corresponding one from the ciclopirox group (p < 0.05). Source: From Ref. 18.

physical chemistry to flux are developed for the nail, as they have been in part for the skin. Taken together, the methodology appears robust, as with other models, inclusion of other chemicals with varying physicochemical properties, and in vivo replication will add strength to the results.

INTRODUCTION

The goal of product testing is to ensure that consumer products are free of irritant potential and to prevent unexpected consumer reactions to the product once it reaches the marketplace. It is not uncommon, nonetheless, for postmarketing surveillance efforts to receive reports of sensory perceptions not predicted by even the most robust development methodology (1). These sensory perceptions, though often transient and not accompanied by a visual dermatological response, even under rigorous experimental testing, strongly influence consumer product preference (1). In fact, 78% of consumers who profess sensitive-skin report avoiding some products because of unpleasant sensory effects associated with their use (2). These unpleasant and subjective sensory effects, often unaccompanied by objective physical signs, define a controversial and still evolving dermatological condition known as sensitive skin. Consumer reports of sensitive skin are typically selfdiagnosed and may be increasing (3). It has been proposed in both the popular media (4) and the medical literature (5,6) that the increasing incidence of sensitivity represents a “princess and the pea” effect, wherein it has become culturally fashionable to claim sensitive skin. The majority of women in the United States, Europe, and Japan (which represents the vast majority of patients queried to this date), now believe they have
sensitive skin (5), which tends to support a psychosocial component. The phenomenon is recorded in all industrial nations (2), however, and the finding of equivalent prevalence in two separate continents [68% (3) and 64% (7)] lends credibility to consumer complaints. The concept of sensitive skin arose in the 1970s with the observation that despite the fact that previous safety evaluations had found no evidence of toxicity, some patients reported stinging sensations upon using a particular sunscreen that contained a derivative of P-aminobenzoic acid (8). Growing consumer awareness of the potential for irritation from common products fueled a huge increase in products marketed for the supposedly rare individual with susceptibility to components of everyday products, particularly since no requirement for proof of safety and efficacy for such products has existed (9). The initial conceptualization of sensitive skin as a minority complaint, has not been borne out by epidemiological surveys, which consistently find a high prevalence of sensitive skin across the industrialized world (Table 8.1). Rates of skin sensitivity have increased steadily over time, particularly among men (3). A previous overview of sensitive skin (17) found little consensus on the definition of the disorder or even whether or not it truly exists as a physiological phenomenon. Since then the term has come to define an onset of prickling, burning, or tingling sensation due to ultraviolet (UV) light, heat, cold, wind, cosmetics, soap, water, pollution, stress, or endogenous hormones (12), often with the frequent or prolonged use of everyday products such as cosmetics or toiletries (18). Itching, burning, stinging, and tightness are the most common subjective complaints (9), which have been reported mainly by women (9). Sensory effects are only occasionally accompanied by erythema (12). Although sensitive skin is now generally accepted as a real physiological disorder, there is still no consensus regarding its etiology, classification, or criteria for diagnosis. To date much of the research has been published in cosmetic journals (inaccessible through major databases), and ignored by leading dermatological publications (9). Medical researchers have largely ignored consumer reports of sensory irritation because they are difficult to quantify and frequently are unaccompanied by visible signs (19). Other issues have hindered a better understanding of this condition. It is typically self-diagnosed (20). Patients may interpret an underlying dermatological condition as well as any reaction to product use as sensitive skin (5); there are also some psychological disorders characterized by similar symptoms (e.g., cosmetic intolerance syndrome, dermatological nondisease) (21). Many people who profess sensitive skin do
not predictably experience visible signs of the sensations reported, whereas some who describe themselves as nonsensitive react strongly to tests of objective irritation (22). Irritant testing reveals profound interpersonal variability in individual response to specific irritants (23,24), even among chemicals with similar modes of action (18). Testing has showed sizeable variation within the same individual at different anatomic sites (24), and even at the same anatomical site on symmetric limbs (25). The diversity of methodology approaches employed in sensitive-skin research has also contributed to interpretive difficulties. The etiology of sensitive skin is unknown, but the disorder is believed to be the result of either an increased permeability of stratum corneum or an acceleration of nerve response (26). Increased permeability is believed to be the result of a functional compromise of barrier function in the sensitive-skin patient (27). Barrier function has been shown to be a critical component of skin discomfort (28). Lipid content of the stratum corneum has been shown to be a more accurate predictor of skin permeability than stratum corneum thickness or cell number (24). The permeability barrier in the stratum corneum requires the presence of well-organized intracellular lipids (20,28) and depends highly on lipid composition (24). Increased neutral lipids and decreased sphingolipids are associated with superior barrier properties (24). A weak barrier inadequately protects nerve ending and facilitates access to antigen presenting cells, a mechanism, which would support an association with atopic conditions (28). Irritation results from the abnormal penetration in skin of potentially irritating substances and a resulting decrease in the skin tolerance (20). Alterations in barrier function in sensitive-skin patients have been observed (29,30). Alterations of baseline capacitance values imply barrier impairment and support the view that hyperreactivity to water-soluble irritants results from increased absorption (31). A derangement of intercellular lipids, specific
cally, was also associated with a decline in barrier function in

sensitive skin (32). The pain sensations, which are the hallmark

of the disorder, also imply possible integration dysfunctions in

the central nervous system. Of the two studies reviewed that did evaluate the rela-

tionship between neurosensory responses and objective

clinical

irritation and included only subjects with demonstrated sen-

sory sensitivity, both showed a correlation between sensory

and objective signs (29,30). In a study regarding

sensitivity to

facial tissue, which did not exclude nonsensitive individuals,

sensory effects were demonstrated be the most reliable

measure of product differences (29,30). Although no predictive value was demonstrated for any

individual sensitivity when subjects were tested with a seven

irritant panel, a weak association between tests was demon-

strated by statistical analysis of binomial probability

(18).

However, studies, which evaluated the association of barrier

function and sensitivity, have yielded arguably the most con-

clusive results. A high baseline transepidermal water loss

(TEWL) was associated with increased susceptibility to

numerous cutaneous irritants by numerous studies and a

variety of assessment methods (25). Most methods focused on

objective assessment of physical effects to skin rather than the sensory effects reported (33), and few reports
have quantified sensory effects or correlate sensory effects to degree of irritation. Most testing has included few subjects, and few have restricted subjects to those with demonstrated sensitivity (34). Few have attempted to evaluate the influence of endogenous hormones or lifestyle factors. Ultimately, traditional irritant-testing methodologies have not proven to be good predictors of consumer response (1). Response to one irritant does not predict sensitivity to another, and has not correlated well with evaluation of objective signs (35).

FACTORs IN SKIN SENSITIVITY Numerous potential host factors (Table 8.2) undoubtedly play a role in experimental variability observed in sensitive skin. To date, no constitutional factors have been identified (26). Gender Sensitive skin is self-reported far more often in women than in men (Table 8.1). There is biological plausibility for greater sensitivity, as thickness of the epidermis was observed to be greater in males than in females \((p < 0.0001)\) (50), and hormonal differences, which may produce increased inflammatory sensitivity in females, have also been demonstrated (25,51). Irritant

Table 8.1 Prevalence of Sensitive Skin Perception in the Industrialized World

<table>
<thead>
<tr>
<th>Country</th>
<th>Method</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>Questionnaire</td>
<td>30% women</td>
</tr>
<tr>
<td>United States</td>
<td>Questionnaire</td>
<td>30% women</td>
</tr>
<tr>
<td>Europe (1992)</td>
<td>Questionnaire</td>
<td>30% men</td>
</tr>
<tr>
<td>France (2000)</td>
<td>Interviews</td>
<td>30% men</td>
</tr>
<tr>
<td>England (2001)</td>
<td>Mailed questionnaire</td>
<td>30% women</td>
</tr>
<tr>
<td>United States</td>
<td>Telephone interview</td>
<td>30% women</td>
</tr>
<tr>
<td>(San Francisco, 2002)</td>
<td>Telephone interview</td>
<td>30% women</td>
</tr>
<tr>
<td>United States</td>
<td>Surveyed</td>
<td>30% women</td>
</tr>
<tr>
<td>(Cincinnati, 2009)</td>
<td>Surveyed</td>
<td>30% women</td>
</tr>
</tbody>
</table>
questionnaire Sensitive skin 68.4% of population reported some degree of sensitivity (69.0% of women, 64.4% of men) 3

France (2008) 18 women, identified by questionnaire Sensitive skin 50% (facial skin specifically) 11

France (2008) 400, identified by questionnaire Sensitive skin? 85% (facial skin specifically) 12

France (2005) 1006 men and women, identified by questionnaire Sensitive skin 59% women, 44% men 13

France (2006) 8522 men and women, identified by questionnaire Sensitive skin 61% women, 32% men 14

Greece, women (2008) 25, identified by questionnaire. Sensitive skin 64% 7

Greece, women (2008) 25 women with atopic dermatitis Sensitive skin 100% 7

Germany, men and women (2001) 420 Sensitive skin 75% (48% severe) 15

Italy, women (2005) 1870 Sensitive skin 56.5% 16

Environmental Factors

A majority of sensitive-skin sufferers report unpleasant sensory responses to cold temperatures, wind, sun, pollution, and heat (2,20). An increased susceptibility to SLS was observed in the winter compared with the summer (25). Low temperatures and humidity characteristic of winter cause lower water content in the stratum corneum (25). Large-scale epidemiological testing in France conducted phone interviews of over 1000 people each in March and then in July, and observed the frequency of
sensitive skin in women to be significantly higher in summer than in winter: (71.2% in July vs. 59.39% in March) (13). Numerous other host factors that could influence skin sensitivity include unusual occupational or leisure exposures to chemicals and home climate-control measures (35). Long-term or excessive use of personal-care products can also create sensitivities (20). Daily topical use of corticosteroids has been demonstrated to produce fragile skin (20), and excessive use of topical medications has been demonstrated to be the source of

Table 8.3 Comparison of Racial Differences in Functional Skin Properties

Permeability In vitro penetration of fluocinolone acetonide Lower in blacks than in Caucasians 53 In vitro penetration of water No differences 53,54 Topical application of anesthetic mixture Less efficacy in blacks than in Caucasians 55 In vivo penetration of C-labeled dipryridione Lower in blacks (34% lower) than in Caucasians 56 Methyl nicotinate-induced vasodilation Time to peak response equal than Caucasians Slower in blacks 57-59

TEWL Baseline TEWL (in vitro) Higher in blacks Higher in blacks (in vitro) 57,60 TEWL in response to SLS irritation (in vivo) Higher in blacks and Hispanics 42 Baseline TEWL (in vivo) Blacks > Caucasians > Asians 61 Return to baseline TEWL after tape stripping Blacks faster than whites 62 Reactivity to SLS (measured by TEWL) Higher in blacks than in Caucasians 60

Skin irritant reactivity Reactivity to dichlorethylsulfide (1%) Lower in blacks (measured by erythema, 15% vs. 58%) than in Caucasians 63 Reactivity to o-chlorobenzylidene malonitrile Lower, longer time to response in blacks than in Caucasians 64 Reactivity to dinitrochlorobenzene Lower in blacks, but trend toward equalization after removal of stratum corneum than Caucasians 65 Reactivity to octanoic acid, 20% SLS, 100% decanol, 10% acetic acid Asians more reactive than Caucasians (react more quickly) 66 Stinging response Lower in blacks than in whites Equal in blacks and whites Higher in Asians than in whites 38,67-69

Stinging response UV protection factor of stratum corneum Higher in blacks (about 50% higher) than in Caucasians 70

Skin transparency UVB transmission in stratum corneum Lower in blacks (about 50% lower) 70 Spectral emittance Lower in blacks (above 300 nm: 2-3 fold) 71 UV protection factor of epidermis Higher in blacks (4 fold) 70 UVA transmission
through epidermis Lower in blacks (almost 4 fold) 70 UVB transmission through epidermis Lower in blacks (4 fold) 70

Contribution of malpighian layer Black skin: twice as effective in absorbing UVB as white skin 70

Photoprotection of epidermis Skin extensibility on dorsal (sun-exposed) and volar (sun-protected) forearms Black skin maintains extensibility on sunexposed sites, but Hispanic skin extensibility is reduced on sun-exposed sites 72

Consequence of photoaging Elastic recovery Black skin maintains recovery on sun-exposed sites, white and Hispanic skins reduced 72 Drying Higher in Caucasian and Asians than in Hispanics and blacks 73 Hypertrophic scarring Higher in Asians than in Caucasians 74

Response to insult Pigmented dermatoses Higher in Asians than in Caucasians 74,75 Wrinkling Average onset is 10 yr later in Asians than in Caucasians 75 Wrinkling Average onset 20 yr later in blacks than in Caucasians 76 Thermal tolerance Blacks have a lower threshold than whites 77

Somatosensory function Elastic recovery (tested on the cheek) 1.5 times greater in black as compared with white subjects 78,79

Abbreviations: SLS, sodium lauryl sulfate; TEWL, transepidermal water loss; UV, ultraviolet; UVA, ultraviolet A; UVB, ultraviolet B. up to 29% of vulvar dermatitis (81). Drug-induced sensitivity is also possible, although no reports on that issue were uncovered. Interestingly, the thickness of the epidermis, in one study, was demonstrated to be inversely proportional to the number of years that the subject had smoked, with a p \(\leq 0.0001 \) (50). The specific methodologies and conditions involved in the testing of skin sensitivity introduce a significant amount of variability into the published results; however, a recent study reveals that parameters of the testing can themselves induce sensitivity apart from that of the specific irritant employed. Sahlin et al. (82) evaluated the sting potential of the vehicle used in testing the adverse stinging reaction related to lactic acid application. The results showed that the ordinary oil-in-water emulsion induced stinging in and of itself; use of a water-in-oil emulsion created less discomfort. It was also observed that decreasing the mineral oil content in the oil-in-water emulsion resulted in decrease in the degree of sting experienced (82). Anatomic Site Differences in skin sensitivity between anatomical regions have been observed. Analysis of structural differences found that
Stratum corneum density varies tremendously by anatomical site—palms and soles are the thickest, whereas the genital area is the thinnest (83). The rate of turnover in the stratum corneum, 10 days in facial areas, is longer elsewhere (83,84). The face is the most common site of skin sensitivity. In a study of 1039 men and women, 77.3% reported facial sensitivity, compared with 60.7% for the body, and 56.2% specifically with regard to genital skin (3). Saint-Martory also found the face to be the most commonly reported site of sensitivity, with hands, scalp, feet, neck, torso, and back also reported, in order of frequency (12). The nasolabial fold has been reported to be the most sensitive region (18) of the facial area, followed by the malar eminence (18), chin, forehead, and upper lip (12,18). Misery et al. (2008) found 44.22% of sensitive-skin subjects questioned experienced sensitivity of the scalp (85). Factors contributing to facial sensitivity are likely the number of products used on the face (particularly in women), a thinner barrier in facial skin, and a plentitude of nerve endings as well (21). Individual susceptibility appears to be dependent on anatomical site (86). Most studies have been conducted in facial skin because of its sensitivity [stinging sensations, particularly, are readily elicited on facial skin (87)] and the fact that it is readily accessible for both visual (88) and biophysical assessments (31). The vulva is an area of particular interest, since it is formed partially from embryonic endoderm; it differs from skin at exposed body sites (22). Differences in irritation seem to be dependent on relative permeability of the irritant in vulvar skin; vulvar skin is significantly more reactive than forearm skin to benzalkonium chloride and maleic acid (36), but less reactive than the forearm to SLS (22). When both venous blood and menses were evaluated for irritant potential, the vulva was less responsive to both than was the upper arm (89). Nonkeratinized vulvar skin exhibits clearly increased permeability related to the absence of keratin and loosely packed, less structured lipid barrier (22). In addition, the inner epithelia are thinner, representing a shorter distance to penetrate (22). Buccal tissue is often employed in a surrogate model for vulvar testing, as it has very similar structure and biochemistry (22). Buccal skin has been demonstrated to be 10 times more permeable than keratinized skin (90). Although the vulvar area may be particularly susceptible to cutaneous irritation (91), little objective published data exists on the relationship between feminine hygiene products and sensitive skin (87). Irritant reactions to feminine-care products have been reported (81) with a few feminine products that contain chemicals known to be irritants in
certain doses (92). However, the potential for heightened vulvar susceptibility to topical agents is not widely reported in literature (22). The contribution to irritation by topical agents, though, is substantial (23,25) and often underestimated (51). In fact, 29% of patients with chronic vulvar irritation were demonstrated to have contact hypersensitivity, and 94% of those were determined to have developed secondary sensitization to topical medications (81). Thus, reported sensitivity in the vulvar area, may often be related to underlying contact hypersensitivity because of excessive use of topical hygienic and medicinal preparations (4). Recent studies have evaluated skin sensitivity in the vulvar area with regard to sensory responses to consumer products meant for the vulvar area. It was hypothesized that patients with erythema related to a previous genital infection may represent a population of sensitive subjects; however, no increase in sensory effects to exposure to feminine hygiene pads was observed (87). In a similar population, however, in which observed erythema was evaluated against perceived sensory effects, women who perceived themselves as particularly susceptibility to facial erythema were significantly more likely to have medically diagnosed vulvar erythema, a potential indicator of a underlying biological origin (87). Interestingly, a separate study evaluated perceptions of sensitive skin in women with urinary incontinence, expecting to observe an increased sensitivity of genital skin (93). Increased sensitivity specific to the genital area was not observed, but incontinent women were significantly more likely to assess themselves as having overall skin sensitivity than continent subjects (p < 0.014: 86.2% in incontinent subjects vs. 68.3% in controls) (93). **SENSORY EFFECTS AND OBJECTIVE SIGNS** It was observed early on that some subjects report a greater incidence of adverse reactions to certain products because of higher sensitivity (2,6,18,31,34). Some individuals possess exaggerated sensitivity to specific individual irritants (37). Despite the fact, however, that studies have demonstrated that sensitive skin patients are capable of distinguishing products on the basis of blinded sensory endpoints (18,33), a clinically satisfactory description of observed sensitivities remains out of reach. Tantalizing clues to the underlying mechanisms of sensitive skin, however, continue to be reported. If deficits in barrier function do play a role in skin sensitivity, regular use of moisturizer should improve sensitivity; patients who completed four of daily treatment with moisturizer improved (5). Evaluation of the potential role of the stratum corneum in sensitive skin using corneosurfametry demonstrated that subjects with demonstrated sensitivity to detergents had an increased
reactivity to tested products as compared with the control group. It may be a specific subgroup of sensitive skin with some sort of defect in the stratum corneum that caused weakened resistance to surfactants (29). Local anesthetics block response in lactic acid sting tests; stingers respond more vigorously to vasodilators (21). An Italian study compared self-reports of sensitivity with response in the lactic acid test as follows: stingers were found at very similar prevalences to self-reported sensitivity (56.9% of women perceived skin as sensitive, 54.3% revealed to be stingers). In addition, those who believe skin to be sensitive were revealed to be more likely to be stingers (59%) than among nonstingers (48.9%) (16). Simion, by exaggerated arm-washing with synthetic detergent, observed signs that correlated statistically with sensory perceptions (dryness, tightness, and itching). In addition, consumers were able to reproducibly distinguish between test products purely on the basis of sensory effects (19). Another study evaluated specific biophysical parameters in 32 subjects medically diagnosed with sensitive skin in parallel with a nonsensitive-skin control group. Patch testing, skin hydration, sebum production, alkali resistance test, lactic acid sting test, methyl nicotinate 0.5%, acetyl-b-methyl chloride 1:1000, pH, dermographism, and measurement of total and specific Ig were performed (30). Patch testing found that patients with sensitive skin were ten times more likely to respond to allergens in the European
standard series (p< 0.01) and three times more like to respond to cosmetic allergens (p < 0.01) than those without sensitive skin (30). Sensitive subjects also had significantly less sebum production (p < 0.01) and dryer skin (p < 0.05) Sensitive patients had a four-fold risk of a decrease of alkali resistance (p < 0.05) (30). Vascular reactions to methyl nicotinate and acetyl-b-methyl chloride in sensitive-skin patients were observed to be characterized by a significant hyperreaction of skin blood vessels, with a more intense erythema after methyl nicotinate application (30). The risk of and intense vascular reaction to methyl nicotinate was 75 times higher in sensitive patients than in nonsensitive subjections, and nearly one-third of sensitive-skin subjects experienced an abnormal vascular reaction (skin blanching) after application of acetyl-b-methylcholine chloride (30). A strong association of sensitivity skin with fair skin was also observed (30). This may relate to well-established differences in skin structure and permeability across different skin types (30).

SENSITIVE SKIN: ZEROING IN ON
Part of the reason for the observed breakdown between sensory effects and objective signs is the fact that an objective sign like erythema is the end result of a complex, multistep physiological process. Numerous underlying processes (e.g., changes in blood flow, moisture content, pH) would be expected to occur before the appearance of visible external changes. A goal of our research has been to increase the ability to predict and quantify these subjective consumer responses. Our approach has been three fold: to exaggerate testing conditions to elicit corroborating physical findings, to increase the sensitivity of assessment of physical findings, and to find a way to quantify sensory endpoints.

Exaggeration of Test Conditions

One study evaluated four versions of facial tissues, with and without coating, with repeated wiping to accentuate irritation. Affected skin had been compromised by tape stripping prior to wiping protocol initiation. Erythema, as well as dryness, were evaluated daily by trained graders. In addition, panelists were
Statistical analysis revealed that the panelists’ subjective prod
the parietal cortex, prefrontal areas around the superior frontal
sulcus, and the supplementary motor activity. In addition, in
sensitive-skin patients only, group activity spread into the
ipsilateral primary sensorimotor cortex and the bilateral peri
insula secondary somatosensory area, a phenomenon, which
did not occur in the control group. Subjects with self-assessed
sensitive skin were also observed to have significantly large
greater increases in neural activity than those without sensitive
skin, demonstrating an increase in neural activity specifically
associated with sensitive skin (11). Another study measured
calibrated electrical stimulation
of the skin, which stimulates sensory nerve fibers such as the
myelinated A fiber, A delta fiber and unmyelinated c-fiber
independently. In subjects with clinically documented sensitive
skin (lactic acid sting test, cosmetic compatibility tests) versus
nonsensitive controls (all subjects male), nerve fibers were
stimulated by three different current strengths, and capsaicin
(0.075%) was applied to the zygomatic arch. Sensory perception
was verbalized by the subject and recorded. Baseline perception of current revealed no significant differences between sensitive and nonsensitive subject at either 2 kHz or 250 Hz, but at 5 Hz (a current known to selectively stimulate the c-fibers of sensory nerves), sensitive-skin subjects displayed a significantly lower perception threshold. In addition, stimulation of the skin by capsaicin, in nonsensitive subjects, had no effect on perception of the 5-Hz current, whereas sensitive subjects displayed a long-lived increase in the sensory perception threshold (still in place at last time point of 60 minutes). These findings imply that sensory perception in sensitive subjects is easily disturbed by weak stimulation, inducing a wide variability of response compared with nonsensitive subjects, an effect that appears to be c-fiber modulated. The study was conducted in only eight subjects (four with sensitive skin) and should be followed up in a larger population (103). CONCLUSION: A VALID SYNDROME WITH MULTIPLE ORIGINS? Sensitive skin, though now largely recognized as genuine syndrome of physiological origin, is still a subjective complaint with no consistent associations (15), no likely etiologies defined (26), no predictable or classical visible signs of irritation, no immunological verifiable response and no accepted and reproducible diagnostic test (26). Although it is clear that specific individuals clearly have heightened sensitivity to different kinds of sensory and physical irritants, observed reactions are not predictive of generalized sensitivity, and the relationship between observed sensitivities is unclear (14,33). Evidence suggests that sensitive skin may not be a single condition, but one that encompasses different categories of subjects and sensitivities based on different mechanisms (31)—not a single entity, but a heterogeneous syndrome (9). Multiple etiologies would not be farfetched, as the nervous system does not act in isolation but is interdependent with both the immune system.
Table 8.4 Some Methodologies Used for Sensitive Skin

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Sensory affect evaluated</th>
<th>Physical effect evaluated</th>
<th>Relevant irritants</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactic acid (5)</td>
<td>Stinging</td>
<td>None</td>
<td>Cosmetics, other personal preparations meant to be left on</td>
<td>Highly sensitive and specific a Does not predict sensitivity to other irritants</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capsaicin (26)</td>
<td>Stinging</td>
<td>None</td>
<td>Cosmetics, other personal preparations meant to be left on</td>
<td>Sensitive, detection threshold well correlated (inversely) to perception of sensitive skin Does not predict sensitivity to other irritants</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium lauryl</td>
<td>Burning</td>
<td>Erythema</td>
<td>Industrial exposures, cleaning products</td>
<td>Cheap, quick, reliable assessment of individual susceptibility to specific irritant Sensitivity to one irritant not predictive of general sensitivity, relationship to sensitive skin in question</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-polarized</td>
<td>None</td>
<td>Subclinical erythema</td>
<td>Any potential irritant</td>
<td>Permits detection of physical changes not apparent by standard visual scoring, noninvasive Requires specialized equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermoscan (99)</td>
<td>None</td>
<td>Temperature increases</td>
<td>Resulting from inflammatory processes related to skin injury</td>
<td>Any potential irritant Noninvasive, objective, quantitative Requires specialized equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebutape (100)</td>
<td>None</td>
<td>Measurement of cytokines</td>
<td>Any potential irritant</td>
<td>Noninvasive, objective, quantitative, potentially very sensitive Requires training, specialized equipment; utility for sensitive skin still unassessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Lactic acid test positive in 90% of women who claim sensitive skin.

50. Sandby-Møller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol 2003; 83:410-413.

51. Farage MA. Vulvar susceptibility to contact irritants and allergens: a review. Arch Gynecol Obstet 2005;
272:167-172.

64. Weigand D, Mershon M. The cutaneous irritant reaction to agent O-chlorobenzylidene malonitrile (CS); quantitation and racial influence in human subjects.
Does this condition exist? an epidemiological study.
Contact Dermatitis 2008; 58:234-238. 86. Green BG.

ABSTRACT

Hyaluronan (hyaluronic acid, HA) is a straight chain non sulfated glycosaminoglycan polymer and the predominant component of the extracellular matrix (ECM). HA is present in almost every vertebrate tissue with its highest concentrations occurring in the vitreous of the eye, in the synovial fluid of the joint capsule and in the umbilical cord. However, over 50% of the total body HA is present in skin (1). In the past decades, hyaluronan has emerged surprisingly with a variety of new properties and functions, being not only a passive structural ECM component but profoundly effecting cellular metabolism as a critical regulator (2). It is now well established that HA is synthesized by HA synthases (HAS) and degraded by hyaluronidases (Hyals), both of which are multigene families of enzymes with distinctive patterns of tissue expression. HA is an agonist of the cell surface receptor CD44 (3) as well as the HA-mediated motility (RHAMM), which is an intracellularly located receptor (4). Both
exist in complex various isoforms affecting multiple signaling pathways (2). Hyaluronan size is critical for its various functions. High molecular weight size reflects intact tissues, antiangiogenic, and immunosuppressive states, whereas smaller HA fragments are inducers of inflammation and angiogenesis (5), generally considered a stress signal. HA also plays a key role in malignant progression, and the aggressiveness of tumors correlate with levels of HA on cancer cell surfaces (2). Because of its extraordinary capacity to retain large amounts of water, it is responsible for the water content of skin, thus contributing in an important manner to the visual appearance of the skin. The biology of HA is different between dermis and epidermis. In dermis, levels do not diminish with age but instead become increasingly associated with tissues and resistant to extraction in vitro (6). Furthermore, HA plays a critical role in wound healing and aging processes. Chronic inflammation and sun damage caused by UV-light lead to changes in skin HA distribution and loss of skin moisture. Understanding the metabolism of HA and its interactions with other cellular and extracellular components will help to find new possibilities.
modulating skin moisture and age-related skin changes.

HYALURONIC ACID OR HYALURONAN—HISTORY

Hyaluronic acid (HA) is the predominant “mucopolysaccharide” of the skin and the major component of the extracellular matrix (ECM). Until the late 1970s, the old term “ground substance” was still used for the ECM, which was first attributed to an amorphous-appearing material between cells using light microscopy by the German anatomist Henle in 1841 (7). It took until 1928, when Duran-Reynals (8–12) discovered a “spreading factor”: a testicular extract was shown to stimulate the rapid spreading of materials injected subcutaneously, and it functioned by causing dissolution of ground substance. The active principle in the extract was later shown to be a hyaluronidase, one of the class of enzymes that degrade HA. In 1938, Karl Meyer (13) identified the substrate for the “spreading factor” as a hexuronic acid–containing material that also provided the turgor for the vitreous of the eye. He also proposed to use the term “mucopolysaccharides” to designate hexasamine-containing polysaccharides that occur in animal tissues, referring to the sugar polymers alone, as well as when bound to proteins. However, it required 20 years before the chemical structure of HA was established (14).

The name HA was proposed from the Greek hyalos (glassy, vitreous) and uronic acid. In 1984 it was renamed to HA. STRUCTURE OF HYALURONAN By electron microscopy, HA is a linear polymer (15,16) composed of repeating alternating units of N-acetylglucosamine and glucuronic acid, all connected by b-linkages, GlcAb(1–3) GlcNAcb(1–4). Hyaluronan is the simplest of the glycosaminoglycans (GAGs), the only one neither covalently linked to a core protein nor synthesized by way of a Golgi pathway, and is the only nonsulfated GAG. Hyaluronan is thus the only GAG to date that is not also a component of a proteoglycan. It has the anomalous ability of being both hydrophobic and hydrophilic, to associate with itself, with cell surface membranes, with proteins, or with other GAGs (17,18). The molecular domain of HA encompasses a large volume of water, and even at low concentrations, solutions have a very high viscosity. Dependent on pH, salt concentration, and
associated cations, HA can take on a number of different shapes and configurations. HA may reach a molecular mass of several millions. Although it has a simple chemical composition, HA has an extraordinarily high number of functions because of its molecular size. HA fragments constitute an information-rich system (19).

BIOLOGY OF HYALURONAN

Hyaluronan acts as an organizer of the ECM, being the central molecule around which other components of the ECM orient themselves (20). Hyaluronan is generally produced in the interstitium, in the mesenchymal connective tissue of the body, being mainly a product of fibroblasts. HA is found at high concentrations in the dermis where it regulates water balance, osmotic pressure, and functions as an ionic exchange resin. Hyaluronan plays a critical role in proliferation processes requiring cell movement and tissue organization (21,22). HA forms pericellular coats (2), and via its major cell-surface receptor CD44 as well as the intracellularly located receptor for HA-mediated motility (RHAMM) (23), it is able to initiate specific signaling events (3,31), promoting proliferation and migration of a variety of cell types including skin fibroblasts (24,25). Thus, HA is heavily involved in differentiation processes during wound healing and inflammation (21,22). HA may be bound to proteins termed hyaladherins (26,27) in a very tight manner through electrostatic interactions. It may also be covalently bound to proteins that may function as a hyaluronidase inhibitor such as inter-a-trypsin inhibitor (28). The size of the HA polymer is critical for a number of its different biological functions. The extracellular large HA polymer is anti-inflammatory and anti-angiogenic, thus contributing to intact healthy tissues. HA fragments generated, for example, by enzymatic degradation or UV-radiation constitute an information-rich system (19). Low and intermediate MW HA fragments are highly angiogenic (29). They are usually signals for tissue injury and may modulate inflammatory responses via activating Toll-like receptors 2 and 4 (30,31). 85% of HA degradation products occur first in the lymphatic system; in the blood stream, it has a rapid turnover with a t ½ of two to five minutes being removed by receptors in the liver and also, by unknown mechanisms, in the kidneys (32–34). Humans synthesize and degrade several grams of HA daily. Hyaluronan supports and facilitates tumor progression. The quantity of HA surrounding tumor cells correlates with a poor prognosis in a number of malignancies (35), including malignant melanoma (36,37). HA is also a component of the group A streptococcal extracellular capsule (38) and is believed to play a role in virulence (39,40). GAGs and proteoglycans must be distinguished from “mucins,” the branch-chained
sugars and their associated proteins. These occur more often on cell surfaces, though they also accumulate in the ECM, particularly in association with malignancies. The terms “mucin,” “mucinous,” “myxomatous,” “myxoid,” or “acid mucoproteins” may or may not, unless they have been defined biochemically, refer to HA-containing materials.

SYNTHESIS

Hyaluronan is synthesized by members of the HA synthase family (HAS1, HAS2, and HAS3), three different isoforms that are located on the inner plasma membrane (41-43). The growing molecule is extruded via ABC-transporter (44) into the ECM under the influence of the HAS enzymes, permitting unconstrained polymer growth. The hyaluronan synthases produce different sizes of polysaccharide chains with average molecular weights of 2.4 x 10^6 Da for HAS1 and HAS2, and 0.4 - 2.5 x 10^5 Da for HAS3 (45,46). Specific functions of the single members of the enzyme family have been only partly characterized. It is known that HAS1 and HAS2 produce high molecular weight HA that comprises, to a major extent, the three-dimensional structure of the ECM (47). HAS3 synthesizes HA of a lower molecular weight (48). Such low molecular weight HA has been shown to be more active during cell signaling (49-52). In case of low cell density, high HA synthesis correlates with a high proliferation rate and enhanced cell motility. Vice versa, high cell density corresponds with a low proliferation rate and low-level HA synthesis. Several growth factors such as EGF, PDGF, TGF-β1, TGF-β2, Igf-I, FSH, cytokines such as IL-1, interferon-g are able to regulate HA synthesis via phosphorylation events (53-57). The various HA receptors also regulate synthesis of HA (58). Glucocorticoids induce a nearly total inhibition of HAS messenger RNA (mRNA) in dermal fibroblasts. Extracts of dermal fibroblasts indicate that HAS2 is the predominant HAS in these cells. This may be the molecular basis of the decreased HA in glucocorticoid-treated skin. Levels of skin HA decrease after short-term glucocorticoid treatment because of a reduction in HA synthesis, whereas HA degradation is not changed (59). **THE HYALURONIDASES**

Hyaluronan is degraded through the hyaluronidase (HYAL) family of enzymes (60). In vertebrate tissues, total HA degradation occurs by the concerted effort of three separate enzymatic activities, hyaluronidases, and two exoglycosidases that remove the terminal sugars, a β-glucoronidase, and a β-N-acetyl glucosaminidase. Endolytic cleavage by the hyaluronidases generates ever-increasing numbers of substrates for the exoglycosidases. HYAL1 and HYAL2 are acid active enzymes that are located in the lysosomal compartment and glycosyl phosphatidylinositol-anchored in the plasma membrane, respectively. In a recent study, however, HYAL2 could not be detected in the plasma membrane but in a cellular...
localization, which might depend on the cell type (60–64). HYAL1 generates tetrasaccharides, whereas HYAL2 produces HA fragments of 10 20 10 3 Da (29,65). Both enzymes exist as soluble isoforms (61,65,66). HYAL3 is less characterized. It is still a matter of debate as to what extent HA is degraded by HYALs extracellularly and whether HA fragments are retained or released within the tissue (66,67). To date, such degradation products of HA have been rarely detected in vivo (68). Especially in cases of tissue injury, in addition to the hyaluronidase catabolism also nonenzymatic degradation occurs by free radical–related depolymerization (29). This mechanism of depolymerization requires the presence of molecular oxygen, resulting in HA oligomers of different length (69–72). Such HA fragments of small and of intermediate size are highly pro-inflammatory (73). HYALURONIDASE INHIBITORS Circulating hyaluronidase inhibitor activity has been identified in human serum over half a century ago (74,75). Modifications in levels of inhibitor activity have been observed in the serum of patients with cancer (76,77), patients with liver disease (78), and with certain dermatological disorders (79). Classes of lower molecular weight inhibitors of hyaluronidase have been identified; some of which are from plant origin such as flavonoids (80–82), aurothiomalate (83), hydrangenol (84), tannins (85), derivatives of tranilast (86), curcumin (87), and glycyrrhizin (88). Clinically, heparin, used as an anticoagulant, has potent anti-hyaluronidase activity (89), as does indomethacin (90,92), a classic nonsteroidal anti-inflammatory agent, and salicylates (92). HYALURONAN RECEPTORS To date, three main groups of HA receptors have been identified: CD44, RHAMM (receptor for cell-mediated motility), and intracellular adhesion molecule 1 (ICAM1), with wide variations in locations, cell surface-associated, intracellular, both cytoplasmic and nuclear. The most prominent is CD44, a transmembrane glycoprotein that occurs in a great variety of isoforms, products of a single gene with variant exon expression (93–96). Additional variations can occur as a result of post translational glycosylation and addition of various GAG. CD44 is able to bind to a number of other ligands and has been shown
to interact with fibronectin, collagen, and heparin-binding
growth factors. Furthermore, CD44 plays a key role in
uptake of HA via internalization of the receptor with the
attached HA. The complex is then catabolized in the
lysosomes.

CD44 has a high affinity to HA; other GAGs do barely compete
with HA. However, small HA oligomers (decasaccharide size)
are able to “disconnect” the attached HA (97). CD44 plays
an important role in epidermal differentia
tion being a marker of growth and normal differentiation.
The
presence of CD44 marks the onset of keratinocyte
stratification
and mesenchymal maturation in fetal human skin (98), and the
receptor function is calcium independent. CD44 is
distributed widely, being found virtually on all
cells except red blood cells. It plays a role in cell
adhesion,
migration, lymphocyte activation and homing, and in cancer
metastasis. The appearance of HA in dermis and epidermis
parallels the histolocalization of CD44. The HA in the
matrix
surrounding keratinocytes serves as an adhesion substrate for
Langerhans cells with their CD44-rich surfaces, as they
migrate
through the epidermis (99,100). In skin pathophysiology, the
effect of local and systemic immune disorders on such inter
actions between Langerhans cells and keratinocytes awaits
explication (101). The other major receptor for HA is RHAMM (102,103),

which is implicated in cell locomotion, focal adhesion turnover,

and contact inhibition. It is also expressed in a number of

variant isoforms. The interactions between HA and RHAMM

regulate locomotion of cells by a complex network of signal

transduction events and interaction with the cytoskeleton of the

cells. It is also an important regulator of cell growth (104). In fibroblasts, TGF-β triggers the transcription, synthesis,

and membrane expression not only of RHAMM but also the

synthesis and expression of HA, all of which occurs coinci-
dently with the initiation of locomotion (8,105).

HYALADERINS

Hyaluronan also circulates in a free form in the lymphatic or

cardiovascular system. However, even in this relatively

free form, there are a number of binding proteins that

decorate HA. These are referred to collectively as

hyaladherins (26,27). The hyaladherins associate with HA through electro-

static bonds (28). It is likely that some of the unique

properties

attributed to HA are in fact a function of the hyaladherins

that

are bound to the HA. Growth factors, collagen (106), and a

number of other proteins have been identified. One of the

major
challenges and opportunities in dermatology is to identify the
profile of hyaladherins specific for the HA of dermis and epidermis, to characterize these proteins, and to understand their function in relation to age-related changes.

HYALURONAN IN THE ECM

The ECM that surrounds cells and occupies the variable spaces between cells is composed predominantly of structural proteins such as collagen and elastin, as well as proteoglycans, and a number of glycoproteins. The basal lamina or basement membrane that separates dermis and epidermis is composed of similar materials, and is therefore also considered an ECM structure. A number of growth factors are embedded in the ECM, concentrated by ECM components where they are protected from degradation. Such factors are presented to cells as mechanisms for growth control and modulators of cell function. Heparan sulfate-containing proteoglycans bind members of the FGF and EGF family (107), while HA can bind growth factors such as TGF-b (108). An HA-rich environment is required for the maintenance of the undifferentiated, pluripotential state, facilitating motility and proliferation, while the heparan sulfate proteoglycans promote differentiation. However, the concentration of HA in the ECM can vary widely. Diameters of collagen fibers can be modulated by levels of HA, the thinner more delicate fibers being favored in regions of high HA concentrations. In fibroblast cultures, the addition of exogenous HA to the medium decreases the diameter of the collagen fibers that accumulate (unpublished observations). WOUND HEALING In the earliest stages of wound healing, the ECM is very rich in HA, opening up intercellular spaces and creating a perfect environment for the high number of inflammatory cells to migrate into the temporary wound matrix. The initial granulation tissue formed is highly inflammatory with a high rate of tissue turnover mediated by matrix degrading enzymes and reactive oxygen metabolites produced by inflammatory cells. Low molecular weight fragments trigger
the ongoing inflammation, thus playing a crucial role in organizing the granulation tissue. Hyaluronan may then also contribute to a major extent to stabilize granulation tissue by moderating inflammation, since it is able to function as a free radical scavenger (109). In the adult, HA levels rapidly reach a maximum and then drop rapidly (110). Decreasing HA levels are followed by increasing amounts of chondroitin sulfate, the appearance of fibroblasts, and then deposition of a collagen-rich ECM and wound healing results in scar formation (111). In the fetus, however, wound repair is associated with levels of HA that remain elevated, and the final result is a scar-free wound. Such observations were made in experimental fetal rabbit and sheep models as well as clinically in infants delivered following in utero surgery. It is on this basis that elevated HA in the wound matrix is assumed to be a key to decreased scarring, contractures, and adhesions in adult wound repair.

HA DISTRIBUTION IN EPIDERMIS Hyaluronan plays an important role in normal epidermis regarding barrier function, reepithelization processes, and wound healing. Especially in lower layers, where proliferating keratinocytes are found (112), HA plays a key role guaranteeing cell nutrition and removal of metabolic degradation products. High levels of HA are able to weaken desmosomal bindings and adhesive junctions of neighboring cells, which has a direct impact on metabolism and lifespan of epidermal cells. Thus, HA can directly influence growth and differentiation of keratinocytes, from the basal layer cells to the corneocyte. The degree of hydration of the ECM and the activity of the immune system are also closely related. When the extracellular space enlarges, immunologically active cells such as Langerhans cells and lymphocytes can migrate faster through the epidermis (100).
COSMETIC APPLICATIONS

Organic acids with novel functions, α-hydroxy, aldobionic, N-acetylamino acids, and related compounds Ruey J. Yu and Eugene J. Van Scott INTRODUCTION Organic acids cover a wide range of organic compounds having an acidic group such as carboxyl, sulfonyl or phosphoryl, which include retinoic acid, salicylic acid, benzoic acid and its peroxide form, benzoyl peroxide. The present discussion will focus on certain organic carboxylic acids and related derivatives with unique cosmetic and dermatological effects on the skin. These acids are α-hydroxy acids (AHAs), β-hydroxyacids (BHAs), polyhydroxy acids (PHAs), aldobionic acids (ABAs), N-acetylamino acids (NAAs), and N-(phosphonomethyl)amino acids (NPAs). Hydroxyacids and related acids of nonphenolic origin are a group of natural and physiological substances which have profound effects on keratinization and the synthesis of dermal components. Many hydroxyacids and related acids occur in food, fruits such as sugar cane, tomato, oranges, lemons, grapes, apples, mangos and body tissues. For many years, cosmetic chemists have used lactic acid, along with other organic acids to adjust pH; and
citric acid as a chelating and antioxidant stabilizer in topical formulations. In addition, lactic acid has been used as a stabilizer in urea formulations for topical treatment of dry skin. In 1974 the term AHAs was first introduced to dermatology when it was reported that AHAs substantially improved the severe hyperkeratotic conditions of ichthyosis (1). AHAs are also beneficial for topical treatment of dry skin, dandruff, calluses, acne, keratoses, warts, wrinkles, photoaging skin, and for other cosmetic conditions and dermatological purposes (2-5). AHAs such as glycolic acid and lactic acid are routinely used in peel solutions by estheticians and dermatologists. In dermatological office procedures they are used for topical management and treatment of various skin conditions including skin smoothing, acne and skin changes associated with intrinsic and extrinsic aging (6-9). AHAs on topical application have been shown to markedly increase biosynthesis of hyaluronic acid in the papillary dermis, although the mechanism of action is unknown (5,10). Polyhydroxy AHAs constitute one of the two major components of hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparin and heparan sulfate. In combination with numerous cosmetic or pharmaceutical agents, hydroxyacids have been found to enhance desirable topical effects, and also to reduce or prevent side-effects caused by topical agents. Because most hydroxyacids are nontoxic, natural and physiological they are used as primary or secondary ingredients in many cosmetic and pharmaceutical products. NACs and NPSs are both derived from amino acids by substitution at the amino group. N-AcetylL-cysteine (NAC) has been shown to be a potent antioxidant. We have found N-acetylL-proline and N-acetyl-L-glutamine to be topically effective for relieving itch associated with eczema and xerosis. We have also found N-(phosphonomethyl)glycine, a commercial herbicide ingredient, to be topically effective for ichthyosis. In this chapter we discuss the scientific basis for topical effects of certain organic acids in dermatological therapy and in various cosmetic applications. HYDROXYACIDS: NOMENCLATURE AND OCCURRENCE Organic hydroxyacids of nonphenolic origin may be classified into the following four groups: AHAs; BHAs; PHAs; and ABAs. Regarding group names, the spellings a-hydroxyacid and b-hydroxyacid are preferred instead of a-hydroxy acid and b-hydroxy acid because a and b indicate the position of hydroxyl group in the hydroxyacid molecule. In contrast, the spelling polyhydroxy acid is preferred instead of poly-hydroxyacid or poly-hydroxy acid because in the word, poly indicates many or multiple hydroxyl groups, not the position of hydroxyl group in the acid (11).
hydroxyl group attached directly to a position of an aliphatic or alicyclic carbon atom, but not to a benzene or other aromatic ring. On a broader scope, AHAs may include those having additional carboxyl groups (11). Glycolic acid, present in sugar cane juice, is the smallest molecule of all the hydroxyacids, and is a major ingredient in most AHA products on the market. All other AHAs may be considered derivatives or substituted glycolic acid. The AHAs may be divided into three subgroups: alkyl AHAs; aralkyl AHAs; and polycarboxyl AHAs. Alkyl AHAs A radical attached to a carbon of glycolic acid can be a simple hydrocarbon called alkyl group. The smallest alkyl group is a methyl group and in this case, the AHA is lactic acid (present in tomatoes). Representative alkyl AHAs are listed in Table 10.1. Aralkyl AHAs Aralkyl is an abbreviation of aryl plus alkyl. Aralkyl AHA is formed when a phenyl group is attached to an alkyl AHA, and is represented by mandelic acid, benzilic acid, 3-phenyllactic acid and atrolactic acid. Mandelic acid has been used in combination as methenamine mandelate for oral administration to treat urinary tract infections.

Polycarboxy AHAs

AHAs may consist of more than one carboxyl group as shown in Table 10.2. Malic acid, occurring in apples, is also called apple acid, and tartaric acid, present in grapes, has been called fruit acid in the past. Citric acid, occurring in oranges and lemons, has one hydroxyl group and three carboxyl groups. The AHA or BHA refers to the position of a hydroxyl group as related to a carboxyl group in the hydroxyacid. When a hydroxyacid has more than one carboxyl group it can be an AHA and BHA at the same time. For example, malic acid, tartaric acid and citric acid can be both AHA and BHA.

b-HYDROXYACIDS
BHAs are organic carboxylic acids having one hydroxyl group attached to a carbon atom at the β position, and are represented by β-hydroxybutanoic acid and tropic acid. β-Hydroxybutanoic acid, also known as β-hydroxybutyric acid, is excreted as much as 30 g/day in the urine of diabetic subjects.

Salicylic acid, 2-hydroxybenzoic acid, has both hydroxyl and carboxyl groups directly attached to a benzene ring. It is not chemically a true BHA, but it is erroneously referred to as a BHA (12) in casual jargon. POLYHYDROXY ACIDS PHAs are organic carboxylic acids having multiple hydroxyl groups (13). Many PHAs are also AHAs; they are derived from carbohydrates, and are important intermediates in carbohydrate metabolism. PHAs may be divided into three groups: aldonic acid, aldaric acid, and alduronic acid.

Aldonic Acid An aldonic acid is a carbohydrate, called aldose, having the carbon atom at position one oxidized to a carboxyl group and is represented by ribonic acid and gluconic acid, as shown in Table 10.3. Vitamin C, L-ascorbic acid, is a 1,4-lactone form of the AHA 2,4,5,6-tetrahydroxy-3-ketohexanoic acid, a keto PHA with chemical structure: HOCH₂CHOHCHOHCOCHOHCOOH. The lactone form of vitamin C has two acidic

<table>
<thead>
<tr>
<th>Table 10.2 Nomenclature and Occurrence of Polycarboxylic Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic name and chemical structure</td>
</tr>
<tr>
<td>2-Hydroxypropane-1,3-dioic acid</td>
</tr>
<tr>
<td>2-Hydroxybutane-1,4-dioic acid</td>
</tr>
<tr>
<td>2-Methyl-2-hydroxybutane-1,4-dioic acid</td>
</tr>
<tr>
<td>Chemical Structure</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>HOOC CHOH CHOH COOH</td>
</tr>
<tr>
<td>C(OH)(COOH) (CH 2 COOH) 2</td>
</tr>
<tr>
<td>HOOCCHOH CH(COOH) CH 2 COOH</td>
</tr>
<tr>
<td>HOOCCH 2 C(OH)(COOH) CH 2 CH 2 COOH</td>
</tr>
<tr>
<td>HOOCCHOH CH(COOH) CH 2 CH 2 COOH</td>
</tr>
<tr>
<td>HOOCCH 2 C(OH)(COOH) CH(C 16 H 33)COOH</td>
</tr>
<tr>
<td>Table 10.1 Nomenclature and Occurrence of Glycolic Acid and Alkyl α-Hydroxyacids</td>
</tr>
<tr>
<td>Systematic name and chemical structure</td>
</tr>
<tr>
<td>2-Hydroxyethanoic acid</td>
</tr>
<tr>
<td>2-Hydroxypropanoic acid</td>
</tr>
<tr>
<td>2-Methyl 2-hydroxypropanoic acid</td>
</tr>
<tr>
<td>2-Hydroxybutanoic acid</td>
</tr>
<tr>
<td>2-Hydroxyoctanoic acid</td>
</tr>
</tbody>
</table>
2-Hydroxyeicosanoic acid

2-Hydroxytetraeicosanoic acid

2-Hydroxycaprylic acid

a-Hydroxyarachidonic acid

a-Hydroxy PHAs. Aldaric Acid An aldaric acid is a carbohydrate having two carbon atoms at the end positions oxidized to carboxyl groups, and is represented by glucaric acid (saccharic acid) and galactaric acid (mucic acid). Alduronic Acid An alduronic acid is a carbohydrate having the terminal carbon oxidized to a carboxyl group, and is represented by glucuronic acid which is produced in the body as a detoxifying agent, and forms hyaluronic acid with N-acetyl glucosamine. ALDOBIONIC ACIDS ABA, also known as bionic acid, consists of one monosaccharide chemically linked through an ether bond to an aldonic acid as shown in Table 10.4. An ABA may also be described as an oxidized form of a disaccharide or dimeric carbohydrate, such as lactobionic acid derived from lactose and maltobionic acid from maltose. Lactobionic acid solution is currently used in preservative media for organ transplants. AHA-RELATED COMPOUNDS An alpha-ketoacid has a keto instead of hydroxyl group at the a carbon of an organic carboxylic acid, and is related to its counterpart AHA. Pyruvic acid (2-ketopropanoic acid, CH₃ CO COOH) and lactic acid have such a biochemical relationship in that the latter can be converted to the former when the hydroxyl group is oxidized to keto group by lactate dehydrogenase. HYDROXYACIDS: PHYSICOCHEMICAL PROPERTIES Stereoisomers Stereoisomers are formed when a carbon in a hydroxyacid has a stereocenter in the molecule, that is, the carbon has four nonidentical radicals. Whereas glycolic acid, methylactic acid and benzilic acid do not have stereoisomers, lactic acid and mandelic acid have stereoisomers, D and L forms. Tartronic acid...
4-O-β-D-Glc-D-gluconic acid Cellobiose Gentiobionic acid ROH
2 C (CHOH) 4 COOH R, glucose; 6-O-β-D-Glc-D-gluconic acid
Gentiobiase Kojibionic acid HOH 2 C (CHOH) 3 CHORCOOH R,
glucose; 2-O-α-D-Glc-D-gluconic acid Kojibiose
Laminarabionic acid HOH 2 C (CHOH) 2 CHORCOOH R,
glucose; 3-O-β-D-Glc-D-gluconic acid Laminarabiase
Melibionic acid ROH 2 C (CHOH) 4 COOH R, galactose;
6-O-α-D-Gal-D-gluconic acid Melibiose Nigerobionic acid
3-O-α-D-Glc-D-gluconic acid Nigerose Sophorobionic acid
2-O-β-D-Glc-D-gluconic acid Sophorose Table 10.3
Nomenclature and Occurrence of Aldonic Acids Systematic
name and chemical structure Common name Stereoisomer name
Occurrence
2,3-Dihydroxypropanoic acid HOCH 2 CHOH COOH Glyceric acid 3,3-Dimethyl-2,4-dihydroxybutanoic acid HOCH
2 C (CH 3) 2 CHOH COOH Pantoic acid In vitamin B 5
2,3,4-Trihydroxybutanoic acid HOCH 2 (CHOH) 2 COOH Erythronic acid Threonic acid 2,3,4,5-Tetrahydroxypentanoic
acid HOCH 2 (CHOH) 3 COOH Ribonic acid, arabinoic acid,
xylonic acid, lyxonic acid 2,3,4,5,6-Pentahydroxyhexanoic
acid HOCH 2 (CHOH) 4 COOH Allanic acid, altronic acid,
gluconic acid, mannoic acid, gulonic acid, idonic acid,
galactonic acid, talonic acid In skin
2,3,4,5,6,7-Hexahydroxyheptanoic acid HOCH 2 (CHOH) 5 COOH Alloheptonic acid, altroheptonic acid, glucoheptonic acid,
mannoheptonic acid, guloheptonic acid, idoheptonic acid,
galactoheptonic acid, taloheptonic acid

acid and citric acid do not have stereoisomers, but malic
acid
has D and L, and tartaric acid has D, L, and meso forms. For
PHAs and ABAs, stereoisomers usually result in different
chemical names, such as ribonic acid and arabinoic acid;
gluconic acid and galatonic acid; lactobionic acid and maltobionic acid, and often retain similar though not identical
functions.

Lactone Form
In contrast to AHAs and BHAs, many PHAs can form sponta
neous intramolecular lactones by elimination of water
molecule
between the carboxyl and hydroxyl groups, especially when
these two functional groups are separated by three or four carbons. D-Gluconolactone, known as D-gluconic acid d-lactone, is formed by eliminating one mole of water between the carboxyl group and the hydroxyl group at carbon 5 position of D-gluconic acid, forming a six-member ring lactone.

Solubility and Gel Matrix

AHAs and BHAs with small molecular weight, and most PHAs and ABAs are soluble in water. Certain AHAs and BHAs are also soluble in alcohol such as methyllactic acid, mandelic acid, malic acid, phenyllactic acid, atrolactic acid and tropic acid.

Some aralkyl AHAs are lipophilic, and are more soluble in alcohol than water, such as benzilic acid. One unique property of ABAs is their potential to form a gel matrix with water. Maltobionic acid can form a clear gel matrix containing 29% water molecules complexed with maltobonic molecules. Under the same conditions, lactobionic acid and cellobionic acid can form clear gels containing 14% and 7% water, respectively. The gel matrix may add protective, soothing and healing effects for inflamed skin or in wound healing.

Acid Strength and pK a

The acid strength of an organic hydroxyacid is determined by its proton dissociation from the carboxyl group in aqueous
solution. After equilibrium is reached, the dissociation constant K_a is defined as hydroxyacid anion multiplied by proton ion, and divided by undissociated hydroxyacid on the basis of molar concentration. The acid strength is expressed as pK_a, and the latter is a negative logarithm of the dissociation constant. The hydroxyacid is a stronger acid if its pK_a number is lower (14). The acid strength of a hydroxyacid may not be related to its topical action on keratinization, although its pK_a is crucial to the determination of bioavailability and bioavailable concentration.

Antioxidant Property

Oxidation is defined as removal of electrons or reaction with oxygen. An antioxidant is defined as any substance capable of preventing or inhibiting oxidation. In biological systems, an antioxidant may be described as a substance capable of disposing, scavenging or suppressing formation or actions of peroxide, superoxide or free radicals. There are three simple screen methods which are useful to determine antioxidant properties: prevention or retardation of air oxidation of (i) anthralin, (ii) hydroquinone, or (iii) banana peel. On
the basis of the above three tests, all the PHAs and ABAs we have tested are antioxidants which include ribonolactone, gluconolactone, galactonolactone, gulonolactone, glucoheptonolactone, lactobionic acid and maltobionic acid (11,15,16). Among AHAs and BHAs, citric acid, isocitric acid, tartaric acid and malic acid are antioxidants. HYDROXYACIDS: BIOCHEMISTRY Relationship to Amino Acids Many hydroxyacids are related to or derived from amino acids. On the basis of chemical structures, the only difference between an AHA and an amino acid is the hydroxyl group instead of the amino group as shown in Table 10.5. Carbohydrate Metabolism and Citrate Cycle Many hydroxyacids are intermediate products or end metabolites in carbohydrate metabolism; these include glyceric acid in glycolysis. In anaerobic glycolysis, D-glucose is converted to L-lactic acid as the end products. Gluconic acid and gluconolactone are important intermediates in pentose phosphate pathway for the synthesis of nucleotides in DNA and RNA. Gulonic acid and gulonolactone are carbohydrate intermediates for the synthesis of vitamin C in plants and some animals. Citric acid, isocitric acid and malic acid are important intermediates in the citrate cycle for energy production. Glycosaminoglycans Glycosaminoglycans (GAGs) are large carbohydrates widely distributed in the body, for example, in skin, fibroblasts, mast cells, cartilage, bones, synovial fluid, cornea and loose connective tissues. Their physiological roles include formation of extracellular matrix; specific interactions with collagen and elastin; binding of water and ions; facilitating cell migration; formation of anticoagulants; and facilitating cell adhesion, cell interaction, and cell receptors. There are six different types of GAGs, namely hyaluronic acid, chondroitin sulfate, keratan sulfate I and II, dermatan sulfate, heparin and heparan sulfate. Each GAG is formed from two major carbohydrate components which include PHAs. For example, glucuronic acid is one of the two major components of hyaluronic acid, chondroitin sulfate and heparan sulfate. Iduronic acid is an important component of dermatan sulfate and heparin. Table 10.5 Biochemical Relationship Between Hydroxyacids and Amino Acids Hydroxyacid and amino acid Chemical structure Glycolic acid CH 2 CH(OH)COOH Glycine CH 2 NH 2 COOH Lactic acid CH 3 CH(OH)COOH Alanine CH 3 CH(NH)2 COOH Isopropylglycolic acid C
Valine: CHOHCOOH
Leucine: $\text{CH}_3 \text{CH(OH)COOH}$
3-Isopropyllactic acid: $\text{CH}_3 \text{CH(OH)COOH}$
Leucine: $\text{CH}_3 \text{CH(OH)COOH}$
3-Methyl-3-ethyl-lactic acid: $\text{CH}_2 \text{CH(OH)COOH}$
Isoleucine: $\text{CH}_2 \text{CH(OH)COOH}$
Glyceric acid: $\text{CH}_2 \text{OHCH(OH)COOH}$
Serine: $\text{CH}_2 \text{OHCH(NH)COOH}$
3-Methylglyceric acid: $\text{CH}_3 \text{CH(OH)CH(NH)COOH}$
Threonine: $\text{CH}_3 \text{CH(OH)CH(NH)COOH}$
Malic acid: $\text{HOOCCH}_2 \text{CH(OH)COOH}$
Aspartic acid: $\text{HOOCCH}_2 \text{CH(NH)COOH}$
3-Phenyllactic acid: $\text{C}_6 \text{H}_5 \text{CH(OH)COOH}$
Phenylalanine: $\text{C}_6 \text{H}_5 \text{CH(NH)COOH}$
Actinic Keratoses

Retinoids represent a class of lipophilic compounds that are composed of natural derivatives of vitamin A (retinol) as well as synthetic analogues. Naturally occurring retinoids are sourced via dietary intake of β-carotene as well as retinyl esters, both of which are found in a broad range of foodstuffs and animal by-products. Structurally, β-carotene exists essentially as a dimer form of retinol, and the enzymatic conversion in the intestinal tract via retinal production is the initial sourcing of retinoids for usage by the human body. Most eukaryotic cells have the capability of enzymatically converting retinol and retinyl esters to various metabolites that are critical in maintaining cellular homeostasis, regulating proliferation and differentiation patterns, as well as embryonic development. Of the
metabolites generated, the true “business end” of retinoids is retinoic acid, which is present in cells as various cis conformations as well as trans-retinoic acid (tRA). Since retinoids play such a critical role in developmental biology, the metabolic pathways are tightly regulated. This includes not only enzymatic processes but transport via cellular retinoid-binding proteins as well. Topical usage of potent forms of natural and synthetic retinoids such as tRA has shown a high degree of efficacy against acne, psoriasis, ichthyosis, and actinic keratosis. Relative to photodamaged skin, tRA has clearly been established as having a robust effect (1,2) and is currently marketed as a prescription drug. These retinoid effects in diseased skin can be ascribed on some level as being a normalization of altered skin conditions. However, two of the key negatives associated with highly potent topical retinoids are irritation that, in some instances, does not mitigate itself completely even after long term chronic exposure and teratogenic side effects. Less potent topical retinoids such as retinol and various retinyl esters (Fig. 11.1) have been building a rich history of usage in the cosmetic marketplace. More importantly for the
The cosmetic marketplace is the ability of retinoids to positively impact changes in the appearance of photodamaged facial skin, particularly for fine lines, wrinkles, and related changes. Additionally, understanding the basic biochemical metabolic processes that control endogenous retinoid levels and synthesis has shown that cosmetic-type retinoids present an attractive compromise for less serious conditions such as photodamaged skin. This chapter will focus on cutaneously delivered retinyl esters, and the topics covered will include an overview of the metabolism, biochemistry, and molecular biology as well as human study findings. Additionally, the principle focus in terms of treatment effects will be on photodamaged skin.

BIOCHEMISTRY AND MOLECULAR BIOLOGY OF TOPICAL RETINOL AND RETINYL ESTERS

Of most relevance to the cosmetic industry was the confirmation that cosmetic forms of retinoids have the potential to be enzymatically converted to various retinoid metabolites including tRA when topically administered (3–8). The biochemical conversions are shown schematically in Figure 11.2A where retinol is oxidized via small-chain alcohol dehydrogenases to retinal and in turn to form tRA (5,9). This process is begun when free retinol associates with a specific cytoplasmic retinol-binding protein (CRBP). This family of proteins with high retinoid specificity includes CRBP as well as retinoic acid–binding protein of which there are two isoforms, I and II (7). These binding proteins play a direct role in regulation of retinoid responses in cells by acting as chaperones in enzymatic conversions, sequestration, and stabilization. The retinol-CRBP complex is a substrate for retinol dehydrogenase, a microsomal enzyme uniquely capable of catalyzing the conversion of retinol to retinaldehyde. Retinaldehyde is then rapidly and
quantitatively oxidized to retinoic acid by retinaldehyde oxidase (5,10). However, the primary reaction that occurs with CRBP-bound retinol is esterification of retinol via lecithin:retinol acyltransferase or acyl CoA:retinol acyltransferase (ARAT) to retinyl esters, the primary storage form in lipid bilayers and of which retinyl palmitate is the major species in human skin (11,12). Recent work has identified the neutral lipid synthesis enzyme acyl-CoA:diacylglycerol acyltransferase 1 as a novel ARAT enzyme present in murine skin that regulates retinol oxidation to retinoic acid (13). Additionally, retinyl stearate has been identified as the major form that is present in circulating serum in mammalian systems (14). This multistep processing of retinyl esters serves as a point of regulation to control the level of active retinoid in the skin and may thus contribute to the lower irritation potential of these derivatives. The molecular mechanistic route that tRA follows in skin is via its function as an agonist for binding to a family of nuclear receptors called the retinoic acid receptors (RAR) and which also includes the retinoid X receptors (RXR). In each of these two families, three isoforms exist and interact to form heterodimers as the functionally active form. Significant research has gone into understanding these various dimer combinations, including agonist binding as related to various tissues and cells. Upon binding of tRA by RAR and dimerization with a member of RXR, this active complex becomes a transcriptional regulator that binds to select sequences in promoter regions of select genes, termed retinoic acid responsive elements or RAREs (15). As with most biological processes that involve highly potent agents, the retinoid pathway has several regulatory feedback loops that help maintain an optimal level of tRA. One of the most important ones is depicted in Figure 11.2B, which shows the degradation of tRA to the less active metabolites via hydroxylation to 4-hydroxy-retinoic acid and 4-oxo-retinoic acid, catalyzed by members of the CYP26 family (16). As tRA levels become temporarily elevated, increased hydroxylase activity via higher expression levels leads to a decrease to steady state levels. In summary, the biochemical confirmation that topical retinol and retinyl esters can be metabolized to the more active form of tRA in skin cells has provided a richer understanding Figure 11.1 Chemical structures of retinol and retinyl esters. Figure 11.2 Retinoid metabolic pathways in skin.

of how cosmetic retinoids are capable of having subtle effects on photodamaged skin. As we begin to understand deeper the
molecular biology changes that are caused via tRA binding to RAR/RXR, novel mechanistic insights into the efficacy as well as the negative irritation side effects could allow for an improvement in current commercialized products.

POTENTIAL TO BREAK THE RETINOID EFFICACY TO IRRITATION CORRELATION WITH RETINYL ESTERS

Over the past few decades, retinol has been used extensively in cosmetic products with the levels of retinol ranging from barely detectable to upwards of 0.5%. The relative dosage levels vary in part because of intolerance among consumers of irritation side effects that is connected in part by a sensitivity to formulation differences. As highlighted earlier, it has been generally assumed that any efficacy from topically delivered retinol occurs via its sequential conversion via the intermediate retinal to tRA (8). For example, it has been shown that 0.4% retinol can significantly improve the appearance of wrinkles on the surface of skin but also have measured histological changes in the extracellular matrix components of epidermal glycosaminoglycans and dermal collagen type I (17). The authors also specu
lated that retinol-treated skin would be more resistant to future skin injury, including ulcer formation among elderly consumers. These reported effects are hallmark responses associated with topical tRA. Several natural and synthetic esters of retinol have been evaluated for retinoid-like effects, including acetate, propionate, palmitate, ascorbate, β-glucuronide, and retinyl N-formyl aspartamate. Although the chemical structure of retinol is conducive to being esterified via the alcohol group, the ability for retinyl esters to deliver efficacy that approaches retinol becomes limited by variables such as skin penetration, cellular uptake, hydrolase active site binding, re-esterification via acyl transferases, and general pharmacokinetics. As with most retinoid analogue work, the objective of evaluating retinyl esters is to be able to provide a retinoid-like response on facial skin but without the negatives of irritation associated with topical usage. Since retinyl esters are dependent on an additional biochemical processing step before releasing a free form of retinol (Fig. 11.2A), it is anticipated that topical retinyl esters would have a weaker retinoid responsiveness range when compared.
Human forearm biopsy study was performed that evaluated via histology the effect of tRA, retinol, and three retinyl esters (acetate, propionate, and palmitate) for the effects on changes in epidermal and granular layer thickness compared to a placebo control (Table 11.1). Both retinyl acetate and retinyl propionate were able to show a significant increase in both thickness measures as compared to the placebo control. The results with retinyl propionate are similar to what has been previously reported (18). These results also highlight that there is a relative rank ordering based on the biochemical processing steps among the retinoids tested. In comparing the retinyl esters, there also appears a ranking in terms of chain length from shortest to longest, with shorter chained esters being more potent than longer chained esters. Although less intuitive, the potential that shorter chained retinyl esters can be acted on by other esterases could partially explain their enhanced retinoid response profile compared with retinyl palmitate, the endogenous storage form. Since the experimental data in the table was performed under semiocclusive patch, the ability of the retinoids to penetrate into the viable cell layers is lessened as a variable for this comparison but may not explain the complete story for retinyl palmitate (19). As would be suspected, this rank ordering of retinoid-based activity (efficacy) is also indirectly proportional to the level of irritation that some topical retinoids can induce on skin (19; Oblong, unpublished data). A comparison of human retinoid activity data from Table 11.1 with irritation data from a human back cumulative irritation protocol using nearly identical formulations shows that there is a general correlation among the esters and retinol between retinoid activity and irritation with the one exception of retinyl propionate at 0.18% levels (Fig. 11.3). This supports in-house clinical findings that retinyl propionate does not cause as much irritation as retinol and still is able to positively impact the appearance of fine lines and wrinkles in 12-week human facial studies (20). Although additional data would be required around the doses tested to confirm, these results support the suggestion that retinyl propionate is capable of eliciting a retinoid response in human skin but with a weaker overall retinoid irritation profile. In terms of application to photodamaged skin, retinyl propionate has recently become of interest since it is capable of affecting human skin much like retinol but with a lower irritation profile than other retinoids (20,21; Fig. 11.3). While the relative activity of retinyl propionate on
photodamaged skin is weaker than retinol (22), it is clear that some of the effects are still significant (20,21). This combination of significant efficacy with an overall lower irritation profile has been noted in cross comparison of human biopsy studies, back cumulative irritation, and human facial skin clinicals (20). Although less critical

Table 11.1 Changes in Epidermal and Granular Layer Thicknesses in Forearm Skin Due To Retinoid Treatment

<table>
<thead>
<tr>
<th>Topical treatment Code</th>
<th>Epidermal thickness (mm)</th>
<th>Significance vs. control and other treatments a</th>
<th>Granular layer thickness (mm)</th>
<th>Significance vs. control and other treatments a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsion control</td>
<td>A 50.75 - 3.03 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0% Retinyl palmitate B</td>
<td>52.07 Ns 4.88 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.172% Retinyl acetate C</td>
<td>65.45 ABGHI 10.73 ABH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30% Retinyl acetate D</td>
<td>79.00 ABCeF 12.34 ABH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18% Retinyl propionate E</td>
<td>68.83 ABGHI 10.61 ABH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30% Retinyl propionate F</td>
<td>64.87 ABGHI 10.73 ABH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.075% Retinol G</td>
<td>80.13 ABCEF 14.06 AB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15% Retinol H</td>
<td>85.66 ABCEF 17.44 ABCDEF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025% trans-Retinoic acid I</td>
<td>80.64 ABCEF 14.72 AB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Upper case letters denote significant differences (p < 0.05), while lower case letters denote directional differences (p < 0.10).

22. Green C, Orchard G, Cerio R, et al. A clinicopathological study of the effects of topical retinyl propionate cream in skin photoaging. Clin Exp Dermatol 1998; 23:162-167. 23. Semenzato R, Bovenga L, Faiferri L, et al. Stability of vitamin A propionate in cosmetic formulations. SOFW J 1997; 123:151-154. 24. Jarrett A, Wrench R, Mahmoud B. The effects of retinyl acetate on epidermal proliferation and differentiation. Induced enzyme reactions in the epidermis. Clin Exp Dermatol 1978; 3:173-180. 25. Lee MS, Lee KH, Sin HS, et al. A newly synthesized photostable retinol derivative (retinyl N-formyl aspartamate) for photodamaged skin: profilometric evaluation of 24-week study. J Am Acad Dermatol 2006; 55:220-224. [Epub June 5, 2006]. 12 Idebenone (hydroxydecyl ubiquinone) Birgit A. Neudecker, Falko Diedrich, and Howard I. Maibach INTRODUCTION Idebenone is a unique new antioxidant in dermatology used to treat the visible and cellular signs of skin aging. This chapter reviews the description, uses, functionality, cell biological and clinical research, safety and recent new improvements of this respiratory chain analog of coenzyme Q10. DESCRIPTION Idebenone is a bioengineered analog, but not a derivative of ubiquinone (coenzyme Q10). It belongs in the family of molecules known as quinones, in particular it is a 1,4-benzoquinone molecule, as is hydroquinone. Its molecular weight is 338, compared with coenzyme Q10 with a molecular weight of 860, and therefore, in theory has much greater skin penetration potential. Idebenone is a potent antioxidant, with the ability to operate under low oxygen tension situations, and not showing prooxidative metabolites (1,2). Because of its ability to inhibit lipid peroxidation, idebenone protects cell membranes and mitochondria from oxidative damage caused by free radicals generated during cell metabolism, processes which are also summarized as intrinsic aging (2-4). Ultraviolet radiation (UVR)-generated reactive oxygen species (ROS) play a critical role in the process of photocarcinogenesis and environmentally induced aging, also termed as photoaging or extrinsic aging (5-9). Recent studies claim that also infrared radiation and visible light contribute to a major extend to such kind of damage (10,11). Although the skin possesses a complex antioxidant network, both intrinsic and extrinsic pathways can provoke an imbalance of the fragile
prooxidant-antioxidant equilibrium (12-17) eventually leading to alteration of cells and structural macromolecules of the dermal connective tissue with its clinical appearance of wrinkle formation, laxity and pigment disorders. In comparison with other antioxidants, idebenone shows in vitro studies as well as in vivo studies unique properties providing protection regarding both intrinsic and extrinsic processes of aging (18-20). HISTORY AND USES Idebenone has a history in medical applications dating back to 1982 with its initial introduction in the scientific community in papers published by Shimamoto et al. (21-23) citing its potential applications in the energy metabolism of red blood cells and myocardial tissue. Additional research over the next few years lead to the first phase I study to determine the tolerance, safety and pharmacokinetics of idebenone (24) followed by clinical studies in the early 1990s in subjects with Alzheimer’s disease (25,26). It has since been researched extensively for a variety of applications related to the treatment of various age related disorders of the human body, including Cerebrovascular and Alzheimer’s disease, Friedreich’s ataxia and showed protective properties in organ preservation solutions (2). Until 2009 over 270 articles have been published, mostly related to the health benefits of idebenone as an antiaging modality (27-32). The potential benefits of idebenone fall into five categories: antiaging, energy enhancement, cognition enhancement, organ protection and protection against excitatory amino acid neurotoxicity. Its relatively recent introduction in the field of dermatology in 2003 as a compound purported to be beneficial in the treatment of many skin changes associated with acute and chronic skin aging. As with other antioxidants, idebenone exists in a reduced and an oxidized state. In a study of its effect on astroglial cells, idebenone, in either redox state, significantly inhibited the enzymatic metabolism of arachidonic acid by cyclooxygenase and lipoxygenase. This effect was stronger with the reduced form, and showed potential central nervous system anti-inflammatory activity (27). In another study synaptosomes isolated from rat brain cortex were treated with iron and ascorbate establishing experimental cellular oxidant injury. Idebenone prevented both, the formation of ROS in the cytosol and mitochondria, as well as a decrease in proteinsulfhydryl content (an indicator of protein oxidation), compared with controls (28). In addition to its function as an antioxidant, idebenone works as an electron carrier in the electron transfer chain, similar to coenzyme Q10. Idebenone was introduced into a canine coenzyme Q10-depleted brain mitochondrial preparation, which prevented the loss of electron chain transfer activity
normally seen with coenzyme Q10 depletion (3). Idebenone also inhibited mitochondrial lipid peroxidation (4), which can be interpreted as protecting against mitochondrial damage. Other animal studies confirm the mitochondrial membrane protective effects of idebenone (29,30).

FUNCTIONALITY According to the mitochondrial theory of aging, nonrepaired damage of mitochondrial DNA and unstable electron transfer cause an important loss of mitochondrial function in correlation with progression of age (6). Mitochondria are the sites of cellular metabolic energy production where oxygen is used to convert carbohydrates into ATP to power and enable all cellular metabolic activity. The process itself produces toxic free radicals as the result of electron transfer, which can result in cellular damage if uncontrolled (33,34). Therefore cells have developed defense mechanisms, including essential enzymes and coenzymes such as coenzyme Q10, SOD, and catalase that are capable to reduce radical by-products of cellular energy production eventually into water (12,35). Unfortunately, these defense mechanisms are efficient only to a certain degree and liberated free radicals such as superoxide radicals can react with cellular organelles and molecules as, for example, DNA, lipids, sugars and proteins to cause cellular damage, which expresses itself as aging (6,8,9,12). Mitochondria possess the ability to replicate containing their own DNA but have far less repair mechanisms than nuclear DNA despite the fact that they are the sites where most internal free radicals are formed. The result is cellular aging directly associated with metabolic energy production (33). For this reason, mitochondria require
potent free radical scavenging antioxidants to prevent the early
onset of cellular aging. Coenzyme Q10 protects mitochondria
from oxidant decay. As mentioned above, the function of
idebenone as an electron transfer respiratory chain
antioxidant
is closely related to that of coenzyme Q10, which itself is a vital
biochemical found in cellular and mitochondrial membranes
and plays a critical role in the electron transport chain
during the production of energy in the mitochondria. However, unlike
coenzyme Q10, idebenone lacks the potential downside of a
degradative prooxidative effect, especially under hypoxic cell
ular conditions, such as those found after stroke, heart attack,
excessive exercise or other conditions that lead to poor
tissue oxygenation. Idebenone appears to be able to tightly couple
oxygen to the electron transport chain and thus prevent
toxic oxygen radical production far more superior than coenzyme
Q10 (3).
DERMATOLOGY: CELL BIOLOGICAL AND
CLINICAL RESEARCH
It is important not to confuse idebenone with other commonly
used antioxidants in skincare such as vitamin antioxidants like
vitamin C and vitamin E or botanical antioxidants such as polyphenols, flavonoids and proanthocyanidins. Idebenone differs from these other types of antioxidants in that it is a respiratory chain antioxidant that targets aging at the mitochondria. In 2003 and 2005, the first cell biological in vitro and in vivo clinical studies were published (18–20) that demonstrated that idebenone had a potent ability to protect cellular lipids, cell membranes and DNA from oxidative stress and prevent sunburn cell (SBC) formation post ultraviolet (UV) exposure, and thus could have a significant protective and corrective effect on skin aging. In a multistep protocol, a series of five different cell biological in vitro and clinical in vivo methods were combined to compare the antioxidative capacities of the following antioxidants: vitamin C, vitamin E, a-lipoic acid, coenzyme Q10, kinetin, and idebenone. The studies included measurement of the ability of the antioxidant to 1. scavenge free radicals produced in a reaction chamber using instrumental analysis (Photochem 1), 2. protect against low-density lipoprotein (LDL) oxidation as a marker of lipid peroxidation, 3. protect against cell membrane oxidation, 4. protect against DNA cross linking post UV exposure, and 5. protect human skin from SBC formation post UV exposure. In a scoring system, which was based on a maximum score of 100, idebenone was found to be the most efficient antioxidant tested at the time. Since that time idebenone has been researched in further clinical studies measuring the effects at various concentrations to reduce the overall appearance of fine lines, wrinkles, hyperpigmentation and other skin changes associated with photodamage and global skin aging. The results of these studies (unpublished) are outlined below: 40 subjects, six weeks, b.i.d., double blind, global assessment of 0.5% (20 subjects) and 1.0% (20 subjects) idebenone in the treatment of photodamaged skin with measurements for skin roughness/dryness, fine lines/wrinkles, skin hydration and global assessment by expert dermatologist grader. The results are given in Figure 12.1. In this study, punch biopsies of several patients were taken and stained for collagen 1, MMP1, IL-1,
and IL-6. The results demonstrated that idebenone was able to suppress formation of MMP, IL-1, IL-6, and increase deposition of collagen. Recently, low concentrations of idebenone have been shown to upregulate certain important genes to suppress MMPs and interleukins and increase expression of certain structural proteins for collagen (personal communication with Dr. D. McDaniel). Additionally, lifespan extension studies using Drosophila have demonstrated the ability of idebenone to extend lifespan of fruit flies under oxidative stress conditions (36). Similar results were found in knockout mouse models of Friedreich ataxia (37).

Figure 12.1 Percent increase/decrease after six-week use.
SAFETY

oxidative processes by scavenging and removing free radicals or oxidatively damaged biomolecules (1). However, the antioxidant defense in cutaneous tissues can be overwhelmed by an increased or prolonged exposure to exogenous sources of oxidative stress, which consequently leads to skin damage. Well documented solar UVR-induced skin damage includes acute reactions, such as erythema, edema, followed by exfoliation, tanning and epidermal thickening. Premature skin aging (photoaging) and photocarcinogenesis are the consequences of chronic UVR exposure. Terrestrial solar UVR consists of UVB (290–320 nm) and UVA (UVA II: 320–340 nm, UVA I: 340–400 nm). Radiation less than 290 nm (UVC) does not reach the earth’s surface, since these wavelengths are absorbed by stratospheric ozone. While ozone in the upper atmosphere occurs naturally and protects skin by filtering out harmful solar UVR, ozone at ground level (troposphere) is a noxious, highly reactive oxidant pollutant. Besides UVR and air pollutants such as tropospheric ozone, the presence of chemically unstable and ROS forming drugs as well as some exogenous photoreactive chemicals in skin may be other sources of cutaneous oxidative stress. This chapter summarizes the currently available knowledge on mechanisms and sites of oxidative stress development in skin, its role in the formation of skin damage, and its prevention by strategies strengthening the skin’s antioxidative defense capacity. REACTIVE OXYGEN SPECIES Several steps lead to the formation of ROS during UVR exposure, which represents the best characterized source of oxidative stress in skin (2). The cascade of ROS formation is initiated by UVR absorption; predominantly in the UVA region, of endogenous or exogenous chromophores present in the skin. Of the many skin constituents capable of absorbing UVA, transurocanic acid, melanins, flavins, porphyrins, quinones, protein bound tryptophan or advanced glycation end products are believed to be relevant photosensitizers initiating the ROS formation cascade. Following UVR absorption, the activated chromophore may react in two ways. In type I photoreactions, the excited chromophore directly reacts with a substrate molecule via electron or hydrogen atom transfer and gives rise to free radical formation. In the presence of molecular oxygen (minor type II reaction), this reaction may lead to the formation of superoxide anion radical . O 2 . Subsequently, . O 2 gives hydrogen peroxide (H 2 O 2) by a dismutation reaction either spontaneously or catalyzed by cutaneous superoxide dismutase (SOD). Further, in the presence of metal ions such as Fe(II) or Cu(II), H 2 O 2 can be converted to the highly reactive hydroxyl radical . OH. Otherwise (major type II reaction), electronically excited and reactive singlet oxygen 1 O 2 is
formed by photoenergy transfer from UVR-excited chromophores in the presence of triplet oxygen $3O_2$ (molecular oxygen in its ground state). Following their formation, ROS species including $1O_2$, $O_2^·$, $OH^·$, and H_2O_2 react with an array of skin biomolecules including lipids, proteins, carbohydrates and DNA. For instance, (poly)unsaturated lipids (LH) may react with ROS forming lipid peroxyl ($LOO^·$) and alkoxyl radicals ($LO^·$), which may initiate a chain-propagating autocatalytic reaction. Further, ROS cause modifications of amino acids of proteins resulting in functional changes of structural or enzymatic proteins. Besides a multitude of ROS mediated DNA damage, reaction of singlet oxygen with DNA results in the formation of 8-hydroxy-deoxyguanosine. Since DNA absorbs strongly in the UVB region and is only a weak chromophore in the UVA region, UVB is largely considered as a direct, ROS independent inducer of DNA damage (3). UVB absorption of DNA leads to major base modifications such as pyrimidine dimer or (6-4) photoadduct formation. These modifications together with indirect DNA damage induced by ROS are involved in solar genotoxicity.

CONSTITUTIVE SKIN ANTIOXIDANT NETWORK To protect against oxidative stress, the skin is equipped with a complex cooperative network of enzymatic and nonenzymatic antioxidants (1,2). Antioxidants enzymes such as SOD, catalase, glutathione reductase and peroxidase, glutathion-S-transferase and thioredoxin reductase and peroxidase interact with low molecular weight lipophilic antioxidants including vitamin E homologues (tocopherols and tocotrienols) and ubiquinols (coenzyme Q) as well as hydrophilic antioxidants such as vitamin C (ascorbic acid or ascorbate) and glutathione (GSH) (Fig. 13.1). Carotenoids, retinoids and uric acid, also possessing antioxidant activity, were further detected in skin. Their role within the cutaneous antioxidant network is, however, less clear. a-Tocopherol, the predominant vitamin E homologue in skin, is known to efficiently scavenge lipid peroxyl and alkoxyl radicals by intercepting lipid chain propagation, which results in the formation of the metastable tocopheroxyl radical. This radical formed then either reacts with another lipid radical leading to a-tocopherol consumption, or abstracts a hydrogen atom from polyunsaturated lipids to give a-tocopherol and lipid radical. In the latter case, occurring preferentially at low lipid radical concentration, the lipid radical may later
react

with oxygen to form a lipid peroxyl radical. This reaction consequently induces the a-tocopherol mediated lipid peroxidation chain reaction. Formation of one molecule of a-tocopherol radical results in the formation of many lipid hydroperoxides. However, as demonstrated in vitro in lipid and cellular systems, when ascorbic acid or ubiquinol are present, the tocopheroxyl radical is rapidly reduced regenerating a-tocopherol. The a-tocopherol mediated lipid peroxidation chain reaction is thereby terminated. In addition, because of its high reduction potential, ascorbic acid is also an efficient scavenger of a series of ROS such as superoxide anion radicals, hydroxyl radicals, singlet oxygen as well as water soluble peroxyl radicals. The resulting ascorbic acid radical can be either recycled to ascorbic acid by coantioxidants such as glutathione or is further oxidized to dehydroascorbic acid and irreversibly decomposed, respectively. Glutathione also reacts with singlet oxygen, superoxide anion radicals and hydroxyl radicals resulting in the formation of the thiyl radical GS⁻ and subsequently glutathione disulfide GSSG. The latter can be recycled to GSH by the NAD(P)H-dependent enzyme glutathione reductase. GSH further acts as a cofactor for numerous reducing
enzymes, among them glutathion peroxidases. Glutathion peroxidase is an intracellular selenoenzyme utilizing lipid peroxides as substrate and converting them to hydroxy fatty acids.

Glutathion peroxidase also catalyzes the conversion of H$_2$O$_2$ into water and oxygen. As mentioned, less reactive H$_2$O$_2$ is produced by SOD catalyzing the dismutation reaction of superoxide anion radicals. SOD is present in skin as Cu/Zn and Mn SOD. GSH is likewise used by glutathion-S-transferases, which catalyze the conjugation of GSH to a variety of electrophils including oxidized lipids, DNA and other products generated by ROS-induced damage to these skin biomolecules. Glutathion-S-transferases therefore play an important role in detoxifying products of oxidative stress. Moreover, skin contains catalase, which similar to glutathion peroxidase eliminates H$_2$O$_2$. However, catalase contributes to scavenging H$_2$O$_2$ differently than glutathione peroxidase with respect to its cellular distribution, enzyme stability and reaction rate. The enzymatic activity of catalase is much higher than that of glutathione peroxidase in human epidermis (4). Besides GSH peroxidase, skin contains a further selenium dependent enzyme, thioredoxin reductase (5). Thioredoxin reductase together with its electron acceptor thioredoxin and thioredoxin peroxidase participates similarly as the enzymic thiol redox couple GSH reductase/peroxidase in the cutaneous H$_2$O$_2$ turnover. Along with skin’s “interceptive” antioxidant network that scavenge ROS and RNS, skin possesses also mechanism of “antioxidant repair” that are able to reverse oxidatively damaged proteins (6). In general, nonenzymic antioxidant concentrations as well as enzymic antioxidant activities are significantly higher in the epidermis as compared with the dermis. This probably reflects the fact that epidermis is directly exposed to various exogenous sources of oxidative stress and might have evolved to possess a more pronounced antioxidant defense capacity than dermis to best maintain the redox balance in skin. On a molar basis, hydrophilic nonenzymatic antioxidants including L-ascorbic acid, GSH and uric acid appear to be the predominant antioxidants in human skin.
Approximately, their dermal and epidermal overall concentrations are more than 10 to 100-fold greater than found for vitamin E or ubiquinol/ubiquinone. Ascorbic acid, GSH, uric acid (7) and vitamin E (8) as well as catalase and SOD (9,10) were also detected in the outermost epidermal layer, the human stratum corneum. On the other hand, glutathione peroxidase activity seems not to be detectable in human stratum corneum (10). The stratum corneum consists of a well-ordered structure, which is essentially responsible for the exquisite barrier properties of skin. It is composed of flattened, keratin-filled corneocytes embedded in a lipid intercellular matrix comprising ceramides, cholesterol and fatty acids. It was found, that the distribution of antioxidants in stratum corneum is not homogeneous, but follows a gradient with lower concentrations toward the skin surface (8). Such a gradient may be explained by the fact that the outer skin layers are more directly exposed to environmental sources of ROS in the presence of relatively high concentration of oxygen. A second reason may be related to the longer exposure of the superficial stratum corneum layers to oxidative stress than the lower layers as a consequence of the physiological turnover of keratinocytes during their differentiation process. Interestingly, while human stratum corneum concentrations of vitamin E are as high as in lower epidermal layers, concentrations of hydrophilic antioxidants ascorbic acid and uric acid are in the range of one to two orders of magnitude lower (Thiele J and Packer L, unpublished observations). This is most likely due to the decreased water content of the human stratum corneum as compared with less keratinized epidermal layers. In contrast to uric acid, GSH and ubiquinol, ascorbic acid and the vitamin E homologues cannot be synthesized by humans and must be taken up by the diet. Consequently, the skin’s antioxidant defense may be at least partially influenced by nutritive factors. Knowledge of ascorbic acid’s and vitamin E’s physiological regulation in skin is only recently emerging. For instance, once ascorbic acid reaches skin via dermal blood vessels, it eventually enters the dermis where it is taken up by fibroblasts using a specific, sodium-dependent vitamin C transporter (SVCT)2; or might further diffuse through the dermis, finally reaching the epidermis and supplying keratinocytes mainly
via SVCT1 (11). α-Tocopherol is known to be a significant constituent of human sebum and is continuously secreted to the skin surface (12). Similarly as for carotenoids (13), sebaceous gland secretion is therefore believed to be a relevant physiological delivery pathway of α-tocopherol to sebaceous gland-rich skin regions, such as the environmentally exposed facial skin. This may explain the increased levels of α-tocopherol detected in the upper stratum corneum of facial skin as compared with upper arm skin. The physiological role of vitamin E in human sebum may be to protect against formation of toxic skin surface lipid photooxidation products, such as squalene monohydroperoxides (14). In addition to its antioxidant activity, L-ascorbic acid acts as cofactor in a multitude of metabolic processes involved in skin formation. For example, it is required in hydroxylation reactions during collagen synthesis to form connective tissue (15) and participates in biosynthesis of epidermal barrier lipids (16).

EFFECTS OF ENVIRONMENTAL STRESSORS ON SKIN ANTIOXIDANTS

Numerous studies documented the effects of UVR or ozone on cutaneous antioxidants after acute or chronic exposure using different animal models; whereas fewer human studies exist investigating the mechanisms and consequences of such effects (1). Particularly, the antioxidants contained in the stratum corneum were demonstrated to be susceptible to UVR. For example, a single suberythemal dose of solar-simulated UVR depleted human stratum corneum α-tocopherol by almost half, while dermal and epidermal α-tocopherol were only depleted at much higher doses (8). The high susceptibility of stratum corneum vitamin E to UVR may be, at least in part, due to a lack of coantioxidants in the outermost skin layer. The lipophilic antioxidant ubiquinone-10 (oxidized form of ubiquinol-10), the most abundant ubiquinol/ubiquinone found in human skin, was undetectable in human stratum corneum. Additionally, ascorbic acid, the major hydrophilic coantioxidant that is also capable of recycling photooxidized α-tocopherol, is present at lower levels in human stratum corneum than in other skin tissues. Because stratum corneum represents a compartmentalized structure, the antioxidants are probably not homogeneously distributed. This may further affect their interactions and thus limit the recycling capacity of α-tocopherol. The hydrophilic antioxidants were also shown to be sensitive to UVR. Direct depletion of α-tocopherol and formation of its radical may further affect these endogenous antioxidant pools. However, it seems that ascorbic and uric acid are less susceptible to solar-simulated UVR than α-tocopherol or ubiquinol-10 as was shown with cultured human skin models (17). In full thickness epidermis of hairless mice, however, ascorbic
acid was depleted at lower solar-simulated UV doses than those needed to deplete lipophilic antioxidants or GSH (18). In another study, murine epidermal GSH levels were significantly depleted within minutes after UVB exposure but returned to normal levels after half an hour (19). Moreover, exposures of hairless mice to solar-simulated UVR demonstrated that dermal and epidermal catalase is more susceptible to photoinactivation than SOD, and far more than GSH peroxidase and GSSG reductase (20,21). Effects of the air pollutant ozone on skin antioxidants have also been reported (1,2). Similarly, as found for UVR exposure, the stratum corneum is the most susceptible skin layer for ozone-induced depletion of lipophilic and hydrophilic antioxidants as was demonstrated using hairless mice. Ozone itself is too reactive to penetrate deeply into the skin and reacts therefore predominantly with the skin barrier lipids and proteins in the outermost epidermis. Comparison of transepidermal water loss changes detected in hairless mice after exposure to either solar-simulated UVR or repetitive high doses of ozone indicated that in skin UVR is a physiologically much more relevant source of oxidative stress than ozone (22). Changes in antioxidant enzyme activities and nonenzymatic antioxidant levels were investigated in the dermis and epidermis of human skin in vivo revealing a complex regulation of the antioxidant defense system during intrinsic and photoaging processes (9,23). The authors demonstrated that a-tocopherol concentrations were significantly lower in the epidermis of photoaged and aged skin, but not in the dermis. Ascorbic acid levels were lower in both epidermis and dermis of photoaged and naturally aged skin, respectively. Total glutathione levels were also lower, whereas uric acid concentrations were constant in the epidermis and dermis, respectively. Moreover, it was demonstrated in human skin in vivo, that protein oxidation is increased in intrinsically aged skin, and, most significantly, in photoaged skin. Here, the oxidative damage is most pronounced in the papillary dermis and correlates well with solar elastosis. Remarkably, both protein oxidation as well a sharp decline in catalase protein levels were also found in the stratum corneum, however not in lower epidermal layers, where antioxidant protection is overall higher than in dermal and stratum corneum layers (9). Accordingly, an age and UVR dependent decline of stratum corneum catalase was more recently confirmed on the enzyme activity level (10).
Apart from using sunscreens to diminish the intensity of UVR reaching the skin, supplementation of the skin with topically applied antioxidants and thereby strengthening its antioxidative capacity is an established approach in limiting ROS-induced skin damage (1,2,24). Oral supplementation of antioxidants, which is another promising strategy to prevent cutaneous photodamage, is not subject of this chapter and is reviewed elsewhere (25-27). Topical application of antioxidants provides an efficient means of increasing antioxidant tissue levels in human epidermis. As the most susceptible skin layer for UVR and ozone-induced depletion of cutaneous antioxidants, the stratum corneum may particularly benefit from an increased antioxidant capacity due to topical supplementation.

Vitamin E

The photoprotective effects of vitamin E (a-tocopherol) have been studied extensively. Most studies were performed in animals, and several studies exist investigating the photoprotective effects of topically applied vitamin E also in humans (1,2,28). Significantly reduced acute skin responses such as
erythema and edema, sunburn cell formation, lipid peroxidation, DNA adduct formation, immunosuppression as well as UVA-induced binding of photosensitizers was demonstrated when vitamin E was applied before UVR exposure. As shown in animal studies, skin wrinkling and skin tumor incidence due to chronic UVR exposure seem also to be diminished by topical vitamin E. A human study proved that an alcoholic lotion containing 2% α-tocopherol significantly diminished the erythematous responses when applied 30 minutes before UVR exposure at a dose of 2 mg/cm² as assessed by measuring skin redness and dermal blood flow (29). Since the lotion had no sunscreening properties the observed photoprotective effect may be attributed to the antioxidant properties of α-tocopherol. The photoprotective mechanism of action of α-tocopherol is still subject of debate since investigations on the UVB-induced photooxidation of α-tocopherol in liposomes indicated that α-tocopherol might also act as a sunscreen (30). Diverse vitamin E esters, in particular vitamin E acetate were also shown to be promising agents in reducing UVR induced skin damage. Their photoprotective effects might be less pronounced as compared with vitamin E; moreover, some studies failed to detect photoprotection provided by vitamin E esters. Vitamin E esters need to be hydrolyzed during skin
absorption to show antioxidant activity. For instance, biocon version of vitamin E acetate into a-tocopherol; its active anti oxidative form, seems slow and occurs only to some extent. There is evidence that vitamin E acetate is not hydrolyzed in the stratum corneum and that its bioconversion into a-tocopherol only occurs after penetration beyond the stratum corneum into the nucleated epidermis (31). Consequently, the controversial observations of photoprotective effects of topically applied vita min E acetate may be explained by a limited bioavailability of the active, ester-cleaved form during oxidative stress at the site of action. Intriguingly, the bioconversion of vitamin E acetate into its active form may be enhanced when skin is exposed to sun, possibly by an UVB dependent increase in esterase activity as demonstrated in murine epidermis (32). Vitamin C Few studies investigated the photoprotective effects of topical vitamin C (ascorbic acid). Using a porcine skin model, it was demonstrated that topically applied vitamin C protects from UVB-induced erythema and sunburn cell formation when formulated at high concentrations (i.e., 15%) in an appropriate vehicle (i.e., aqueous solution with 15% ethanol adjusted to pH 3.2) (33,34). In a human study, however, a hydroalcoholic lotion with 5% vitamin C was unable to induce any significant photoprotective effects when applied once 30 minutes before irradiation at a dose of 2mg/cm² (29). Besides differences between pig and human skin responses, differences in vitamin C concentration, amount of formulation applied, vehicle composition as well as other experimental parameters may explain this difference in photoprotective efficacy of the vitamin C
formulations. Vitamin C is easily oxidized what makes the
development of a stable formulation challenging. Vitamin C
can be protected from degradation to some extent at low pH
or by appropriate, sophisticated vehicles such as emulsions
(35). Furthermore, esterified derivatives such as ascorbyl
palmitate or tetraisopalmitate, magnesium or sodium
ascorbil phosphate, and aminopropyl ascorbyl phosphate are
more stable and seem therefore promising alternatives to
vitamin C (36). As described for vitamin E esters, some of
these compounds must be hydrolyzed to vitamin C to manifest
antioxidant properties. Vitamin C does not act as
sunscreen; nor does it absorb UVR. In addition to its
antioxidant properties, vitamin C participates in synthesis
of collagen as cofactor of prolyl and lysyl hydroxylase;
enzymes essential for the stabilizing and cross-linking of
newly formed collagen molecules. In humans, use of a 5%
vitamin C cream resulted in a significantly improved skin
relief and a decrease in deep furrows after a six month
period of use as compared with placebo (37). Polyphenols In
recent years, extracts from dietary and medical plants have
gained considerable attention as efficient agents
protecting skin from UVR-induced photodamage after topical
application (38–41). Extracts from green tea, milk thistle,
soybeans, wine grapes and their seeds, as well as from
acai berry, coffee berry, feverfew, pomegranate, tropical
ferns, and turmeric were particularly studied. They contain
a wide variety of polyphenols known as flavonoids.
Polyphenols usually are composed of two or more aromatic
rings, each containing at least one hydroxyl group.
Flavonoids are divided into flavonols, flavones, catechins,
flavanones, anthocyanidins, and isoflavonoids depending on
their chemical structure. They are synthesized conjointly
with ascorbic acid, vitamin E, GSH and numerous antioxidant
enzymes by plants as a response to mitigate cellular damage
under oxidative conditions. Their antioxidant properties
arise from their high reactivity as hydrogen or electron
donors, from the ability of the polyphenol-derived radical
to stabilize the unpaired electron, as well as from their
ability to chelate transition metal ions such as Fe(II) and
thereby interfering with the hydroxyl radical production.
Besides hydroxyl radicals, polyphenols are believed to
quench singlet oxygen, superoxide anion radicals and
peroxyl radicals. Moreover, polyphenolic compounds possess
also antiinflammatory and other properties beneficial for
skin. Green Tea Polyphenols Green tea (Camellia sinensis)
extracts are possibly the most extensively studied plant
derived antioxidants for skin (42). In contrast to black
tea, which is fermented, green tea leaves contain high
concentrations of polyphenols such as epigallocatechin
gallate (EGCG). Green tea polyphenols act as antioxidants
by scavenging ROS and RNS as well as by sequestering metal ions; and act indirectly as antioxidants through inhibition of “prooxidant” enzymes such as inducible nitric oxide synthase, lipoxygenases and cyclooxygenases; and induction of antioxidant enzymes GSH-S-transferases and SOD (43).

Protective effects of green tea extracts and their major polyphenolic constituent, EGCG, on UVR-induced skin damage after topical application were first observed in several animals models (42). Later, these effects were confirmed in human studies, where topical application of green tea extracts or EGCG significantly decreased erythema responses, lipid peroxidation as well as DNA damage (44,45). More recently, a placebo-controlled study with 40 women with moderate photoaging demonstrated that the combined use of a 10% green tea cream and oral green tea supplementation (300 mg) twice daily for eight weeks resulted in a significant improvement in elastic tissue (46). A trend toward improvement but no significant differences in clinical grading were found between green tea treated group and placebo, however; indicating that a longer treatment period may be required for clinically relevant improvements. In another placebo-controlled study, topical application of a green tea protected human skin from solarsimulated ultraviolet light when applied 15 minutes prior to exposure and reapplied immediately after exposure to two minimum erythema doses (47). The study did not reveal any difference between green and white tea extracts. A further study showed that three-time daily use of a lotion containing 0.4% of a green tea extract with 40% to 50% total polyphenol content helped to reduce UVB-mediated increase in sunburn cell formation (apoptotic keratinocytes) and p53 expression in keratinocytes; but did not reduce erythema or formation of thymidine dimmers (48). This study clearly indicates that skincare formulation with relative low concentrations of green tea extracts (i.e., providing about 0.2% total polyphenols)—what makes them more cosmetically acceptable—is efficient for photoprotection. Green tea extracts and EGCG were further demonstrated to have chemopreventive effects in rodents and therefore prevent cancer. However, epidemiological and human studies are so far little conclusive, which may be the result of multiple factors including different bioavailabilities between humans and rodents (42,49). Other Polyphenols Topical application of silymarin in mice, a milk thistle extract containing silibinin as predominant polyphenol, was shown to inhibit UVB-induced immunosuppression, to reduce UVB-induced sunburn cell formation, to prevent DNA adduct formation as well as to prevent photocarcinogenesis (50,51). Genistein is a major flavonoid constituent of soybean. While much of the reports
on genistein have focused on its role as phytoestrogen and tyrosine kinase inhibitor, it has also antioxidant properties. Topical administration of genistein substantially inhibited UVR-induced hydrogen peroxide formation, lipid peroxidation and DNA damage in mice and protects human skin against UVB-induced erythema (52). Another human study evaluating phenolic plant extracts revealed that topical application of a tropical fern extract reduced erythema as well as UVA-induced immediate pigment darkening and delayed tanning when applied before UVR exposure (53). Coffee berry, the unripe coffee bean, contains diverse (poly)phenolic compounds including chlorogenic acid, quinic acid, ferulic acid and condensed proanthocyanidins. In a clinical study, a skincare system with 1% coffee berry extract resulted in a significant improvement in signs of skin aging when compared with vehicle (54). Pomegranate fruit extract; comprising the polyphenol ellagic acid, possesses strong antioxidant and anti-inflammatory properties and limited UVB-mediated damage in a human reconstituted skin model (55). Another natural extract, a parthenolide-depleted extract of feverfew, which was free of sensitization potential, has free radical scavenging activity against a wide range of ROS. In a clinical study topical feverfew treatment significantly reduced erythema versus placebo 24 hours after UV exposure (56). Additional studies are warranted to help clarify whether the observed beneficial effects of the botanical extracts or their constituents might not be partially attributed to their sunscreensing properties under the respective study conditions (e.g., UVR source, concentration and dose of extract applied per surface area); in particular in the UVA range. Thiol Antioxidants Thiol antioxidants, such as GSH, N-acetylcysteine, lipoic acid and their derivatives are another important group of potent radical scavengers (1,2). Topical administration of GSH, GSH-ethyl ester and N-acetylcysteine, respectively, efficiently protected against UVB radiation-induced epidermal lipid peroxidation, cytotoxicity and apoptosis using pig skin ex vivo as skin model for assessing short-term biochemical effects related to UVB (57). Their photoprotective effects have been reported in few clinical studies. Topical treatment with N-acetylcysteine under occlusion resulted in an increased GSH level and eliminated its oxidized form (GSSG) in human skin in vivo (58). Thus, in addition to its direct antioxidant properties, stimulation of GSH biosynthesis might be a key mechanism accounting for the observed photoprotective effects of N-acetylcysteine. In addition, dihydrolipoic acid, the reduced and primarily active antioxidant form of α-lipoic acid, seems a promising thiol antioxidant potentially
protecting against oxidative stress when applied onto skin. Dihydrolipoic acid is known to scavenge singlet oxygen, superoxide anion radicals, hydroxyl radicals and peroxyl radicals (2). A placebo-controlled, split-face study with 33 women indicated that several clinical characteristics related to photoageing of facial skin improved after application for 12 weeks of a 5% lipoic acid cream (59).

Other Antioxidants The pineal hormone melatonin (N-acetyl-5-methoxytryptamine) is also an antioxidant and has been shown to significantly reduce UVR-induced erythema in humans (29). Apart from melatonin’s antioxidant properties, its dose-dependent sun-screening properties, as well as its supposed immunomodulatory function might have contributed to the observed photoprotective effects. In addition, L-ergothioneine, which is a thiourea derivative of histidine found in food plants and mushrooms, seems another promising potent antioxidant as judged from in vitro studies (60). Idebenone, a synthetic analogue of coenzyme Q, which is presumed to penetrate skin more efficiently than its parent compound, is another potent antioxidant as shown in vitro (61). A clinical study with a 1% idebenone formulation demonstrated a reduction in fine lines/wrinkles in female subjects between 30 to 65 years of age with moderate photo damage (62). This study was not vehicle controlled. Further more, a study in pigs revealed that idebenone offers little to no photoprotective effects when applied daily for four days before irradiation with solar-simulated UV radiation up to five mini mal erythema doses (63).

Antioxidant Combinations

As illustrated when discussing the cutaneous antioxidant system, antioxidants interact when combined and emanating radical or oxidized forms of antioxidants after ROS scavenging
may be quickly regenerated in the presence of appropriate coantioxidants. Accordingly, an enhanced photoprotective effect may be obtained by applying distinct combinations of antioxidants. For instance, ample evidence exists about the interactive dependence of vitamins C and E in diminishing photodamage in vivo. As was shown in humans, a single topical application of a combination of 2% vitamin E and 5% vitamin C resulted in more pronounced photoprotective effect as compared with the application of either antioxidant alone in the identical vehicle (29). As demonstrated in the same study, the most dramatic improvement resulted from the coformulation of melatonin together with α-tocopherol and ascorbic acid. It may be speculated that possible synergistic interactions between melatonin and the vitamins E and C could have contributed to the observed, significantly increased photoprotective effects. Other distinct mixtures of topically applied antioxidants were also shown to be more effective in reducing photodamage than single antioxidants. Adding 0.5% ferulic acid (a phenolic antioxidant found in plants) to a solution of 1% α-tocopherol and 15% ascorbic acid doubled photoprotection to solar simulated irradiation of pig skin when applied topically from fourto eightfold as measured by both erythema and sunburn.
cell formation (64). Another combination consisting of ferulic acid with tocopheryl acetate and α-glycosylrutin was shown to limit the severity of experimentally induced polymorphous light eruptions when applied one week prior to photoprovocation with UVA in humans (65). Recently, remarkably enhanced antioxidative efficacy as compared with additive efficacy was found for the mixture green tea polyphenols, α-tocopherol and ascorbic acid (66). Kinetic and mechanistic studies revealed that the antioxidant synergism was due to the regeneration of α-tocopherol by the green tea polyphenols, while latter are regenerated by ascorbic acid. Therefore, the antioxidant synergism between green tea polyphenols, ascorbic acid and α-tocopherol makes this combination particularly interesting for antioxidant protection.

CONCLUDING COMMENTS

Animal and human studies have convincingly demonstrated that topical application of antioxidants helps protect skin from UV-induced damages. The protective effects in humans were particularly well studied for ascorbic acid, tocopherol, some of their ester derivatives, and polyphenolic antioxidant mixtures including green tea extracts. Their efficacy was
significantly increased when applied as combination; whereas the combi

Topical retinol: an efficacious solution for improvement of main photodamage signs Christiane Bertin and Thierry Oddos

INTRODUCTION Clinically, skin aging is associated with a variety of signs such as wrinkles, uneven pigmentation, skin roughness, skin color, and laxity. These clinical features are consecutive to the structural and metabolic changes that occur during the passage of time (chronological aging). However, external factors, such as repeated skin exposure to solar ultraviolet (UV) radiation, can induce premature or photoaging of the skin. These changes are consecutive to a decrease in fibroblast number as well as collagen synthesis and an increase in UV-induced collagen degradation by matrix metalloproteinases (MMPs). An accumulation of nonfunctional elastin is also observed in the dermis, leading to a loss of skin elasticity and firmness. In addition, a constant hallmark of skin aging and photoaging is epidermal thinning, which is triggered by a decrease in keratinocyte turnover rate (1). Photoaging is also associated with a dysregulation in melanin synthesis and distribution and a general increase in the inflammatory status of the skin leading to the appearance of brown spots, a global increase in skin redness, and telangiectasia. Retinoids have shown beneficial effects in reducing skin photoaging. For instance, it has been demonstrated that alltrans retinoic acid (ATRA) improves skin photoaging signs (2,3). This clinical efficacy was mainly attributed to the effect of ATRA on collagen metabolism by stimulation of the collagen synthesis that ultimately accumulates in the upper part of the papillary dermis (3,32). Moreover, ATRA downregulates UV-induced MMP1 and MMP9 expression (4,5), thereby replenishing collagen levels. Although ATRA is recognized as an effective therapy
for the treatment of photoaged skin through its regulatory
effect on collagen metabolism, it has been suggested that
retinol (ROL), known as vitamin A, may also alleviate some
major signs of photoaging with a better irritation profile.
Retinoids are all derived from the naturally occurring
alltrans retinol. This molecule is composed of 15 carbons.
Three parts of the molecule can be distinguished: a cyclic
group, a polyene group, and a polar group [primary alcohol
for retinol –CH2OH, and aldehyde –CHO for retinaldehyde and
a carboxylic function –COOH for retinoic acid, the two
latter compounds being obtained from the previous by
oxidation (Fig. 14.1)]. Natural isomers carrying specific
biological activities have also been described as
11-cis-retinaldehyde and 9-cis-retinoic acid. METABOLISM OF
RETINOL Diet is the normal source of retinol in the body.
It originates from carotenoids in plants and of the long
chain fatty acid esters of retinol (as retinyl palmitate)
in animal tissue. Carotenoids are split, in the intestine
epithelium, in the middle of the molecule to form retinal,
which is in turn reduced to retinol and esterified into
retinyl ester. Retinyl esters are transported and stored in
the liver, which is the main storage site in the body. The
retinol is then delivered in the blood stream associated
with a specific transporter retinol-binding protein (RBP).
In normal conditions, most of the circulating retinol is
associated with RBP and the level of retinol in healthy
volunteers fluctuates above 30 mg/mL (6). In the skin, at
the keratinocyte level, retinol uptake is mediated through
the binding of RBP-retinol complex to specific receptor(s),
such as the 61 kDa retinal pigment epithelium (RPE)
protein, and internalization (7–9). In keratinocytes,
retinol is stored in the form of retinyl esters (i.e.,
mainly palmitate, oleate, and acetate esters) (10,11)
primarily through the action of lecithin-retinol
acyltransferase (12). It is then oxidized into retinal and
retinoic acid by different alcohol dehydrogenases (13). Two
other proteins responsible for retinol transportation play
an important role in retinol metabolism. The first one is
the cellular retinol-binding protein (CRBP), which shows a
high affinity for all-trans retinol. The second one is the
cellular retinoic acid-binding proteins (CRABP I and CRABP
II) that bind specifically retinoic acid. In skin, CRABPII
is the predominant retinoic acid protein and its expression
is enhanced by keratinocyte differentiation and treatment
with retinoids. The role of these proteins is not
completely clarified. CRBP could play a role in presenting
the retinol in the adequate conformation to the
dehydrogenase. They are also believed to control the level
of free retinol and free retinoic acid and the
translocation of these two molecules in specific cellular
compartments such as translocation of retinoic acid in the nucleus for CRABPII (14). BIOLOGICAL EFFECT ON SKIN AND ON DIFFERENT CELL TYPES Retinol plays a major role in the skin, as it is essential for regulating keratinocyte differentiation as suggested by the early observation of abnormal keratinization in vitamin A-deficient rats (15) and humans (16). Topically retinol stimulates the proliferation of the basal keratinocytes through the release of heparin-binding epidermal growth factor (HB-EGF) from suprabasal keratinocytes (17,18). The influence of retinol on keratinocyte differentiation is shown by the increase of some differentiation markers as keratins (keratin 4, keratin 10, keratin 13, and cytokeratin 19), while others like filaggrin, transglutaminase-1, or loricrin are decreased. The overall effect on the epidermis is a stimulation of the cell proliferation in basal and suprabasal layers and an inhibition of the terminal differentiation of the keratinocytes.

Taken together, this leads to a general thickening of the epidermis (10). On dermal fibroblasts, retinol showed a potent stimulation of growth of fibroblasts from aged donors and a stimulation of the synthesis of procollagen I and procollagen III (19). Retinol represses the overexpression of UV-induced MMP1 and MMP9, two enzymes involved in the degradation of collagen molecules. The underlying mechanism is the repression by activated retinoic receptor of the AP1 transcriptional activity that drives the expression of MMP1, MMP3, and MMP9. Indeed, skin exposure to UV light leads to the stimulation of the MAP kinases such as ERK, JNK, or P38 and then to the overexpression of the Jun protein that controls the level of
AP1 in the cell. Thus, retinol is able to decrease the UV-induced overexpression of MMPs and to increase collagen synthesis, two mechanisms that could explain in part its potential to protect the skin against photodamage (4).

CLINICAL ASPECT

Retinoids have been widely studied during the past 20 years for their activity on human skin. In 1969, Kligman et al. (20) proved the therapeutic efficacy of topical ATRA in acne vulgaris and later in 1986 (21), pioneered the use of retinoids in cosmetic dermatology by demonstrating its effects on photoaged skin.

He conducted an open study on 8 elderly patients receiving 0.05% ATRA cream on the face for 6 to 12 months, while 6 other patients received the vehicle alone. Although only slight clinical differences were observed, histology showed a thickening of the previously atrophic epidermis, decrease of keratinocyte dysplasia and atypia, more even dispersion of melanin and formation of new dermal collagen and blood vessels. Since then, several clinical studies were performed to assess the activity of ATRA on humans, especially in the treatment of photoaging signs: Weiss and Voorhees in 1988 (22) performed the first double-blind randomized placebo-controlled study by applying 0.1% ATRA on the forearm and face of 30 patients for 16 weeks. They demonstrated a significant improvement of photoaging in the ATRA-treated areas. The greatest improvement was in the reduction of fine wrinkles,
with a statistically significant difference occurring eight weeks after beginning the study. Other features such as coarse wrinkles, roughness, and sallowness also showed an improvement but to a lesser degree. Lever in 1990 (23) using a preparation containing 0.05% ATRA during 12 weeks observed an improvement in clinical grading of photoaging (fine lines and wrinkles). Grove again in 1991 (24) assessing different concentrations of ATRA (from 0.05% to 0.001%) over 24 weeks demonstrated a better efficacy of the dose activity with the highest concentration (0.05%) of the ingredient on the Rz parameter (local mean amplitude) on skin replicas. Olsen in 1992 (25) on 296 subjects with the same ranking of concentrations as Grove, over a 24-week period showed a decrease of skin roughness, hyperpigmentation, and fine wrinkling. Unfortunately, ATRA tends to be irritating, with many patients experiencing redness, flaking, and increased skin sensitivity. Some patients also reported an increased sun sensitivity during ATRA therapy (26). Retinol, an alternative to ATRA, has fewer side effects and is a better tolerated additive in cosmetic preparations for the improvement of photodamage signs. In 1995, Kang et al. demonstrated that the application of retinol up to 1.6%, on human skin under an occlusive patch, was unable to induce significant erythematous reaction versus vehicle. It also evokes the same physiological response as the 0.025% erythematogenic concentration of retinoic acid as demonstrated by epidermal thickening and the enhancement of CRAPBII mRNA and protein expression. This retinoid activity of retinol was obtained without a detectable increase of retinoic acid in the epidermis (10). Duell et al. (27) showed that topical retinol penetrated the epidermis more and produced less irritation than the acid form. Finally, Goffin in 1997 (28) tested 0.075% of retinol for eight weeks with corneosurfmetry and demonstrated its better tolerance versus ATRA. CLINICAL EFFICACY OF RETINOL Although retinol was demonstrated to induce, in human skin, a physiological response typical of retinoids, only a few clinical studies were published demonstrating its efficacy in improving the signs of skin aging. In 2007, Kafi et al. reported a clinical study to demonstrate the beneficial effect of retinol on the skin signs associated with chronological aging. This randomized study versus vehicle was performed on 23 elderly subjects over 80 years (average 87 years old). Retinol 0.4% and vehicle were topically applied on the upper inner arm for 6 months. The results showed a significant improvement in fine wrinkles versus vehicle after 2 months of application. This improvement increased with the continued application of retinol and was associated with a significant better tactile roughness and overall severity in chronologically aged skin. Skin
biopsies demonstrated a thickening of the epidermis and a significant increase in GAG expression and procollagen I accumulation in the dermis compared to the vehicle-treated arm. In this study, although rated as mild, adverse reactions were reported by

Figure 14.1 Structure of most common retinoids (all trans confor

mation). most subjects including erythema, peeling, pruritus, dryness, and burning or stinging with the withdraw of three subjects following severe enough symptoms (29). We explored the action of retinol at a lower concentration (0.1%) on a photoexposed area to investigate the antiaging effect of retinol at more tolerated doses on the photoaging signs. In a first blind randomized vehicle-controlled study, 48 volunteers (41-60 years old) topically applied to the face either the retinol 0.1% containing product or the vehicle, every day for 56 weeks. The clinical evaluation performed by an expert grader after 12, 24, and 56 weeks of application showed that wrinkles under the eyes, fine lines at the crow’s feet area, and skin tone evenness significantly improved versus both baseline and vehicle. The improvement of the fine lines in the crow’s feet area was also demonstrated with digital imaging and with surface profilometry. A progressive improvement was seen between baseline and after 24 and 36 weeks of treatment (Fig. 14.2). The improvement in fine lines was also documented by surface profilometry and a progressive disappearance of the fine lines in the crow’s feet area was observed. Moreover, we demonstrated that retinol stimulates epidermal cell proliferation along with the treatment. Indeed, the epidermal cell turnover rate was evaluated using in vivo fluorescence spectroscopy by measuring the fluorescence maximum attributed to tryptophan moieties. The placebo-treated group did not show any significant change from baseline for any time point. In contrast, the intensity of tryptophan fluorescence increased for the actively treated group evident from the first time point (12 weeks vs. baseline), and then it appeared to reach a plateau. Most importantly, the change in the fluorescence intensity from baseline was significantly higher for the active-treated group than for the placebo-treated group at the 36-week time point (30). These antiaging effects of retinol were confirmed in two other shorter-term double-blind randomized studies performed with moisturizing product containing 0.1% retinol. In the first study, the retinol-containing products were topically applied on 40 subjects (40-60 years old) once a day for 8 weeks. The effect of the product was compared to
the effect of its vehicle on 41 subjects. The results presented in Table 14.1 showed that the application of the retinol 0.1% significantly improved the facial features of photodamaged areas as early as 4 weeks of use. Results from the second study were recently published (31). In this 8 week, split face, double-blind, randomized clinical study, a 0.1% retinol-containing moisturizer was tested (36 subjects) versus placebo (28 subjects) in women with moderate facial photodamage. Clinical evaluation of photodamage signs by a dermatologist demonstrated significant improvement versus placebo of fine lines, wrinkles, elasticity, firmness, and overall photodamage after four weeks. Thus, using a low level of retinol (e.g., 0.1%) could still deliver a significant and rapid antiaging efficacy while maintaining a good tolerance profile, as only a few subjects experienced a slight adverse skin reaction without any withdrawal with the retinol product.

In the two studies, the number of adverse reactions observed with the retinol product was not significantly higher than with the vehicle. CONCLUSION Skin aging is a complex process involving numerous different mechanisms such as loss of cell proliferation, decreased potential of extracellular matrix synthesis, and overexpression of matrix-degrading proteinases. Retinoids are naturally present in the skin and regulate epidermal cell differentiation, activate collagen synthesis, and attenuate the UV-induced overexpression of MMPs. The potential of regulating several pathways involved in skin chronological and photoaging makes them good candidates as active ingredients to alleviate facial aging signs. Although retinoic acid has been the first retinoids to demonstrate an efficacious wrinkle improvement, the severe side effects induced by its topical application warrants the identification of other retinoids for this benefit. Therefore, retinol was identified as a good alternative to retinoic acid, as its topical application induces low level of skin adverse reaction while delivering physiological skin responses similar to those induced by retinoic acid. Moreover, retinoic acid level in the epidermis observed after topical application of retinol is extremely low or undetectable and thus provides a substantial margin of safety with respect to possible systemic effect. Figure 14.2 Example of improvement of crow’s feet area by retinol 0.1% product treatment. Table 14.1 Clinical Assessment of Retinol Antiaging Efficacy Vehicle Retinol 0.1% Parameter 4 wk 8 wk 4 wk 8 wk Under eye wrinkles (%) 0 2.2 4.3 a,b 6.5 a,b Crow’s-feet fine lines (%) 8.1 a 10.8 a 29.7 a,b 35.1 a,b Crow’s-feet wrinkles (%) 0 0 2.8 a 8.3 a,b Forehead wrinkles (%) 0 0 6.4 a 6.4 a,b Skin radiance (%) 16.7 a 20.8 a 34.8 a,b 43.5 a,b Cheek wrinkles (%) 0 0 7.3 a,b 9.8
Results presented here focus preferentially on the clinical efficacy of well-tolerated doses of retinol. Indeed in two double-blind randomized placebo-controlled studies, retinol at 0.1% demonstrated a significant visible improvement of facial aging features such as fine lines and wrinkles within one month’s time.

agents, skin conditioning agents. The scientific fundamentals and clinical efficacy of soy for skin benefits have not been proven until recent years. It was reported that soy isoflavones possess phytoestrogenic properties which may play a role in the skin of menopausal women (2). Specific protein components in soybeans were identified for inhibition of melanosome transfer resulting in pigment reduction (3-5). Other soybean components such as lipids, oligosaccharides, saponins can also provide skin benefits. Such new knowledge and findings have been implemented into dermatological and cosmeceutical products for broader skin applications. This chapter will review the components of soy and their clinical uses in improving skin conditions.

SOY IN HUMAN HEALTH Soybeans originate from China. In 2853 BC, Emperor ShengNung of China named five sacred plants—soybeans, rice, wheat, barley, and millet. Soybean plants were then domesticated and cultivated into a food crop for everyday diet (6,7). The soybean has blossomed from legendary Chinese origins to the “miracle crop” vastly produced on modern-day American farms since its first introduction into the United States in the early 1800s (7). From about the first century AC to the Age of Discovery (15th and 16th centuries), soybeans were introduced into several countries such as Japan, Indonesia, the Philippines, Vietnam, Thailand, Malaysia, Burma, Nepal, and India. The first soybeans arrived in America in the early 1800s and since then have played an increasingly important role for both human nutrition and health. Soybeans with their valuable proteins and oil are an important source of nutrition. The soybean is rich in minerals including calcium, iron, and potassium, amino acids and vitamins. It is also a good fiber source (8,9). They can be used as meat and dairy substitutes in various items. Today, most people are aware of the use of soy proteins in baby formula, weight-loss drinks, sport drinks and as a low-fat substitute for hamburger. Soybeans are also valued for their medicinal qualities. Epidemiological data indicates that people from Asian cultures have lower rates of certain cancers, including cancers of breast, prostate, colon, cardiovascular disease, osteoporosis and postmenopausal symptoms (10-16). Over the last decade, studies on soy’s health benefits have dramatically increased in these areas and more systematic and controlled clinical studies were presented on these health benefits (17,18). Consequently, the Food and Drug Administration (FDA), authorized in 1999, the use of soy protein, on food labels of health claims on the association between soy protein and reduced risk of coronary heart disease (19). This ruling is based on the FDA’s decision that foods containing soy protein included in a diet low in saturated fat and cholesterol may reduce...
the risk of coronary heart disease by lowering blood cholesterol levels. EARLY UTILIZATION OF SOY IN TOPICAL APPLICATION For many years, because of the lack of basic research in understanding the fundamental mechanisms of soy on skin, soy’s nutritional components were used mainly as functional ingredients in the cosmetic industry (20) and mostly remain so until today. Most frequently used soy components include soybean oil, soy protein isolates, soy lecithin and soy sterols as noted in Table 15.1. Soybean oil is one of the valuable materials to adjust the rheology of cosmetic emulsions. Examples of soy oil as an emollient and moisturizer include products of baby oil and moisturizing lotion. Soy protein isolate/hydrolysate has been formulated as an emulsifier and foaming enhancers into a wide variety of products including laundry detergents, bath products, shampoos and skin cleansers (21). The lecithin fraction of crude soybean oil found application as an emulsifying, surfactantive agent, and stabilizing agent in industrial products such as paint, ink, soap and cosmetics (22). Soy sterols are employed as skin conditioner for lotion, cream and cleanser (23). Since the early of 1990s, soy extracts or soy germ extracts that claimed to provide specific biological activities started to appear in the skin care products. These soy extracts, although defined vaguely as soy (soja) concentrates or soy proteins, were actually produced using different chemical extraction conditions and could result in dissimilar compositions and skin effects. Such soy extracts often had too small fraction amount of the original soy components to provide desired biological activities or were processed excessively under harsh extraction conditions such as extreme pHs, strong solvents, elevated temperature to keep the bioactivities for skin efficacy. Little clinical reports or publications were available for the cosmetic products spiked with such soy extracts. The use of these soy extracts has been limited to product’s marketing claims.

RECENT SCIENTIFIC ADVANCES IN TOTAL SOY

Non-denatured Soy Proteins and Depigmentation

There is an increasingly need for skin care products to achieve fair skin for pigmented populations, as well as even tone skin by reducing hyperpigmentations including mottled hyperpigmen
tation, solar lentigines, and melasma for global population. The
most frequent used topical treatment agents for
depigmentation
are tyrosinase inhibitors, hydroxyacids, retinoids, hydroqui
nones, anti-inflammatory agent and the combinations.
Treatment
with these agents may result in irritation, sun
sensitivity, toxicity,
or performance disappointment (24). In its proposal published in
the U.S. government’s Federal Register, The FDA notes, “The
actual risk to humans from use of hydroquinone has yet to be
fully determined. . . . We’re acting for safety reasons. There is a
potential for hydroquinone to be a carcinogen in humans.” Therefore, safer and more effective depigmenting agents
are needed. Moreover, a move toward “green” therapies
has led to a demand for a natural, safe and efficacious skin
lightening agent. Soybeans contain two major proteins, which are reported
to inhibit protease-activated receptor 2 (PAR-2) pathway, leading
to reduced melanosomes transfer from melanocyte to keratino
cyte resulting in pigmentation reduction. These two proteins are
serine proteinase inhibitors: the Kunitz-type trypsin inhibitor
[soybean trypsin inhibitor (STI)], and the Bowman-Birk inhibitor
(BBI) (25,26). STI has a molecular weight of 20 kd and
consists of
181 amino acid residues with two disulfide bridges and is
roughly spherically shaped (27). BBI is an 8-kd protein that
inhibits the proteases trypsin and chymotrypsin at separate
reactive sites (28–30). PAR-2 is a G protein-coupled
receptor
activated by a serine protease cleavage. Trypsin and mast
cell
tryptase are the only known natural serine proteases that activate
PAR-2 (31,32). PAR-2 is expressed in keratinocytes (33,34), but
not in melanocytes (3) and is involved in the regulation of
pigmentation (3,35,36). It was reported that that the
inhibition
of PAR-2 activation by serine protease inhibitors results in
reduced pigment deposition. This effect is possible only when
keratinocyte-melanocyte contact is established (Fig. 15.1, top
panel). Melanocytes alone do not respond to PAR-2 modulating
agents with pigmentary changes (3). When serine protease
inhibitors interfere with PAR-2 activation, melanosome transfer
from the melanocytes to the keratinocytes is inhibited. The
reduced melanosome ingestion by keratinocytes results in
depigmentation both in vitro and in vivo (3,36). This
depigmenting
effect caused by serine protease inhibitors is reversible
in vivo
(3,36), therefore excluding the possibility of melanocyte death following such treatments. Most activities of STI and BBI in soy foods are denatured by heat or fermentation to prevent blocking the trypsins activity in the gut resulting in gastrointestinal adverse effects.

It was found that nondenatured soybean extracts, that is, Total Soy, and the isolated soy-derived proteins STI and BBI, inhibit PAR-2 activation, resulting in skin depigmentation (5). As shown in Figure 15.1, keratinocyte-melanocyte cocultures treated with the soy protein STI have reduced tyrosinase activity, documented by L-3,4 dihydroxyphenylalanine (DOPA) staining (upper panel). Hyperpigmented human skin, grafted on immunodeficient mice, and treated with STI, showed reduced pigment deposition, demonstrated by FontanaMason (F&M) staining of histological sections after five weeks of treatment (middle panel). F&M staining, F&M staining identifies silver nitrate reducing molecules. In skin, this nonspecific stain identifies primarily melanin. Dark-skinned swine treated with a nondenatured soy extract (Total Soy) demonstrates visible skin lightening following eight weeks of treatment (lower panel). Therefore, agents such as STI, BBI or nondenatured soybean extracts (Total Soy) may serve as alternative, natural treatments for skin lightening or hyperpigmentation.

Total Soy and Delayed Hair Growth The mammalian hair provides environmental protection, but this function has been lost in humans, who keep or remove their hair at different body locations for social and cosmetic purposes. Many procedures are used to remove unwanted hair, ranging from simple and inexpensive treatments like shaving, to costly and time-consuming methods as electrolysis and laser therapies. Hair removal methods differ in the duration of the effect, in their pain and discomfort levels, and in their possible undesired side effects (37). The hair follicle undergoes cycles of active growth (anagen), regression (catagen), and rest (telogen) (38). While the morphological changes throughout the hair cycle are well documented (39), the regulation of the different phases of this cycle is not completely understood. It was recently demonstrated that nondenatured soybean extracts (Total Soy), and the soybean derived proteins STI and BBI reduce not only hair pigmentation, but also the rate of hair growth and the final dimensions of the hair shaft (4). Following Total Soy treatment the onset
of anagen was delayed, the duration of the hair cycle was reduced, and the resulting hair shafts were shorter, thinner and softer. As shown in Figure 15.2, mouse hair treated with a nondenatured soy extract or Total Soy showed reduction in the length of the hair shafts (upper panel). Hair follicle development (anagen) was delayed as seen following seven days of treatment (middle panel). While the untreated follicles were completely developed, at this time point the soy-treated follicles were smaller and contained reduced levels of pigment. At day 15 of the treatment, when all follicles had reached their final dimensions, the soy-treated follicles were significantly smaller (lower panel). While it appears that the soy isoflavones may play some role in the delayed hair growth by Total Soy lotion, Total Soy products’ ability to thin the hair and facilitate less frequent hair removal seems to result primarily from the

Table 15.1 Traditional Use of Soy in Skin and Hair Care

<table>
<thead>
<tr>
<th>Soy components</th>
<th>Functionality</th>
<th>Applications</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean oil</td>
<td>Skin conditioner/emollient</td>
<td>Baby oil, moisturizer</td>
<td>22</td>
</tr>
<tr>
<td>Soy protein isolate/hydrolyzate</td>
<td>Emulsifier</td>
<td>Bath products, cleansers, shampoos</td>
<td>21</td>
</tr>
<tr>
<td>Soy lecithin/phospholipids</td>
<td>Surface active, emulsifier, stabilizing agent</td>
<td>Liposome</td>
<td>42</td>
</tr>
<tr>
<td>Soy sterol</td>
<td>Skin conditioner</td>
<td>Lotion/cream/cleanser</td>
<td>20</td>
</tr>
</tbody>
</table>

actions of two soy-derived proteins: STI and BBI (5). The results indicate that agents such as nondenatured soy extracts or Total Soy may serve as an inexpensive, natural alternative treatment for undesired hair growth. TOTAL SOY FOR COSMETIC DERMATOLOGY APPLICATIONS Total Soy Composition While the compositions of natural soybeans can be inevitably subject to variations, depending on the particular harvest, soil/region, and species variation, the basic chemical composition is illustrated in Table 15.2 (40, USDA database). Mature soybeans can compose of up to 36% proteins, 30% carbohydrates and 20% lipids. A highly innovative Total Soy technology derived from soybeans was created on the basis of the scientific findings. Total Soy raw material is created without using neither chemicals nor chemical solvents. The standardization of the manufacturing process leaves a blend of balanced nondenatured components including active proteins, essential lipids, oligosaccharides, etc., which are in a similar proportion
to that naturally present in the soybeans. Table 15.3 illustrates the Total Soy components with potential applications in skin care. First, Total Soy contains both small and large soy proteins. The small soy proteins include protease inhibitors such as Kunitz trypsin inhibitors, Bowman-Birk trypsin inhibitors, and lunasin. The bioactivity relating to novel pigmentation inhibition is retained (3,4). Unlike trypsin inhibitors of protein natures, the nonprotein trypsin inhibitors lack specificity and are very susceptible to cationic suppression (41).

The large proteins include hundreds of proteins with varying molecular weight up to millions Daltons. The most abundant proteins are glycinin and conglycinin with molecular weight around 180 and 360 kd (42). Each protein group precipitates at different pH values, which may affect topical formulation preparations. Second, Total Soy contains essential fatty acids includ...
ing linoleic acid and linolenic acids, which are essential to help stratum corneum restore barrier functions, and potentially help acne resolution. These unsaturated fatty acids may also provide antioxidant properties (43). In addition, linoleic acid is known to enhance skin penetration of various compounds (44). Crude soybean oil contains 1% to 3% phospholipids, which is the major components of cell membranes (45). Phospholipids can also form liposome, a vesicle delivery system to enhance skin penetration for both hydrophilic and lipophilic, large molecules such as proteins and small such as α-hydroxy acids. Total Soy contains about 30% carbohydrates, which can provide skin hydration properties. Total Soy also contains the following minor components offering important skin care benefits. 1 Soy isoflavonoids: Isoflavones have been reported to provide a number of skin care benefits. Isoflavones have weak antioxidant and anti-inflammatory activities, which are important to combat oxidative stresses induced in the sun. A number of studies indicated isoflavones can prevent and treat sun-induced cancer (46,47). Isoflavones such as genistein and daidzein, normally classified as phytoestrogens, originate in plants; unlike estrogens, which are of animal origin. The isoflavone structures are nonsteroidal, while all estroggenic hormones are steroidal (48,49). Figure 15.2 Shows the images of hair growth patterns under different conditions. Reduction in the length of the mouse hair shafts treated with a nondenatured soy extract (upper panel). A delayed hair follicle development (anagen) as seen following seven days of treatment (middle panel). While the untreated follicles were completely developed, at this time point the soy-treated follicles were smaller and contained reduced levels of pigment. At day 15 of the treatment, when all follicles had reached their final dimensions, the soy-treated follicles were significantly smaller (lower panel).

Table 15.2 Soybean Composition Characteristics

<table>
<thead>
<tr>
<th>Major components</th>
<th>Green/raw percent wt/wt</th>
<th>Mature seeds percent wt/wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>67</td>
<td>8</td>
</tr>
<tr>
<td>Proteins</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>Lipids</td>
<td>6</td>
<td>19</td>
</tr>
</tbody>
</table>
development, or reproduction (60). There is no research showing that soy extract or soy oil has estrogenic effects when applied to skin, as it might when taken orally at high doses (61). The Total Soy products contain typically less than 0.01% soy isoflavones. A placebo-controlled in vitro dermal absorption study using human cadaver skin has found that the potential systemic soy isoflavones absorption from topical applications of such Total Soy products is below the detection limits of the current state of art analytical instrumentation and negligible comparing with any endogenous levels of isoflavones resulted from dietary soy consumptions or supplement consumptions of infant soy milk. The potential local epidermal and dermal accumulations for soy isoflavones are estimated to be at least 2500 times lower than the NOAEL limit. In summary, soy isoflavones are naturally occurring in Total Soy and they exist at trace levels. Their potential systemic absorption is negligible and presents no harmful risks to human health at all.

In Vitro and Preclinical Results of Total Soy

Non-denatured soy has been found to show multiple bioactivities
including trypsin-inhibitory activity, stimulating collage and elastin production, anti-inflammatory, antioxidant, antistress/thiol retention and anti-ultraviolet (UV)B damage activity.

Trypsin-Inhibitory Activity of Total Soy

Soy preparations containing various levels of non-denatured soymilk resulted in a dose-dependent inhibition of trypsin activity, measured by an in vitro fluorescence assay. A stabilized soy formulation containing non-denatured soy protein STI was developed (62). The stability of the STI was monitored by enzyme inhibition assay and Western Blot. The results illustrate that the soy formulation retained the serine protease inhibitory activity.

The STI protein was shown to be intact by Western blot analysis after one year at room temperature (Fig. 15.3).

Collagen Production

Preclinical studies of a Total Soy composition were investigated for the in vitro collagen production via monitoring normal human dermal fibroblast synthesis method. Table 15.4 shows that Total Soy could stimulate collagen synthesis (63,64). For a Total Soy concentration as low as 0.01 mg/mL, the increase rate in the fibroblasts was found to be 33% after 72 hours of
Total Soy action at 37^\circ C in a humidified atmosphere.

Elastin Enhancement

The treatment with Total Soy was evaluated preclinically for elastin synthesis by elastin staining on swine subjects (63). The histological analysis from these elastin evaluations demonstrates an increase in fine and highly branched elastin fibers for Total Soy composition applications, as shown in Figure 15.4, suggesting the capability of Total Soy to enhance skin elasticity, while providing other skin care benefits such as even tone and texture.

Swine studies with the application of Total Soy composition, twice a day, five days/week, for nine weeks showed no visual irritation, and histological analyses revealed no markers of irritation or other pathological signs. Sections from biopsies were stained with Luna stain, to document elastin fibers. At least three sections per biopsy, two sites per swine were processed. Each experiment was repeated at least three times. Histological analysis of Luna-stained sections demonstrates an increase in fine and highly branched elastin fibers at the upper part of the dermis, following soy treatments as displayed, for example, in Figure 15.4. This increase in elastin staining resembles a “repair zone,” as documented for the effect of retinoids on UV-damaged skin (65). Mouse and swine skins topically treated with soybean extracts showed enhanced elastic fiber network and increased desmosine content (66). Elastin expression was also augmented in human skin transplanted onto severe combined immunodeficiency (SCID) mice in response to soy treatment. Elastic fibers are essential extracellular matrix components of the skin, contributing to its resilience and elasticity. In the course of skin ageing, elastin synthesis is reduced, and Figure 15.3 Displays the Western blots comparing a nondenaturing soy (Total Soy) product versus a soy product using a single soy component. According to Western blot analysis, the STI protein was compromised for soy products using a single soy
component. The STI protein was intact after one year at room temperature for the Total Soy preparation. 1, 2: size markers; 3, STI marker; 4, Ess-23; 5, Ess-23 placebo; 6, Future White Essence HR. Abbreviation: STI, soybean trypsin inhibitor.

Table 15.4 Effect of Total Soy Complex on Extracellular Collagen Synthesis in Normal Human Dermal Fibroblasts Total Soy (mg/mL) Control 0.01 0.1 1 Collagen synthesis (dpm/cell) 1000 a 11.26 1.62 15.0 1.46 13.60 2.51 17.00 2.01 NS NS p < 0.05 Stimulation ¥33% ¥21% ¥58%

a dpm, disintegration per minute, a unit measuring radioactivity level. The collagen synthesis assay uses a radioactive precursor and measures radioactivity of the collagen product.

Abbreviation: NS, nonsignificant. elastase activity is accelerated, resulting in skin sagging and reduced skin elasticity. It was found that that non-denatured Glycine max (soybean) extracts induced elastin promoter activity, inhibited elastase activity and protected elastic fibers from degradation by exogenous elastases in vitro.

Anti-Inflammatory and Antioxidant Activities The non-denatured soy extract was found to be active against the acute oxazolone application on mouse ear edema (67). Oxazalone was used to induce contact hypersensitivity or edema in mice ear and the inhibition of edema was used to determine the degree of anti-inflammation activity. The studies showed that a 2% Total Soy lotion has about 56% edema inhibition versus 8% edema inhibition for its placebo control, as a comparison, 0.1% hydrocortisone had an inhibition of 86%. The non-denatured Total Soy extract was also found to have a reasonable degree of antioxidant activity. Antistress/Thiol Retention Activity Total Soy was found to have the activity in maintaining the normal cell metabolism, even when exposed to a harsh environment, such as environmental pollution, for example, smokeinduced loss of thiols (68). The ability of Total Soy to prevent smoke-induced loss of thiols was evaluated in normal human dermal fibroblasts (Clonetics, San Diego, California, U.S.). Thiols, chiefly glutathione, are part of the endogenous cellular antioxidant defense system. Glutathione serves as a redox buffer, thereby, maintaining the balance between oxidants and antioxidants (69). Glutathione is also the preferred substrate for several enzymes such as the
glutathione peroxidases (decomposing peroxides) and the glutathione-S-transferases (a major group of detoxification enzymes) (70). Cutaneous antioxidants (both enzymatic and nonenzymatic), including glutathione, are depleted after UV or ozone exposure (71,72). In cell culture models, low intracellular glutathione (GSH) levels lead to a higher UV radiation sensitivity. Glucothione is a major endogenous antioxidant, highly responsive against environmental challenges, able to regulate the tone and the wrinkling of skin, as well as treat external aggression. The effects of Total Soy in preventing smoke-induced stress are displayed in Table 15.5. The results indicate that Total Soy afforded a protection against smoke-induced loss of thiols or thiol retention activity (data represent the mean standard error of the mean for replicates from three independent experiments). "Thiol retention activity” means the ability of the Total Soy at a concentration of 1% (w/v) to inhibit smoke-induced loss of thiols, as measured by the above assay. Reduction in UVB-Induced Skin Damages The incidence of nonmelanoma skin cancers is increasing, and agents that can prevent or reduce UVB-induced skin cancer are desired. BBI protein is a known cancer suppressive agent that is effective in many different species, in different organs and tissues, and when given via different routes of administration (26). Recent studies showed that pretreatment with non-denatured soy extracts, BBI and STI proteins reduced UVB-induced skin tumor formation and progression in high-risk hairless mice with low dose of UVB pretreatment for a long time (73). In contrast, denatured soy extracts were found to have no effects on the skin tumor formation and progression. The multiple mechanisms of action were also identified for non-denatured soy. In vitro, non-denatured soy extracts enhanced UVB-induced checkpoint kinase 1 (CK-1) activation, suggesting a delay in cell cycle progression that enables longer time for DNA repair. Figure 15.4 Histological analysis of Luna-stained sections demonstrates an increase in fine and highly branched elastin fibers (red squares) at the upper part of the swine dermis, following soy treatments as displayed. (A) Before and (B) after eight weeks' treatment. Table 15.5 Thiol Retention Activity Measurement for Total Soy Environmental stress Total Soy complex concentration (weight percent) Thiol retention activity percent a No smoke 0 100 6.71 Smoke (10 min) 0 0.5 1 2 65.38 7.16 91.24 14.25 95.39 4.52 106.92 17.06 a Thiol retention activity percent [percent thiols contained in no-smoke group; mean standard error of the mean (SEM)].

1 Denatured soy dispalys anti-inflammatory activity via reduced UVB-induced cyclo-oxygenase-2 (COX-2) expression.
and prostaglandin E2 secretion, and inhibited p-38 MAP kinase activation. Mice pretreated topically with denatured soy extracts had reduced levels of UVB-induced TT dimmers and COX-2 expression in their skins compared with UVB alone.

Nondenatured soy extracts also inhibited vascular endothelia growth factor–induced endothelial tube formation in Matrigel, suggesting a possible inhibitory effect on angiogenesis and tumor progression. All the learning so far suggest that topical application of nondenatured soy extracts could potentially reduce the incidence of skin cancer, via multiple molecular mechanisms, at both the tumor initiation and tumor progression stage (74).

CLINICAL EFFICACY OF TOTAL SOY

Reduction of Hyperpigmented Spots

A stabilized Total Soy formulation containing STI was tested on a Caucasian men population with solar lentigine hyperpigmented lesions (75). The effect of stabilized Total Soy formulation was compared with 15% azelaic acid and 12% glycolic acid. After three weeks of once-daily treatment, the pigmented lesions were significantly lightened. The effect of stabilized Total Soy formulation is comparable to or better than either to 15% azelaic acid or 12% glycolic acid according to dermatological grading. In another open-label clinical study on a Caucasian population with various types of pigmented lesions, the stabilized Total Soy formulation was found to improve 78% tested subjects in dermatological grading (Fig. 15.5). Reduction of Ultraviolet-Induced Damages Other benefits proven include reducing UV-induced erythema/flakiness (Fig. 15.6) (76,77). On the basis of the preclinical learning of soy in preventing UV-induced pigmentation, a topical soy essence was developed using Total Soy extracts. The soy essence was tested in a placebo-controlled clinical study on types I and III skin with 0.8 to 2-MED UV irradiation. Both pretreatment and post treatment were performed on six different subjects each for five consecutive days. Evaluation techniques employed to determine the effect of Total Soy essence on the irradiation included visual clinical assessment, Figure 15.5 A Total Soy formulation
containing soybean trypsin inhibitor was tested on a female population with hyperpigmented lesions (n=42). After eight weeks of once-daily treatment on the selected lesions, the pigmented lesions were significantly lightened, thereby evening the appearance of skin tone. (A) Baseline and (B) after eight weeks of once-a-day application to Middle East skin type IV female.

Figure 15.6 A Caucasian male volunteer treated half of his face with Total Soy once daily for six weeks followed by an eight-hour exposure.

The measurement was conducted at 24 hours post exposure: (A) before and (B) after. Diffused reflectance spectroscopy, photo imaging, and desquamation taping. The observation was made at 24-hour and seven-day time point. Dermatologist’s clinical assessment displayed that an immediate application of soy essence reduced redness induced by UV irradiation at 0.8 to 1.5 MED. Clinical assessment also indicated that a consecutive five-day application of soy essence protected skin from UV-induced redness. Diffuse reflectance spectroscopy further illustrated that reduction of redness occurred at the highest irradiation dose (twoMED) in this clinical study. In a following up measurements at seven days after the irradiation, it was found that flakiness existed for some of the control sites (placebo or untreated), however none was found in both preventive treatment and post treatment. The study clearly demonstrates the usefulness and potential of Total Soy essence for daily defense against sun irradiation.

Fade Facial Lentigines (Age Spots)

Manifestations of photodamage are multidimensional. They include facial lentigines, mottled hyperpigmentations, skin tone deterioration (sallowness), and skin texture deterioration with the appearance of fine lines, coarse and fine wrinkles, and skin roughness. Overall, photodamages have many visible characteristics. There are numerous Rx and OTC cosmetics which target photodamage. Certain prescription products such as hydroquinone are very efficient in targeting subjects of PD symptoms—hyperpigmented lesions, but result in known side effects. There is a strong need for products which are effective over a broader range of photodamage symptoms as well as being gentle to the photodamaging skin. The nondenatured soy preparation was proven to reduce the appearance of solar lentigines. A 12-week randomized, blind, half-face benchmark-controlled clinical study was conducted on n=52 skin types I to III healthy subjects with solar lentigines/mild to moderate photodamage (2-5 on a scale of 9) to evaluate the clinical efficacy of
amoisturizer lotion containing 2% Total Soy in reducing the appearance of solar lentigines (78). The Melanex (3% hydroquinone) was used as a benchmark in this clinical study. No soy-related signs of irritation (rash, erythema, edema, stinging, burning, and itching) nor sensitization were reported in the study. Total Soy lotion had significant (p < 0.01) improvement in facial lentigines, overall photodamage, mottled hyperpigmentation, and skin sallowness from week 4 versus baseline. Soy lotion had no significant difference in overall photodamage (p > 0.71) versus Melanex. At eight weeks, facial age/brown spot reduction was observed by 48% of the subjects for Soy lotion. In the same clinical study, soy lotion also had a significant improvement in coarse wrinkle from week 8 (p = 0.057) and significant improvement in laxity (p = 0.057) at week 12 versus baseline. Soy lotion is significant superior to Melanex in surface roughness reduction (p < 0.056) and in facial sallowness reduction (p < 0.02) at the end of the study (week 12). These results suggest that the Total Soy formulation may be considered as for reducing lentigines or age spots. Total Soy and UVA/UVB Protection A double-blind, placebo-controlled clinical study was performed to determine the benefits of using a daily Total Soy facial preparation with broad spectrum SPF 30 in improving various skin tone and textural parameters (79). Sixty-three patients, between the ages of 30 and 50 exhibiting moderate levels of skin roughness, blotchiness and mottled hyperpigmentation were enrolled into the 12-week study. Dermatologist evaluations, self-assessments and instrumental analysis were completed at various time points during the 12-week study. Dermatologist evaluations demonstrated significant improvements (p < 0.05) in skin roughness, clarity, and mottled hyperpigmentation after two-week use of the Total Soy facial preparation containing SPF 30. Significant improvements (p < 0.05) in mottled hyperpigmentation, blotchiness, appearance of fine lines and overall skin tone and texture were observed versus the placebo control group after only two weeks of use. It showed improvements in mottled hyperpigmentation, blotchiness and fine lines when compared with the placebo control group after four weeks of use. There was over a 35% mean improvement in skin blotchiness and clarity of the skin. The colorimeter showed a significant increase (p < 0.05) in skin luminosity with a significant decrease (p < 0.05) in the yellowness correlating to an improvement in skin brightness and overall skin tone. Self-assessments showed that subjects began to perceive significant improvements (p < 0.05) in various skin tone, texture and brightness parameters as soon as one week of using the Total Soy and SPF 30 facial
moisturizer. Additional studies showed that the Total Soy and SPF 30 moisturizer was noncomedogenic, gentle to the skin and did not induce dermal sensitization. The sunscreens used in this Total Soy moisturizer have been shown to be compatible with Total Soy and photostable on the basis of both clinical and scientific studies. Delay in Hair Regrowth A double-blind, placebo-controlled study examining leg hair regrowth enrolled 20 women aged 29 to 55. All subjects shaved immediately before the baseline randomization visit and then just once a week prior to returning for the follow-up assessments. Evaluations consisted of patient and investigator ratings of hair growth and adverse events. In addition, the treatment effects were quantified in terms of hair counts and hair growth rates through digital analysis of video microscope images taken of two areas of each leg—one toward the knee and the other close to the ankle. All of the women completed the study, and the only adverse effect reported was mild dryness. The digital analyses showed that mean hair regrowth rate was unchanged on the placebo-treated leg but progressively decreased with application of the soy-based gel (Fig. 15.7). As a result, the mean regrowth rate was consistently reduced on the treated leg for both areas measured at each weekly visit. By study end, the between-group difference for the effects on the lower portion of the leg achieved statistical significance. Hair counts, which included any stubble, were consistently lower on the soy-treated leg compared with placebo beginning by Week 2. However, there were large standard deviations in the means and the differences between treatments did not achieve statistical significance. The subjective evaluations from the study participants indicated the treatment caused the hair to regrow more slowly and that the hair present was softer. The proportion of women noting both of those outcomes increased over time. At Week 1, about 40% of women noted the hair on the soy-treated leg was softer and about 35% noticed the growth rate was reduced. At Week 4, about two-thirds of the participants indicated that the hair on the soy-treated leg was softer and showed a reduced growth rate. For the weekly assessments of the placebo-treated leg, between 5% and 22% of women considered the hair that regrew to feel softer, while 12% to 28% remarked that the hair growth rate was reduced. The results of self-assessments were consistent with investigator ratings that noted beneficial differences in hair appearance or quality favoring the soy-treated leg in two-thirds of the study participants noticed delaying hair
regrowth, and smoothing and moisturizing the skin (80–82).

The Total Soy lotion was also found to reduce the facial hair area, length and width for male subjects of Fitzpatrick skin type II, who shaved daily followed by applying a soy preparation daily for four weeks as illustrated in Figure 15.8. Improvement of Acne Inflammatory Lesions The soy preparation was also proven to reduce acne-related blotchiness and erythema. A pilot clinical study was conducted to evaluate the potential of a soy formulation to reduce erythema and acne lesions in acne sufferers and to look at the potential of this formulation to induce acne lesions in healthy subjects. In the mild acne group, there was a statistically significant reduction in erythema and inflammatory papules after treatment with the soy preparation (p < 0.001). There was a statistical trend in the reduction of the number of noninflammatory comedones (Fig. 15.9) (77). Twenty-six subjects with mild acne and 29 subjects with no acne were entered into this open-label study after IRB approval and informed consents. All subjects were female and 64% were Caucasian and 36% were Black. Subjects applied the test product twice daily. Clinical safety evaluations were made on days 3, 7, 14, 21, 28, and 35. Dermatologist evaluations were made on day 0.
In subjects with no acne, there was no statistically significant increase in comedones or papules and pustules. For those subjects with mild acne, a highly significant decrease from baseline in the number of inflammatory papules (p = 0.001), a 41.9% decrease, was noted after 45 days of treatment with the soy preparation (77). This soy product was exceptionally well tolerated with no reports of stinging, burning or itching at any time point evaluated. These results suggest that this soy formulation may be considered as noncomedogenic and may be utilized as an important therapeutic option in acne sufferers. Enhancement in Skin Firming Besides preclinical discussed in the previous section on enhancement in skin collagen production and elastin repair, clinical studies have further indicated that a soy composition containing a complete spectrum of soy components can improve the skin firming and elasticity. In a 12-week, doubleblind, randomized clinical study of skin aging, using a full-face design with twice daily applications, the Total Soy composition provided significant improvement in skin laxity versus baseline as early as week four. Cutometer measurements further supported the dermatologist assessment in that 100% of the Total Soy-treated subjects showed improvement in skin firmness and distensibility. Sebum Production and Moisturization Balance in Combination Skin A five-week, half-face, double-blind, placebo-controlled clinical study was conducted on twenty-three female subjects aged 20 to 35 years with combination skin (Fitzpatrick types I and II). Combination skin was defined as facial skin having at least one oily area and one dry area on each of the half face. The oily and dry areas were determined by sebumeter reading at >200 and <66 (g/cm^2, respectively. Subjects applied soy preparation or placebo on the designated side of the face daily for five weeks. Measurements were taken at baseline, weeks 1, 3, and 5 on the forehead, cheek, and chin. Scaling, moisturization, oiliness and smoothness were evaluated by instrumental measurements and digital photography. The results indicated this Total Soy preparation significantly reduced sebum in oily patches (p < 0.05 for chin areas as displayed in Fig. 15.10) and enhanced moisturization for dry patches as compared with placebo (p< 0.05). Subject self-assessments demonstrated enhanced skin smoothness and oil reduction, which correlated with the instrumental results. Approximately 70% of the subjects noted improvement on the soy-treated side, while only 17% on placebo-treated side noted improvement in overall tone and texture. Effects on Ethnic Skin Skin color is the most noticeable difference among different ethnic skins. Postinflammatory hyperpigmentation (PIH) is of major concern to dark-skinned
individuals. Nondenatured soy lotion combined with retinol and salicylic acid has clinically proven to reduce incidence and severity of PIH in as early as one week (83). Figure 15.9 Shows the visible images of a female subject (A) before and (B) after using Total Soy preparation. After 45 days of Total Soy product application, there was a statistically significant reduction in erythema and inflammatory papules (p < 0.001). A four-month, double-blind, placebo-controlled, randomized clinical study was conducted to evaluate the efficacy of a topical formulation of the present invention in improving the appearance of acne and post acne PIH in 41 male and female Asian, African-American, and Hispanic subjects with Fitzpatrick skin types III to V and mild acne vulgaris (10-50 total facial acne lesions), 12 to 45 years of age. Subjects had physically distinct, recent, facial PIH acne marks. Subjects were asked to apply the test preparation twice (a.m. and p.m.) on the face. The Total Soy composition showed a significant decrease in darkness, roughness and erythema compared with baseline at week 4 and continued at weeks 8, 12, and 16 with reduction in darkness seen as early as week 1. Clinical expert grading of photos showed that the soy lotion showed an average percent improvements in PIH size of 41% at week 4, 68% at week 8, 82% at week 12 and 92% at week 16. This was statistically signifi
cantly more effective than the placebo composition at weeks 4, 8, 12, and 16. This composition was effective on 91% of subjects at week 4 and on 100% of subjects at weeks 8, 12, and 16. Expert clinical grading showed an average percent improvements in PIH darkness of 41% at week 4, 63% at week 8, 80% at week 12 and 92% at week 16. This was statistically significantly more effective than the placebo composition at weeks 8 and 12. This composition was effective on 95% of subjects at week 4 and on 100% of subjects at weeks 8, 12, and 16. Further statistical analysis of the data also showed that the Total Soy composition worked faster than the placebo in reducing the size and darkness of PIH marks. Additionally, Total Soy also addressed those important issues of using natural ingredients for skin care, including free from any trace pesticides/herbicides and any toxic heavy metals, for example, lead and arsenic, non-GMO and very low microbial contents adequate for cosmetic formulations. The skin care formulas prepared from Total Soy are stable throughout the shelf life, and to possess the key bioactivities as summarized in Table 15.6. These bioactivities were then proven in clinical studies to improve the skin conditions, including reduction in hyperpigmentation, sun damages, unwanted hair, overly oily and dry, and acne. SUMMARY REMARKS Fundamentally understanding the mechanisms of action in soy allowed the discovery of its skin care benefits. Topical soy preparations containing stabilized Total Soy with a complete spectrum of soy components were proven to provide broad skin care benefits. ACKNOWLEDGMENT The author would like to thank Dr Ying Sun for valuable scientific inputs.

Table 15.6 Summary of the Recent Results in Understanding the Soy’s Bioactivity and Its Therapeutic Effects on the Human Skin

Thiol retention activity

antioxidant Maintain the normal skin cell metabolism even when exposed to a harsh environment, e.g., smoke-induced loss of thiols 55,61
Soybean trypsin inhibition activity Protease-activated receptor 2 in skin depigmentation (e.g., freckles, mottled hyperpigmentation, age spots) and delay hair regrowth 3-5,32,33,66-69

Collagen synthesis Enhance skin firming 58

Elastin Enhance skin elasticity 58

Anti-inflammation Reduce skin scaliness, erythema and pain associated with sun exposure; reduce the number of inflammatory papules (p < 0.001 vs. baseline) in mild acne subjects 66-68 Figure 15.10 Displays the results in which Total Soy preparation significantly reduced sebum in oily patches (p < 0.05 for chin areas) versus placebo.
Influence of Topically Applied Ceramides on SC Enhanced Ceramide Synthesis Through Delivery of Barrier Function Ceramide Precursors

115. Sugino K, Imokawa, G, Maibach HI. Ethnic differences of varied stratum corneum function in relation to stratum

DEFINITIONS A fragrance ingredient is any basic substance used for its odorous, odor-enhancing, or blending properties in the composition of perfumes. A perfume is a blend of fragrance ingredients diluted in ethanol and experienced over a certain time frame. It is also named the fragrance formula and may consist of 10 to several hundred ingredients. A fragrance ingredient may be either a chemical or a natural product (1). Natural fragrance ingredients are produced from natural products such as plant parts, for example, petals, leaves, bark, roots, or fruits from certain plant families (1). Animal secretions such as musk from the male musk deer have been used for their odoriferous properties, but are now replaced by blends of chemicals for the reason of animal welfare protection. The fragrance ingredients are extracted from the plants by processes such as distillation, extraction, or expression. The resulting natural products are often complex mixtures consisting of numerous ingredients. In some cases, the characteristic odor is due to a particular ingredient and the isolation of these odor determinants is the original basis of production of chemical ingredients. Fragrance chemicals may be isolated from the natural products or synthesized from basic organic chemicals. The synthesized chemicals may be nature-identical; that is, imitations of naturally occurring substances or entirely new chemicals never identified in nature. Most fragrance ingredients are natural or nature-identical (1). About 2,500 fragrance ingredients are in current use for compounding perfumes. APPLICATIONS OF PERFUMES Perfumes are added to many types of consumer products such as cosmetics, detergents, air fresheners, sanitary napkins, and toys. Perfumes are also used in aromatherapy and herbal remedies as well as industrial settings. Perfumes are products in themselves sold as parfum, eau de toilette, and eau de cologne. A perfume is developed for one particular type of product, and the composition may have to be changed to retain the same odor, if it is incorporated into a different type of product. Perfumes may be used to mask unpleasant odors from the basic ingredients, for example, in skin care products. In case a perfume is added for this purpose only, it is termed a masking perfume and is usually of a simple composition, consisting of few ingredients.
Certain fragrance ingredients such as farnesol and geraniol have antibacterial properties and may be used as preservatives. Plant extracts are by some regarded as functional ingredients, claimed to act as, for example, anti-irritants. The same ingredients may in other cases be used just to provide a pleasant odor. Perfumes are part of the daily life in modern society as it was in ancient times. The most intense skin exposure comes from cosmetic products, especially stay-on cosmetics, which is also the cause of most contact allergic reactions. ADVERSE REACTIONS TO FRAGRANCE INGREDIENTS A few fragrance ingredients are banned by industry because of their neurotoxicity or carcinogenic properties (www.ifraorg.org), but the majority of fragrance ingredients have not been evaluated at all for systemic effects or poorly so. Effects on the respiratory organs from inhalation of perfumes have been described, mediated by sensory or irritant mechanisms (2). Skin reactions as contact urticaria, photoallergy, and phototoxicity are well recognized but infrequent skin side effects. Psoralens in naturally occurring fragrance ingredients were previously the cause of phototoxic reactions giving rise to acute erythema and followed by long-standing hyperpigmentation. The content of the light sensitivity-inducing substances is now regulated and the problem has diminished. In the 1970s, the fragrance ingredient musk ambrette was the cause of an epidemic of photoallergy, particularly in men following the use of after-shave. The usage of musk ambrette was reduced and in 1995 the substance was prohibited from use in cosmetics in Europe (http://ec.europa.eu/enterprise/cosmetics/cosing). Immediate contact reaction to fragrance ingredients is often of the nonimmunological type (3). This means that most individuals will react with local erythema and edema if exposed to the substance in a sufficient concentration. The fragrance ingredient cinnamal is capable of producing nonimmunological contact urticarial reactions, so is Balsam of Peru and cinnamic acid (3). Allergic contact dermatitis is the most frequently reported adverse reaction in relation to fragrance ingredients (4). ALLERGIC CONTACT DERMATITIS Fragrance ingredients are low molecular weight substances, which easily penetrate intact skin. About 100 of the 2,500 ingredients used for compounding perfumes have been described as capable of inducing contact allergy in humans (5). Fragrance ingredients are the most common cause of allergic contact dermatitis because of cosmetics, being responsible for 25% to 45% of the allergic reactions depending on the population under study, closely followed by the preservatives. Allergic contact dermatitis due to fragrance ingredients may involve the face, hands, the axilla, or be generalized depending on the causative
products (4). Contact allergy to fragrance ingredients is diagnosed in 10% of eczema patients in Europe and North America (4). Estimates show that in terms of population frequencies, it can be translated into 1.7% to 4.2% of the general population with either a high or low degree of sensitivity to fragrance ingredients. In Germany, this corresponds to 1.4 to 3.4 million people (6). In Denmark, the frequency of contact allergy to the fragrance ingredients in a sample of women aged 18 to 41 years recruited from the general population rose from 0.7% in 1990 to 3.9% in 1998 and decreased again to 2.3% in 2006 (7). A statistical significant relationship between fragrance allergy, cosmetic dermatitis within the past 12 months, and seeing a doctor for this condition was established in the population (7). While contact allergy in children to cosmetic ingredients previously was rare, allergy to fragrance ingredients is seen in about 2% of children 12 to 16 years of age with almost equal frequency in boys and girls (8). No investigation in the general population has yet included the new marker of fragrance allergy, fragrance mix II (see later in the chapter), which may add to the prevalence of fragrance allergy.

CAUSATIVE INGREDIENTS AND DIAGNOSIS

Since the beginning of the 1980s, a mixture of eight fragrance ingredients, named the fragrance mix I, has been used for screening purposes in the routine investigation of allergic contact
dermatitis (Table 19.1). The mixture has been valuable in diagnosing fragrance contact allergy, and only few modifications have been made to its original composition over the years. In 1984 the initial patch test concentration of 16% was reduced to 8% because of many irritant reactions, which seemed to be caused mainly by the presence of cinnamal. As many fragrance ingredients are used in composing perfumes, investigations have been conducted to identify significant fragrance ingredients not present in the fragrance mix I (9,10,12,13). From this knowledge base a new test has been designed, the fragrance mix II, which contains six fragrance chemicals (14-16) (Table 19.1), compiled to a test concentration of 14% in pet. This has also been included in the European baseline series together with its main ingredient hydroxyisohexyl 3-cyclohexenecarboxaldehyde (Lyral 1) (17). In a recent investigation from Belgium, the fragrance mix I gave positive reactions in 9.0%; the fragrance mix II and hydroxyisohexyl 3-cyclohexenecarboxaldehyde in 2.1% of patch tested eczema patients (18). Contact allergy to hydroxylsohexyl 3-cyclohexenecarboxaldehyde is much less frequent in North America (19), where a positive reaction to the
in 0.4% of consecutively patch tested patients were seen, than in Europe. The reason could be that hydroxyisohexyl 3-cyclohexene carboxaldehyde is not used to the same extent in underarm preparations in North America as in Europe. Deodorants/antiperspirants are product types carrying a high risk of sensitization to fragrance ingredients (20,21). The ingredients of the fragrance mix I and II are present in most consumer products in combinations and not infrequently in concentrations that is capable of eliciting allergic contact dermatitis (4,22). This explains the value of the two fragrance mixes as diagnostic tools and links the patch test reactions to exposure and clinical disease. A natural Myroxylon pereirae is also part of the European baseline series and is used in some countries in topical medicaments and also in the form of extracts and distillates in fragrances (23). Work has been done to optimize the identification of contact allergy caused by natural extracts (9,10) (Table 19.1). Some natural extracts have a simple composition, consisting of only a few chemicals, an example is clove oil that contains up to 80% geraniol, a wellknown allergen. Others have a very complex composition, and even though they are well recognized as causes of allergic reactions, the allergens in the extracts are not known. An example is Evernia prunastri (oakmoss absolute). As E. prunastri is a major cause of allergic reactions, investigations have been undertaken to pinpoint the major allergens. A bioguided fractionation procedure was performed in allergic individuals with fractions of the extracts until the responsible allergens, chloroatranol and atranol, were identified (24). This opens up the possibility of producing extracts of E. prunastri with no or low levels of these two strong allergens. Some natural products from the terpene family, such as limonene and linalool, will form allergens, when oxidized, while they in their unoxidized state have only weak allergenic properties or none. The allergens formed are mainly hydroperoxides with strong allergenic potential (25) Antioxidants can prevent oxidation for some time, but when the antioxidant is consumed, the oxidation starts immediately. COSMETIC PRODUCTS AND ALLERGIC CONTACT DERMATITIS TO FRAGRANCE INGREDIENTS Investigations of fragrance allergic individuals have shown that initiation of disease typically is caused by a fragranced deodorant, a cologne/perfume, or both (20). High levels of well-known allergens have been shown particularity in fine fragrances. A parfum may contain up to 30% of fragrance ingredients, while 1% is
typical for deodorants. This means that the individual ingredients are present in much higher concentrations in parfums than in other products. The same allergens have been found also in significant concentrations in naturally based perfumes, deodorants, and toy perfumes (4). The risk of sensitization will primarily depend on exposure concentration. The exposures as well as the sensitivity of the individual are decisive factors of whether eczema develops in a sensitized individual. A key determinant in exposure is the concentration of allergen per unit skin surface. However, also the formulation of a product influences the risk of elicitation of allergy; for example, from experiments it seems that deodorant sprays are more likely to give reactions given the same conditions and contents of allergens as deodorant sticks. Other factors that affect the risk of elicitation in man are the number of allergens in a product, the frequency of exposure, the region of application, and the skin condition (4). The intensity of skin contact is important, which means that stay-on products generally give a higher risk of sensitization and elicitation than wash-off products given the same concentrations of allergens.

Table 19.1 Natural Extracts Frequently Reported as Causing Positive Patch Tests in Eczema Patients

<table>
<thead>
<tr>
<th>Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cedarwood oil</td>
</tr>
<tr>
<td>Clove bud oil</td>
</tr>
<tr>
<td>Dwarf pine needle oil</td>
</tr>
<tr>
<td>Eucalyptus oil</td>
</tr>
<tr>
<td>Evernia furfuracea (treemoss abs)</td>
</tr>
<tr>
<td>Evernia prunastri (oakmoss abs)</td>
</tr>
<tr>
<td>Geranium oil bourbon</td>
</tr>
<tr>
<td>Jasmine abs</td>
</tr>
<tr>
<td>Lavender oil</td>
</tr>
<tr>
<td>Lemongrass oil</td>
</tr>
<tr>
<td>Myroxylon pereirae (Balsam of Peru)</td>
</tr>
</tbody>
</table>
Narcissus abs
Patchouli oil
Peppermint oil
Sandalwood oil
Spearmint oil
Ylang-ylang oil I
Ylang-ylang oil II

Source: From Refs. 9 to 11.

Do consumer relevant exposures to geraniol cause clinical allergic contact dermatitis in man? J Jurij J, Hostynek and Howard I. Maibach INTRODUCTION Geraniol has been cited as a moderately frequent cause of allergic contact dermatitis. The following reviews the published data on the sensitization potential of geraniol: 2,6-octadien-1-ol, 3,7-dimethyl-, (E)-, (CASRN: 106-24-1, EINECS 203-377-1). A semiquantitative evaluation of the different reports cited below has been made in accordance with the rules outlined by Hostynek and Maibach (1), which are based on procedures suggested by Benezra et al. in 1985 (2).

METHODS The medical literature was searched using the electronic databases Biosis, Caplu, Embase, RTECS, Toxlit, Medline/HealthStar, Toxnet, and Science Citation Index (1960 to September 2009). Search terms included “geraniol,” “allergic contact dermatitis,” “sensitization,” and “patch tests.” Copies of all cited publications were obtained except for Annali Italiani Dermatologia Allergologica and Bolletino Dermatologia Allergologica e Professionale and Manuela Pangrazio for which back copies were not available. The Research Institute for Fragrance Materials Inc. (RIFM) kindly made available copies of unpublished studies performed by its members or carried out under its commission (3,4).

RESULTS Data from Predictive Tests Carried Out on Animals Several animal tests have been reported. Several local lymph node assays have been performed on geraniol. These studies were given a degree of confidence of 4, even though it is not certain that the differences between these estimated concentration (EC3) values are significant. It can be concluded with a good degree of confidence that geraniol is a moderate to weak sensitizer according to local lymph node assay (LLNA) tests. Lalko and Api (5) used the local lymph node assay to evaluate the dermal sensitization potential of basil, citronella, clove leaf, geranium, litsea cubeba, lemongrass, and palmarosa oils. Also geraniol, one of the major components at 4.9%, was included in the study to
observe any difference in sensitization potential from its exposure in a mixture. The EC3 required to elicit a positive was calculated and taken as a measure of relative potency. Geranium oil was negative; geraniol itself resulted in an EC3 value of 11.4%. In general, the potency of each essential oil did not differ significantly from that observed for its main individual component. The local lymph node assay was conducted on female mice according to the method of Kimber et al. (6–8), as formalized in OECD Guideline 429 (OECD, 2002). Geraniol was observed to result in a dosedependent induction of lymph node cell (LNC) proliferation and SI values of greater than 3 in one or more of the concentrations tested; therefore, it can be regarded as a potential skin sensitizer. Both the individual components and their related essential oils studied were observed to have the potential to induce skin sensitization with a wide range of EC3 values. Geraniol is classified as a weak sensitizer in the LLNA, but geranium oil was not observed to elicit a positive response and can be considered to be nonsensitizing at the concentrations tested. In general, the potency of each essential oil reported in that study did not differ significantly from the potency of the main individual component, and no evidence of the “quenching” phenomenon could be observed. The LLNA test as conducted is rated at level 4. Guinea pig maximization tests have been carried out. In the case of guinea pig maximization tests, the tests that were most highly maximized and to which we attribute the highest degree of confidence showed that geraniol is incapable of causing any significant reactions (9). Predictive Tests Performed on Human Volunteers A human maximization test carried out on 25 volunteers at a concentration of 6% in petrolatum gave no reactions (10). However, this study was probably carried out under submaximized conditions and is given a rating of 2. Human maximization tests carried out under the same conditions on Japanese-American subjects gave one possible reaction in 26 volunteers (24) and none in a further 24 volunteers (3). These studies were also rated at 2. A modified Draize sensitization screen of geraniol in ethanol at 10% was reported to give 2 reactions in 73 volunteers but none in 104 volunteers when tested at the same concentration in petrolatum (11). The higher concentration allows a rating of 3 to be accorded to these. A human repeat insult patch test carried out at 5% in ethanol gave no reactions in 40 subjects (12). Another human repeat insult patch test carried out at only 2% in ethanol/diethyl phthalate (1:3) also gave no reactions (3). Both of these human repeat insult patch tests were rated at 2 because of the low dose. In summary, the seven human predictive studies indicate a weak or absent sensitization
This chapter is a revised and updated version of Hostynek JJ, Maibach HI. Is there evidence that geraniol causes allergic contact dermatitis? Exog Dermatol 2004; 3:318-331, with permission from S Karger AG.
Clinical Elicitation Tests on Human Patients

INTRODUCTION

Supplementation to traditional drugs has gained popularity in recent years, particularly within the field of dermatology where diseases are often chronic and treatments may, at times, be frustrating (1,2). The intent of this review is to survey some of the more recently reported alternative and complementary dermatologic treatments, with an emphasis on those that follow evidence-based dermatology guidelines (3,4). Specifically, this review will highlight treatments for skin pigmentation disorders, psoriasis, atopic dermatitis, aged skin, and oral hairy leukoplakia. This review is intended to update and supplement a previous review of the topic (5).

SKIN HYPERPIGMENTATION
Skin hyperpigmentation is a concern for which dermatologic care is often sought. Topical hydroquinone is the gold standard treatment. A novel formulation, described by Kligman and Willis in 1975, utilizes hydroquinone in combination with a topical corticosteroid and topical retinoid to provide additional depigmentation (6). However, since 1975, there have been almost no new medical therapies for this common, often frustrating condition. Assorted plant extracts are potent inhibitors of melanin formation and many have been investigated as potential depigmenting agents. The bioflavonoids as a class, and specifically the flavanones, have been identified as potent tyrosinase inhibitors (7). Flavononones, including hesperidin, eriodictyol, and naringenin, have a chemical structure similar to hydroquinone. In a study by Zhang et al., hesperidin, found in the peel and membranes of citrus fruits, was applied to melanoma B16 cells and human primary melanocytes. A dose-dependent inhibition of tyrosinase activity versus control was observed (8,9). Flavonoids from licorice roots, such as glabrene, glabridin, and isoliquiritigenin, have also been found to inhibit tyrosinase (10). In one study, glabridin applied to cultured B16 murine melanoma cells at concentrations from 0.1 to
1.0 mg/mL inhibited tyrosinase activity without affecting DNA synthesis (9,11). The licorice extract liquiritin, another flavonoid, was also found to be effective in decreasing skin pigmentation. In a clinical trial, 2% liquiritin cream at a dose of 1 g/day was applied to 20 women with melasma for four weeks. Eighty percent of the treated cases had a reported excellent response (12). Of note, liquiritin does not inhibit tyrosinase activity.

Depigmentation is thought to be secondary to melanin dispersibility and epidermal stain-removing property. Pycnogenol, a flavonoid-containing bark extract, has also decreased pigmentation in melasma patients. In a study of 30 women with melasma, a 25-mg pycnogenol tablet taken three times daily led to a statistically significant decrease in melasma pigmentation, as measured by the average pigment intensity and average melasma area (13). A recent study by Yamakoshi et al., studied the effects of grape seed extract in treating melasma-associated hyperpigmentation. Twelve Japanese women with melasma took proanthocyanidin-rich grape seed extract three times daily for between six and twelve months, while not using any other treatments for their melasma. There was a significant decrease in their melasma as measured by reflectance spectrophotometry and clinical parameters as compared with baseline (14). Arbutin, a hydroquinone derivative found in the bearberry plant, has been found to inhibit tyrosinase and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) polymerase activities (15), possibly through competitive inhibition (9). A clinical trial of topical deoxyarbutin (dA, 4-[tetrahydrofuran-2-yl-oxy]phenol) applied to solar lentigines for 12 weeks led to significant lightening in light-skinned individuals, and minimal lightening in dark-skinned individuals (16). a-Arbutin (4-hydroxyphenyl a-glucopyranoside) exhibits greater chemical stability and
stronger inhibition of tyrosinase when compared with arbutin (Table 21.1) (17). PSORIASIS AND ATOPIC DERMATITIS

Among dermatologic conditions, psoriasis carries significant psychologic burden and is associated with widespread treatment dissatisfaction (18,19). As such, patients with psoriasis often turn to alternative therapies to complement their medical treatments. Aloe vera, a succulent plant that probably originated in Northern Africa, the Canary islands, and Cape Verde, is a commonly used herbal medicine. Conflicting results have been observed in the treatment of psoriasis. In one study by Syed et al., A. vera cream applied three times daily to 60 patients with slight to moderate psoriasis showed improvement as compared with placebo. Improvement was determined by a “positive response,” measured as a composite of decreased erythema, infiltration, reductions of lesions, desquamation and lower psoriasis-associated severity index (PASI) score (20). A more recent investigation of A. vera gel applied twice daily for four weeks to 41 patients with slight to moderate psoriasis vulgaris showed a greater improvement in placebo-treated patients as compared with those with A. vera. Efficacy was measured utilizing a modified PASI score (21). Mahonia aquifolium, an evergreen shrub related to the barberry, has been used in the treatment of atopic dermatitis and psoriasis. In one study, 30 patients with atopic dermatitis were treated with three times daily application of Relieva cream, a homeopathic product containing a proprietary 10% M. aquifolium extract. Eczema area and severity index scoring (EASI) revealed significant improvement in both short-term (4-week) and long-term (12-week) improvements as compared with baseline (22). However, no placebo control was utilized in this study. In another study on the treatment of psoriasis, 200 patients treated one plaque of psoriasis with Relieva twice daily for 12 weeks. PASI scores were significantly improved in the Relieva-treated patients as compared with placebo (23,24). The Dead Sea, a salt lake bordering Jordan, the West Bank and Israel, is the deepest hypersaline lake in the world, and with 33.7% salinity, is one of the world’s saltiest bodies. It is purported to have several health benefits, and has been investigated in the treatment of psoriasis. In a double-blind, randomized-control clinical trial by Cheesbrough et al., 24 patients were treated with either a 30% Dead Sea salt (DSS) lotion or placebo for a total of 12 weeks. There was no statistically significant improvement in either the DSS lotion or vehicle during the treatment period (25). A more recent study by Dawe et al. investigated DSS soaks plus NB-UVB versus NBUVB alone in the treatment of plaque psoriasis in a randomized,
single-blind, controlled, right/left comparison study. Sixty-six patients pretreated one limb with DSS soaks and then underwent NB-UVB for 12 weeks. There was no significant difference between the DSS soaks plus NB-UVB when compared with NB-UVB alone (Table 21.2) (26). Indigo naturalis, derived from the leaves of plants such as Baphicacanthus cusia, has been investigated in the treatment of psoriasis. A recent randomized, observer-blind, vehicle-controlled, intrapatient comparison study by Lin et al. evaluated the efficacy of a topical indigo naturalis ointment versus vehicle in the treatment of recalcitrant plaque-type psoriasis in 42 patients. Statistically significant reductions in the sum of scaling, erythema, and induration scores were observed in indigo naturalis treated patients as compared with controls (27). A follow-up study in the Journal of Investigative Science found that the antipsoriatic effects of indigo naturalis involve, at least partially, modulating the proliferation and differentiation of keratinocytes (28). Oatmeal, a secondary crop, derived from a weed of the primary cereal domesticates wheat and barley (29), are commonly used to treat skin conditions, such as atopic dermatitis. In fact, oatmeal has been deemed an effective skin protectant by the Federal Drug Administration (30). In an assessor-blind study of 35 burn wound-healing patients, 5% colloidal oatmeal in a liquid paraffin suspension applied twice daily was compared with liquid paraffin alone. Patients applying colloidal oatmeal reported significantly less itch and required significantly less antihistamine than those applying vehicle alone (31). ANTIOXIDANT Several botanicals have purported anticarcinogenic properties, including feverfew, rosemary and grape seed extract. Feverfew, derived from the Latin febrifugia, means “fever reducer.” In addition to reduction of fever, it has been used to treat headaches, arthritis, and digestive problems. The active ingredients are parthenolide and tanetin. Parthenolide has been found to be antitumorigenic in vitro and antiproliferative (32,33). Unfortunately, it has also been associated with mouth blisters when taken orally. Therefore, parthenolide has been removed from skin care products, such as Aveeno. Rosemary, Rosemary is known to exhibit antioxidant properties, which is primarily attributed to the phenolic diterpenes constituent (34,35). Additionally, anticarcinogenesis and, specifically, a Table 21.1 Alternative Medications for Hyperpigmentation

<table>
<thead>
<tr>
<th>Alternative medication</th>
<th>Study type</th>
<th>Experimental result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hesperidin</td>
<td>In vitro</td>
<td>Inhibits tyrosinase 8</td>
</tr>
<tr>
<td>Glabridin</td>
<td>In vitro</td>
<td>Inhibits tyrosinase 11</td>
</tr>
<tr>
<td>Liquiritin</td>
<td>In vivo</td>
<td>Decreases melasma pigmentation 12</td>
</tr>
<tr>
<td>Pycogenol</td>
<td>In vivo</td>
<td>Decreases melasma pigmentation 13</td>
</tr>
</tbody>
</table>
vivo Decreases melasma pigmentation 14 Arbutin In vitro Decreases tyrosinase and 5,6-dihydroxyindole-2-carboxylic acid 15 Deoxyarbutin In vivo Decreases solar lentigines 16 Table 21.2 Alternative Medications for Psoriasis/Atopic Dermatitis/Pruritus Alternative medication Study type Experimental result Source Aloe vera In vivo Slight to moderate improvement in psoriasis 20 A. vera In vivo No improvement in psoriasis 21 Mahonia aquifolium (Relieva) In vivo Improvement of atopic dermatitis 22 M. aquifolium (Relieva) In vivo Improvement in psoriasis 24 DSS lotion In vivo No improvement in psoriasis 25 DSS soaks (with NB-UVB) In vivo No additional improvement in psoriasis as compared with NB-UVB alone 26 Indigo naturalis ointment In vivo Improvement in psoriasis 27 Colloidal oatmeal suspension In vivo Improvement in pruritus in burn wound-healing patients 31 Abbreviation: DSS, Dead Sea salt. OF [7/

decrease in skin tumorigenicity has been observed. In a recent study in mice, the chemopreventive potential of rosemary on DMBA [7,12-dimethlybenz(a)anthracene] initiated and croton oil promoted mouse skin tumorigenesis was assessed. Rosemary leaves extract prolonged the latency period of tumor occurrence, decreased the tumor incidence and tumor burden, and lowered the average weight and diameter of tumors (36,37).

Grape Seed Extract

The antioxidant properties of grape seed extract are attributed to the oligomeric proanthocyanidins (OPCs), in the flavonoid family. In two separate studies, grape seed extract was shown to more strongly scavenge free radicals as compared with vitamins C and E (38). Of note, allergic contact dermatitis is commonly observed with use of botanicals. Specifically, rosemary, propolis,
lavender, among others, have been associated with allergic contact dermatitis (39–41).

ORAL HAIRY LEUKOPLAKIA

Oral hairy leukoplakia is a mucosal disease associated with EBV and commonly observed in patients with HIV infection. It typically presents as a nonpainful white plaque on the lateral border of the tongue. Gentian violet has been evaluated in the treatment of oral hairy leukoplakia. Gentian violet is a known bactericide and antifungal, and is a primary agent used in the Gram stain test. In one case report, 2% gentian violet was applied three times to the tongue in a one-month period. At one-month follow-up, the oral hairy leukoplakia had completely resolved by clinical and histopathologic evaluation.

The authors propose that the mechanism of action may be through generation of oxygen species (42). Further investigation is necessary to determine the significance of this case report.

ANTIWRINKLE COSMECEUTICALS

Fragmented elastic fibers and decreased collagen, along with decreased hyaluronic acid and type IV collagen, are observed in aged skin. Several “natural” products have been evaluated for
their antiwrinkle potential. In East Asia, the inner shell of a chestnut is used as an antiwrinkle agent. An in vitro analysis of the chestnut inner shell was evaluated. In this study, the extract prevented cell detachment of skin fibroblasts from culture plates and enhanced expression of fibronectin and vitronectin, extracellular matrix proteins that bind collagen and elastin (43). In another study by Lee et al., paeoniflorin, a 65% extract

Table 21.3 Alternative Medications with Antioxidant and Antiwrinkle Potential

<table>
<thead>
<tr>
<th>Alternative medication</th>
<th>Study type</th>
<th>Experimental result</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feverfew</td>
<td>In vitro</td>
<td>Antitumorigenic Antiproliferative</td>
<td>32,33</td>
</tr>
<tr>
<td>Rosemary</td>
<td>In vivo</td>
<td>Antitumorigenic (in mice)</td>
<td>36</td>
</tr>
<tr>
<td>Grape seed extract</td>
<td>In vitro</td>
<td>Scavenges free radicals</td>
<td>38</td>
</tr>
<tr>
<td>Inner shell of chestnut</td>
<td>In vitro</td>
<td>Prevents skin fibroblast detachment, increases fibronectin, vitronectin</td>
<td>43</td>
</tr>
<tr>
<td>Paeoniflorin</td>
<td>In vitro</td>
<td>Protection from NB-UNB-associated damage</td>
<td>44</td>
</tr>
<tr>
<td>Paeoniflorin</td>
<td>In vivo</td>
<td>Decreases facial wrinkles</td>
<td>44</td>
</tr>
</tbody>
</table>

melanin synthesis in cultured human melanoma cells and a
three-dimensional human skin model. Biol Pharm Bull 2004;
al. Psoriasis is common, carries a substantial burden even
when not extensive, and is associated with widespread
Management of psoriasis with aloe vera extract in a
hydrophilic cream: a placebo-controlled, doubleblind study.
Trop Med Int Health 1996; 1:505-509. 21. Paulsen E,
Korsholm L, Brandrup F. A double-blind, placebocontrolled
study of a commercial aloe vera gel in the treatment of
slight to moderate psoriasis vulgaris. J Eur Acad Dermatol
Venereol 2005; 19:326-331. 22. Donsky H, Clarke D. Relieva,
a Mahonia aquifolium extract for the treatment of adult
patients with atopic dermatitis. Am J Ther 2007;
Complementary and alternative medicine for psoriasis: a
qualitative review of the clinical trial literature. J Am
H, Gulliver W, et al. Treatment of mild to moderate
psoriasis with Relieva, a Mahonia aquifolium extract—a
double-blind, placebo-controlled study. Am J Ther 2006;
13:121-126. 25. Cheesbrough M. Treatment of psoriasis with
controlled comparison of the efficacy of Dead Sea salt
balneotherapy vs narrowband ultraviolet BH monotherapy
Clinical assessment of patients with recalcitrant psoriasis
in a randomized, observer-blind, vehicle-controlled trial
effects of indigo naturalis on the proliferation and
differentiation of keratinocytes with indirubin as the
Zhao X, Jellen E, Murphy J. Progenitor germplasm of
Muller M. The reduction of itch during burn wound healing.
J Burn Care Rehabil 2001; 22:76-81. 32. Herrera F, Martin
regulation by parthenolide. Biochem Biophys Res Commun
al. The sesquiterpene lactone parthenolide in combination
with docetaxel reduces metastasis and improves survival in
a xenograft model of breast cancer. Mol Cancer Ther 2005;
INTRODUCTION

Skin care products have biologically active ingredients with medicinal or druglike benefits. Furthermore, they satisfy the needs of beauty and health. Many substances, either chemically
synthesized or extracted from plants or animals, can be used as
functional ingredients. Nowadays, many products with biologically active ingredients have been developed and marketed.

They are intended to carry out their functions as protection,
whitening, tanning, antiwrinkling, deodorants, antiaging, and
nail and hair care. Skin care products may however, cause some
unwanted problems. The common ones are irritability to the
skin, contact dermatitis, photosensitivity, comedogenicity, hair
and nail damage, hyperor hypopigmentation, infectivity,
carcinogenicity, and even systemic adverse effects.

Advances in electronics and computing have allowed the
development of instruments for measuring certain parameters
of the skin. Quantification of these parameters has enabled the
evaluation, comparison and hence improvement of the efficacy
of skin care products.

THE DIFFERENT TYPES OF SKIN

Normal Skin

Normal skin is defined as having no visible lesions or sensations of discomfort. It results from an equilibrium of various
continuous biologic processes including keratinization, desquamation, water loss, sebum excretion and sweating. In situations
of perfect balance between sebum production and requirements, the skin is comfortable, well moisturized, supple, and easy to decorate and not so easy to irritate. During aging, the skin undergoes certain changes arising from external causes, in particular ultraviolet (UV) radiation as well as the general aging process that affects the entire organism. According to certain authors, these changes with age are manifested as changes in the chemical structure, the quality and quantity of structural proteins, proteoglycans and hyaluronic acid (1). Also, during adult life, dermal collagen content progressively decreases, correlating with a reduction in skin thickness (2). A simultaneous decrease in the amount of proteoglycans and hyaluronic acid is also seen (1). Elsewhere, hormonal changes occurring during adolescence and then aging account for the respective increases in sebum secretion seen in puberty, then its progressive decrease during adult life, declining considerably in postmenopausal women (3). With aging, a decrease in the rate of corneocyte desquamation is also seen (4).

Dry Skin

The term dry skin or xerosis describes an integument with a
Dry, rough, or scaly appearance with the possible presence of reddening, cracking, or itching. The skin is less flexible than normal, contributing to the irregular feel to the touch (5,6). Dry skin results from many factors. The water content of stratum corneum is reduced (13% of water for normal skin and less of 10% for dry skin) An abnormal keratinization modifying the stratum corneum equilibrium (between desquamation and proliferation) and corneocytes cohesion (abnormal lipid compartment) A decrease in barrier function, which increases in the passive rate of transepidermal water loss Two types of dry skin can be distinguished (7): acquired dry skin and constitutional dry skin. Acquired dry skin may arise from normal, or sometimes even greasy skin, which is rendered temporarily and locally dry by external factors such as solar radiation, exposure to extreme climate (cold, heat, wind, dryness), exposure to chemicals or various therapeutic measures (lithium, retinoids). Constitutional dry skin can be non-pathologic (senile skin, fragile skin) or pathologic (ichtyoses, dry skin of atopic dermatitis, hypothyroidism, uremia). Greasy skin Greasy skin mainly involves the upper part of the body, where greater numbers of sebaceous gland are found. The simple greasy skin is common in adolescents and young adults. It is characterized by skin thickening and an increase in sebaceous excretion, giving the face a shiny appearance, especially on the nose and forehead and unclean and smell rancid. In extreme cases, the follicular ducts are often dilated (kerosis). However, they can also plug by minuscule cornified spicules, which protrude and give a sensation of roughness to the touch. Several parameters induce a production of sebum by sebaceous gland, notably by the main stimulus, circulating androgens levels. In men, the sebum casual level is higher from birth, is temporarily inverted during prepuberty, which occurs earlier in girls. In females, a decrease during the estrogenic phase of the menstrual cycle and an increase during the luteal phase are observed (8). Several types of complications can be associated with greasy skin, especially the following: Acne: This complication is characterized by the presence of comedones (blackheads) and closed comedones (microcysts). Several causes can be the originate: infection by Propionibacterium acnes, which produces free acids by enzymatic hydrolysis of triglycerides; irritation of the dermis by keratin and free fatty acids released by comedones; and immune reactions with sensitization of acne subjects to P. acnes. Seborrheic dermatitis: This is also a frequent problem, which is still unknown but may include Pityrosporum yeasts (Pityrosporum ovale), chemical agents (detergents), or nervous factors (stress, anxiety). It is characterized by the presence of erythematousquamous
plaques, made up of greasy squames, localized mainly on the hairline and eyebrows, nasal folds, chin and presternal region. The scalp is often affected, with the formation of crusty plaques covering the bases of the hair shafts. These lesions are often slightly pruritic.

METHODS FOR EVALUATING SKIN CHARACTERISTICS (BIOENGINEERING)

The main parameters of different skin types that can be used to evaluate products efficacy are those related to skin surface morphology, stratum corneum hydration and sebum excretion. Because of parameter variation between different anatomical zones on the same subject and between different subjects, these techniques are used mainly to measure the change in a parameter with time, on the same zone. For example, a comparison can be made between the initial state (pre-treatment) and the final state (post-treatment).

Evaluation of Skin Surface Morphology

D-Squames and Corneofix F20 (9,10) are used to detect and assess some damage of the horny layer and alteration of the viable epidermis behavior. The principles of measure consist in a special transparent adhesive tape, which collects corneocytes from the top layer of the skin for five seconds. The tape is removed, stuck on a glass slide, inserted into a microfilm viewer, and its optical density is measured. The latter is inversely proportional to the amount of scales per unit area. With the probe, precise information regarding desquamation can be obtained: the number, size and thickness of the corneocytes or the roughness of the stratum corneum can be evaluated.

OTHER PROBES

The Visioscan VC98 device (Courage and Khazaka, Köln, Germany) is a video camera that monitors the skin surface illuminated under an UVA light source. Interpretation of the image by the supplied software gives information about skin roughness, smoothness, scaliness, wrinkless. Optical coherence tomography (OCT) was originally used for ophthalmologic diagnosis but has found applications in dermatologic investigation (11). OCT is based on the principle of Michelson interferometry and uses a light source with a short coherence length. The light source is split into a reference, and a sample beam being focused on the skin. Structural information on morphology and thickness can be easily obtained, and information on water content or hydration is also available via the calculation of refractive index profiles. The confocal laser scanning microscopy (Vivascope i500) (12) enables the instant visualization of skin structures at a histolopathologic resolution and represents a new noninvasive approach for the in vivo study of physiologic and pathologic conditions of the skin. The confocal microscope consists of a small source of light, which illuminates a small spot within the object; the illuminated
spots then imaged onto a detector through a small aperture. The source, illuminated spot, and detector aperture are placed in optically conjugate focal planes. The image are obtained with a defined horizontal layer of 5-mm thickness, thus eliminating reflected light from other skin layers as well as aberrations. A near infrared laser wavelength (830 nm), which is absolutely harmless for user and patient.

Skin Hydration Measurements Objective assessment of skin hydration remains the preoccupation of most cosmetic scientists and dermatologists. The methods and techniques used vary in complexity and have been fully described elsewhere (13). Measurement of Electrical Properties of the Skin The dielectric constants of keratin and epidermal lipids are very small as compared with that of water. Therefore, the dielectric constant of the stratum corneum is principally determined by its level of hydration: the greater the water content, the larger the dielectric constant. The Corneometer CM 825 (Courage and Khazaka, Koeln, Germany) (14) is an apparatus with a probe that is placed in contact with the skin. The probe acts as a capacitor, in which it is applied. The capacitance thus measured is proportional to the dielectric constant of the skin, varies according to its state of hydration and is expressed in arbitrary units. The device measures capacitance thus measured is proportional to the dielectric constant of the skin, and varies according to its state of hydration. On the forearm the following data are obtained (15): <75: dehydrated skin 75–90: skin with a tendency to dehydration >90: normal skin Other instruments can evaluate the hydration state of the skin by assessing electrical properties (16): The DermaLab is manufactured by Cortex Technology (Hadsund, Denmark) and measures the impedance of the skin. The MoistureMeter SC-4 (Delfin Technology, Kuopio, Finland) is a novel capacitive device. The instrument shows arbitrary capacitance units. The Nova Dermal Phase Meter DPM 9003 (Nova technology Corporation, Porthsmouth, New Hampshire, U.S.) measures impedance-based capacitive reactance of the skin. The final readout is given in arbitrary DPM units, which are related to the capacitance. The Skicon 200, based on the experimental device developed by Tagami and coworkers, is manufactured by ISBS Company (Hamamatsu, Japan). The instrument measures the conductance in micro siemens. Infrared Spectroscopy Water absorbs infrared radiation. This property has been exploited to quantify, no invasively stratum corneum hydration using attenuated total reflectance infrared spectroscopy. It has been shown that absorbance at 3400/cm characteristic of OH stretching vibrations increases in the deeper layers of the stratum corneum, suggesting a corresponding increase in water content as a function of

The stratum corneum. It does not measure skin hydration, but does allow evaluation of the barrier function and efficacy of hydrating products whose mode of action relies on occlusivity.

TEWL is measured using an evaporimeter (Servo Med Evaporimeter, Kinna, Sweden). This device is applied on the skin surface, built as a cylindrical chamber open to the surrounding air and determines the continual flux of water vapor diffusing across the stratum corneum. The process measure the partial water vapor pressure at two points 3 and 9 mm above the skin surface, respectively, with the aid of two pairs of humidity transducers and thermistors. A normal TEWL values are between 2 and 5 g/m²/hr.

Measurement of Wettability (20–25)

The wettability results from the interactions between a fluid and the skin. A drop of water is placed on the skin and forms with the skin a semi hydrophobic contact angle. The drop is observed with an operating microscope equipped with a slanted mirror, which gives a view of the profile of the drop, recording of the image of the profile using a video camera connected to a
computer. The water contact angle γ can be measured and it is used as an indicator of hydrophobic or hydrophilic tendency of the skin or to see the effect of products in the greasy or dry skin. For a normal skin, γ (forehead) is between 578 and 738. In the case of dry skin, the affinity with water decreases and the contact angle between skin and water increase.

Evaluation of Friction Coefficient

Friction is an interaction between two surfaces. Many factors influence the friction coefficient value as hydration or sebum.

Hydration studies have correlated increases and decreases in skin hydration with the changes in the friction coefficient (26-28).

Sebum Measurement

Measurement of Sebum Excretion (29,30)

The Sebumeter SM 810 (Courage and Khazaka, Köln, Germany) uses a plastic tape which is applied on the skin for 30 seconds.

The sebum lipids are adsorbed on the film and render it transparent. Next, the probe is inserted into the Sebumeter, which shines a light beam onto the film. A reflective metal plate behind the film reflects the light back, passing a second time through the film, before entering a photomultiplier. The
automatically determines the increase in film transparency as a function of skin surface sebum and gives the lipid index in micrograms per square centimeter. The Lipometer (L-Ore’al, Paris) functions in a similar way to the Sebumeter. Its principal differences are: The plastic film is replaced by a ground-glass disc mounted on a dynamometer to standardize the application pressure; A series of standard calibrated values are used to convert readings into absolute data (e.g., mg lipid/cm²).

Quantification of Sebum Output, Density, and Activity of Sebaceous Glands (31)

The main component of Sebutape (Cutoderm, Dallas, Texas, U.S.) is a microporous hydrophobic polymer film, which becomes translucent then transparent when impregnated with oil. It can be stuck on the skin as it has an adhesive coating or simply applied (Sebufix F16). The film absorbs the sebum originating from the follicular openings, which forms transparent spots that are easily visible on a dark background and whose area is proportional to the collected volume. This method quantified the topographical distribution of functional glands and their output on the skin surface using computerized image analysis. The size of the spot is proportional to follicular excretion activity. With sustained application of Sebufix F16, the progressive enlargement of sebum spots can be monitored using a UV light video camera (Visioscan VC98, Courage and Khazaka) and 3-D images obtained at will. Skin Brightness Measurement The glossmeter is a new instrumentation to measure the speculary reflecting light from the skin. It can be used to evaluate the skin care including the brightness of the skin. It could be used to evaluate the effect of matting products or hydrating products. Two glossmeters have been developed in 2009: the Glossymeter GL 200 (Courage and Khazaka, Ko’ln, Germany) and the Skinglossmeter (Delphin Technologies, Kuopio, Finland)
SKIN CARE PRODUCTS Care of Normal Skin

The stratum corneum matrix is rich in ceramides, free fatty acids and cholesterol, which serve to repel water and provide an effective barrier. The integrity of the stratum corneum is also promoted by substances in the corneocytes known as natural moisturizing factor (NMF), a complex mixture of free amino acids, amino acid derivatives and salts, which attract and hold water. This also helps to maintain skin flexibility and elasticity by absorbing water from the atmosphere, which enables the outermost layers of the skin to remain hydrated, despite the drying action of the environment. The fundamental skin care consists of main areas, namely: cleansing, moisturizing and protection.

Cleansing Products Washing removes debris from the skin surface, and soap and water are frequently used together for this purpose because of convenience and perceived cost-effectiveness. Soaps are made by hydrolysis of natural triglycerides and neutralization of fatty acids released by sodium. They are good emulsifiers, having emollient action and increased lathering power. However, two problems are associated with them: Their powerful detergent action may completely eliminate the protective surface lipid film, which helps maintain the skin’s physiological balance, and thus may engender irritation. Soaps have highly alkaline nature (pH>10). The repeated use of soap may shift the pH of the skin surface making it more alkaline, thereby negating the protective influence of the acid mantle, and upsetting the balance of resident flora on the skin.

Hydrating Products Current emollients are available in the form of sprays, lotions, creams and ointments. Although the development and formulation of emollients has moved forward, the basic principle remains the same, namely they are all variations of an oil (lipid) and water emulsion. Technically these emulsions may take the form of oil-in-water or water-in-oil emulsions, with oil-in-water emulsions being the most common. Thus, modern emollients can not only help to maintain skin hydration, but can also help to replenish skin barrier lipids as well. The characteristics of emollient are described below in the section Care of Dry Skin.

Photoprotective Products Ultraviolet radiation can cause inflammatory changes, erythema, subsequently pigmentation, inducing premature skin aging and a risk of cancer. All long the seasons, photoprotection has an important role for all skin types, including normal skin. The ideal photoprotector must effectively absorb noxious radiation (UVB and UVA); be substantive to the stratum corneum and be water and sweat resistant; be stable in daylight and in air, and to heat and water; and be totally innocuous. A proper sunscreen product must provide protection against acute and long term
UV induced skin damage and be stable to heat and UV radiation. The degree to which a sunscreen protects the skin from UV rays is given as its sun protection factor (SPF). The SPF can be used as a guide to select sunscreen to avoid sunburn. The SPF indicates the time a person with sunscreen applied can be exposed to sunlight before getting sunburn relative to the time a person without sunscreen can be exposed. The photoprotective ability of sun products is determined by two types of substance: chemical filters and physical screens. Chemical filters (35) are synthetic chemical substances with the following properties: Powerful absorption of UV radiation owing to the measure of double bonds Relative stability when excited, so the absorbed energy is released slowly Physical screens are mineral particles that, instead of absorbing UV rays, reflect them like a mirror. The main type used is ultrafine titanium dioxide (TiO$_2$), made up of particles of 20-30 nm in size (36). The reduced size of ultrafine particles confers better reflection in the UVB and short UVA wavelengths, and better transparency in the visible wavelengths. Consumers are more aware of unnatural chemicals and other toxins and are searching for natural products to use on their skin. Antioxidants can have profound effects on the intracellular signaling pathways involved in skin damage and thus may be protective against photodamage as well as may prevent wrinkles and inflammation. The body has physiologic antioxidants, such as vitamins, glutathione, ubiquinon 10 (CoQ10) and a lipoic acid. The use of exogenous antioxidants can add to the body’s physiologic reservoir of endogenous antioxidants and enhance the enzymatic clearance of reactive oxygen species (ROS) (37). Following, there are many examples of natural components which have antioxidant properties. For some of them, they can be found in skin care. Vitamins A, C and E are naturally present in human skin. These vitamins are part of a complex system of enzymatic and nonenzymatic antioxidants that protect the skin from harmful ROS (38,39). However, the skin is subjected to substantial environmental free radical stress from sunlight, pollution, and smoking that can deplete dermal stores of naturally occurring antioxidant. To remedy vitamin deficiency, many topical products can be containing vitamins (40). Soy contains active ingredients: phytoestrogens and small protein serine protease inhibitors (Bowman-Birk inhibitor and soybean trypsin inhibitor). Soy has antioxidant and antiinflammatory effects (41,42). It stimulates collagen synthesis, initiate the skin elastin repair process, inhibit pigmentation and control oil production and moisturizing the skin. White, green, oolong and black tea are derived from the leaves and buds of the tea plants (Camellia sinensis), with the different
varieties dependent on the type of processing and oxidation or fermentation. The main active ingredients are polyphenols that include catechin, epicatechin-3-gallate, epigallocatechin and epigallocatechin-3-gallate. These polyphenols have very potent antioxidant, anti-inflammatory, and anticarcinogenic properties, making teas useful in the prevention/treatment of photodamage (43,44). Pomegranate extract (Punica granatum) is primarily composed of alkaloids and polyphenols, the active constituent being ellagic acid and has demonstrated a variety of beneficial functions including antioxidative and antiviral activity. Pomegranate seed oil fractions may facilitate epidermal regeneration (30). Ectoin, a natural, vital substance was developed for the use in cosmetic applications. It was discovered in halophilic bacteria, which survive and grow under extreme conditions in salt lakes, sea water and saline deserts. Efficacy studies in vitro demonstrated that Ectoin counteracts the effects of UVA-induced and UVA-accelerated skin ageing at different cell levels. In fact, ectoin protects the skin from effects of UV-induced cell damage in a number of different ways and has the potential to protect mitochondria of human fibroblasts in vitro against UVA radiation-induced mutagenesis (45). Sesamol (46) is a highly acclaimed antioxidant. An experiment on mouse skin showed that it has a good effect on prevention on photodamage, observed on biochemical and histopathologic changes. Care of Dry Skin (47–49): Treatment of dry skin is aimed at restoration of the epidermal water barrier. This is accomplished with moisturizing agents that are topically applied to the skin. Excessive bathing or the use of hot baths or showers should be discouraged and the use of mild soaps rather than harsh soaps or detergents should be encouraged. Soap substitutes such as cetyl alcohol preparations can be helpful in dry skin. Hydration of the stratum corneum by balneotherapy followed by either addition of oil to the bath water or rapid application of emollients (occlusive agents) to the skin on exit from the bath can improve hydration of the stratum corneum. Hydration can be done in two ways. By the input of external water, which is retained in the stratum corneum by addition of humectants By the slowing down of stratum corneum water loss due to evaporation (reducing TEWL), by means of an occlusive lipid film SKIN. The lipids in the latter can combat the delipidization associated with dry skin, and protect against external agents.

Formulation of a hydrating product involves both of these
principles, but with different emphasis placed on them depend
ing on the type of skin and conditions of use envisaged.

Humectant Moisturizing Ingredients

Humectants are compounds that attract water from the dermis
into the stratum corneum. They are many and varied. When
humidity is higher than 70%, humectants can also attract water
from the atmosphere into the epidermis. Humectants can be
thought of as the cosmetic equivalents of NMF. NMFs are
natural components including hygroscopic and hydrosoluble
substances in the stratum corneum which are most likely to be
enveloped by cell membrane lipids. These substances play an
important role in water retention, since it has been shown that
their extraction results in a 25% loss in stratum corneum water
content and 66% loss in elasticity (50). NMF agents include the
following: Polyols are molecules with numerous hydroxyl
groups (hydrophilic and hygroscopic substances). Glycerol and sorbi
tol are excellent humectants and are used at concentration
between 2% and 10%. Propylene glycol has good hydrating
ability at low concentrations (inferior to 10%) and keratolytic
activity at high concentrations (superior to 40%). Other polyols
are used like mannitol but there are less hydrating.
Pyrrolidone carboxylic acid is one of the principal components of NMF (about 12%). It is found in salt form and has a hydrating effect at concentration of 3% to 5%. Urea hydrates at concentration at less than 10%. Over this concentration, urea has keratolytic power. This molecule have a highly solubility in water and is rapidly hydrolyzed and decomposed. Lactic acid and sodium lactate can capture a concentration of water. It has an effect from concentration of 3%. Certain macromolecules of biologic origin have a high content of hydrophilic groups, but with their high size, they cannot penetrate the stratum corneum and they form at the surface, a hygroscopic film. Certain macromolecules of biologic origin have a high content of hydrophilic groups, but with their high size, they cannot penetrate the stratum corneum and they form at the surface, a hygroscopic film. This category includes the following: Glycosaminoglycans such as hyaluronic acid and chondroitin sulphate are polysaccharides. These compounds are found in the ground substance of all connective tissue and possess a considerable water sorption and retention, owing the large number of hydroxyl groups. Collagen and elastin are the two main structural protein of the connective tissue and have hygroscopic property. With water, they form an aqueous gel. These proteins are generally used in denatured or hydrolysed form. DNA has a large number of phosphate groups and possesses a good hygroscopic property. It used in a denatured and partially hydrolyzed form in cosmetology.

Occlusive Moisturizing Ingredients (48)

Occlusives increase the water content of the skin by slowing the
evaporation of water from the surface of the skin. These ingredients are often greasy and are most effective when applied to damp skin. Mineral oil is often used because of its favorable texture, but it is not as effective at preventing evaporation of water as many other occlusives. Actually, filmogenic products compose the emulsion. Water-in-oil emulsion is very occlusive. Petrolatum, an hydrocarbon oil, is the most effective occlusive moisturizer. Other hydrocarbons include mineral oil, paraffin, and squalene. In occlusive moisturizing ingredients, other categories of compounds exist and include vegetable fats, fatty alcohols, wax esters, vegetable waxes, phospholipids, sterols, silicones, and oils rich in polyunsaturated fatty acids (PUFAs). Oils rich in PUFAs occupy a particular place in cosmetology. They are occlusive but their potential lies in their high PUFA content. PUFAs are long-chain fatty acids, unsaturated at o-3 or o-6, of which some are classed among the essential fatty acids (linoleic acid, arachidonic acid, linolenic acid). These PUFAs are found in large quantities in certain animal oils (fish oil) and plants (evening primrose, borage, grape seed). They are involved in several important physiologic functions such as metabolism of prostaglandins and leukotrienes, inflammation and hence the maintenance of stratum corneum hydration. Additives to Moisturizer Other agents are now included in moisturization products. These agents have different functions than simply reducing TEWL or reconstituting the lipid components of the stratum corneum. Special moisturizing agents such as a or b-hydroxy acids can help promote corneocyte desquamation and decrease roughness. a-Hydroxy acids (49) (lactic, glycolic, malic, tartric, citric, gluconic, and mandelic acids) have been shown to improve the appearance of photodamaged skin and are an effective keratolytic in concentration as low as 10%, and have a tendency to reduce corneocytes cohesion at the base of stratum corneum. At high concentration (30–70%), their keratolytic action predominates: they act on the deeper epidermal layers, and even the papillary and reticular dermis. At these concentrations they are suggested for the treatment of hyperkeratosis. Salicylic acid is the only b-hydroxy acid. Its mechanism of action is supposed on the dissolution of the intercellular cement between adjacent corneocytes, reducing corneocytes adhesion. It is unique in that it can enter the pilosebaceous unit and increase exfoliation in the oily areas of the face. Because of its exfoliating effects, salicylic acid is beneficial in aging skin because of
increased desquamation of the stratum corneum. Urea can also be added to moisturizers and enhances the water-binding capacity of the stratum corneum by disrupting hydrogen bonding. Urea exposes water-binding sites on corneocytes and promotes desquamation by decreasing the intercellular cementing substance between the corneocytes. Also, long-term treatment with urea has been demonstrated to decrease TEWL.

Care of Greasy Skin

The essential requirement is to reduce excess skin surface sebum without total delipidization. Severe degreasing treatment can lead to an exacerbation of sebaceous secretion. Facial washing may be carried out with either an oily soap. This must be followed by copious rinsing. In cold weather, the protection afforded by a continuous aqueous phase, light emulsion (oil in water) suffices. However, products used for this type of skin must be noncomedogenic.
Acne Treatment

26. Sivamani RK, Wu
INTRODUCTION

With improvements in formulation and aesthetics, sunless or self-tanning products have become a viable alternative to UV tanning. Public awareness as to the hazards of both natural and artificial UV tanning has facilitated self-tanners becoming a significant component of the overall sunscreen market. Over 20% of young adults in both the United States and Australia.
reported using these products in a recent year (1,2). Individual users were more likely to have had sunburns consistent with higher use of these products in Caucasians. In other studies, exclusive users of sunless tanners were more likely to practice overall sun protection (3,4) and decrease their use of ultraviolet light tanning beds (5). Dihydroxyacetone (DHA), a keto sugar, is the active ingredient in sunless or self-tanners and is responsible for darkening the skin by staining. DHA is classified in the Inter national Cosmetic Ingredient Dictionary and Handbook (6) as a colorant or a colorless dye. Other similar sugars such as erythrulose and glyceraldehyde are occasionally used. Products containing DHA should not be confused with bronzers intended to produce a darker color on the skin by the use of water-soluble colorants or dyes. Other agents that have been used to enhance skin pigmentation with and without stimulation by UV with varying degrees of success and toxicity (Table 23.1) will not be discussed in detail here (7).

CHEMISTRY

Dihydroxyacetone (C3H6O3) is a white crystalline hygroscopic powder. This three-carbon sugar forms a dimer in freshly prepared aqueous solution (Fig. 23.1). With heating to
affect a solution in alcohol, ether, or acetone, it reverts to the monomer.

The monomeric form is less stable, but is more important in the browning reaction that leads to the skin color change (8). DHA is stable between pH 4 to 6, but above pH 7 efficacy is lost with the formation of brown colored compounds. A buffered mixture at pH 5 is most stable. Heating above 38°C for long periods of time will also affect stability. DHA needs to be stored in a cool, dry place, ideally 4°C and low atmospheric humidity (9).

Glyceraldehyde, the isomer of DHA, is also present in solution. Glyceraldehyde may degrade into formaldehyde and formic acid. In acidic solution (pH 4), this isomerization and therefore these latter undesirable ingredients are minimized. Commerially available formulations generally contain 2.5% to 10% DHA (Fig. 23.2). The Maillard or browning reaction has been defined as the reaction of an amino group of amino acids, peptides, or proteins with the glycosidic hydroxyl group of sugars. DHA in the context of this reaction may be considered a three-carbon sugar, reacting with free amino groups available as amino acids, peptides, and proteins supplied by the keratin to
form products or chromophores referred to as melanoidins (10). Melanoidins have some physicochemical properties similar to naturally occurring melanin (11). Electron spin resonance has recently shown that free radicals are produced in vivo by the Maillard reaction (12). MECHANISM OF ACTION The site of action of DHA is the stratum corneum (13). Tape stripping of the skin quickly removes the color (14), as does mechanical rubbing. Deeper staining in areas with thicker stratum corneum and no staining of mucous membranes without a stratum corneum are also consistent with this being the site of action. DHA may be used as a substitute for dansyl chloride as a measure of stratum corneum turnover time (15,16). Microscopic studies of stripped stratum corneum and hair reveal irregular pigment masses in the keratin layers (17) consistent with melanoidins. These melanoidins are formed via the Maillard reaction with DHA as a sugar reacting with the amino groups supplied by the keratin. APPLICATION Following application of a typical DHA containing self-tanning lotion, color change may be observed within an hour (18). This color change may be seen under Wood’s light (black light) within 20 minutes. Maximal darkening may take 8 to 24 hours to develop. Individuals can make several successive applications every few hours to achieve their desired color. Color may last as long as five to seven days with a single application. Depending on anatomical application, the same color can be maintained with repeat applications every one to four days. The face requires fewer applications but more frequent reapplication to maintain the color than the extremities. Depth of color varies with the thickness and compactness of the stratum corneum. Palms and soles stain deepest, necessitating washing of hands after application to avoid staining. Hair and nails will color but not mucous membranes lacking a stratum corneum or keratin layer. Rougher hyperkeratotic skin over the knees, elbows, and ankles will color more unevenly as will older skin with keratoses and mottled pigmentation. Color will also be maintained longer in these areas. As in the formulation, the pH of the skin before application may have an effect on the tonality of the skin color (10). Alkaline residues from soaps or detergents may interfere with the reaction between DHA and the amino acids on the skin surface, resulting in a less natural (more yellow) appearing color. Wiping the skin surface with a hydroalcoholic acidic toner just prior to DHA application may improve results. Ex vitro epidermal studies suggest that skin hydration (19) and relative humidity (20) influence the development of coloration. Careful application is key with using these products (Table 23.2). The skin may be prepared with a mild form of exfoliation.
Even application is required with lighter application around elbows, knees, and ankles to avoid excessive darkening in these areas. Care also needs to be taken around the hairline where lighter hair may darken. Hands need to be washed immediately after use to avoid darkening of the palms, fingers, and nails. Skill and experience are necessary with using these products resulting in greater user satisfaction. Spray-on tanning formulations may aid in providing an even application (21). Larger air operator assisted delivery units are available for air-brushing on by a technician. Tanning booths using sprays are now commonplace in spas and salons. This form of application introduces the potential hazard of inhalation of sprayed material. Some formulations include colorants as used in bronzers, including dyes and caramel, to achieve an immediate makeup effect. Tinting with iron oxides or titanium dioxide can provide immediate color and allow the user to visualize evenness of application. Metal oxides may however induce degradation of DHA (22). Vitamins, botanical extracts, antioxidants, anti-irritants, and even a-hydroxy acids may be added to broaden the manufacturer’s claims made with a given product. The addition of sunscreen ingredients to self-tanners warrants a more detailed discussion in the section that follows. SUNSCREEN ACTIVITY DHA itself has at most a modest effect on SPF (23), providing perhaps SPF 3 or 4 protection. SPF increases with DHA concentration and number of applications (24). Low-level SPF persists for several days decreasing with loss of color (25). The brown color obtained on the skin does absorb in the low end of the visible spectrum with overlap into long UVA and may provide some UVA I protection (26). Melanoidins can act as free-radical scavengers as they demonstrate an electron spin resonance signal (12). Superficial skin coloration induced by frequent topical application of DHA in high concentrations may delay skin cancer development in hairless mice irradiated with moderate UV doses (27). Individuals using DHA-containing tanning products need to be cautioned that despite visible darkening of their skin, these products provide minimal sun protection. Confusion may be compounded by the addition of UV filters to the formulation providing significant sun protection. The stated SPF for the product is applicable for a few hours after application, but not for the days during which the skin color change may remain perceptible.

INDICATIONS Even with recent improvement in DHA formulations, the color achieved remains dependent on skin type. Individuals of medium complexion with skin phototypes II or III (28), as opposed to those who are lighter or darker will obtain a more pleasing color. Individuals with underlying golden skin tones will achieve better results
than individuals with rosy, sallow, or olive complexion.

Older consumers with roughened, Table 23.1 Tanning Product Types

<table>
<thead>
<tr>
<th>Product type</th>
<th>Active ingredient</th>
<th>Sunless or self-tanner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronzer</td>
<td>Dyes</td>
<td>Tanning simulator</td>
</tr>
<tr>
<td>Melanins</td>
<td></td>
<td>Tanning preparation</td>
</tr>
<tr>
<td>UVB sunscreens</td>
<td>Tan accelerator</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>Tanning promoter</td>
<td>5-Methoxypsoralen</td>
<td>Tanning pill</td>
</tr>
<tr>
<td>Canthaxanthin</td>
<td>Hormone</td>
<td>Synthetic analogues</td>
</tr>
</tbody>
</table>

Table 23.2 Application Instructions for Self-Tanners

Prepare skin with mechanical exfoliation
Spot test
Wipe skin with hydroalcoholic acidic toner
Apply carefully and evenly
Apply less to thicker skin
Allow to dry
Reapply regularly
Remember sun protection

Figure 23.2 Degree of skin darkening with concentrations of DHA.
Hair Spray

Table 28.5 Key Variables in Design of Hair Care Products

<table>
<thead>
<tr>
<th>Hair type</th>
<th>End benefit</th>
<th>Performance profile desired</th>
<th>Shampoo and conditioner formulation parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine</td>
<td>Volume</td>
<td>Good cleaning (high removal of sebum)</td>
<td>Low deposition of conditioners l Ability to style with volume l In shampoo, highest concentration of effective surfactants, including HPM cellulose, a polymer that gives a cleaning boost l Lowest levels of conditioning l Adhesion deposition mechanism</td>
</tr>
<tr>
<td>Fine Moisturized</td>
<td>Good cleaning (high removal of sebum)</td>
<td>Medium deposition of light-weight conditioners to give soft, smooth feel to hair without a loss of volume l In shampoo, high concentration of effective surfactants, yet slightly lower than for the version designed to deliver volume to fine hair l Poly(DADMAC) polymer designed to increase hydrophobicity of hair surface, give conditioned feel, and aid deposition of silicone from the conditioner l Adhesion/aided deposition mechanism</td>
<td></td>
</tr>
<tr>
<td>Medium/thick</td>
<td>Moisturized</td>
<td>High deposition of conditioners to give soft, smooth feel to hair l Different choice of surfactants than used in the Fine, Moisturized product l Poly(DADMAC) polymer designed to increase hydrophobicity of hair surface, give conditioned feel, and aid deposition of silicone from the conditioner (1.5x silicone levels in fine, moisturized conditioner) l Aided deposition mechanism</td>
<td></td>
</tr>
<tr>
<td>Medium/thick</td>
<td>Smooth</td>
<td>Soft, smooth feel to hair l Close alignment of hair fibers l Triquat-76 polymer system used instead of Poly(DADMAC) to aid deposition of conditioning ingredients without modifying hydrophobicity l Silicone levels in shampoo are 50% of the levels in the medium/thick, moisturized shampoo version l Hydrid deposition mechanism (filtration and adhesion)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: Poly(DADMAC), poly(diallyldimethylammonium chloride).

55. Cardin CW, Amon RB, Hanifin JM. The antidandruff efficacy of Head and Shoulders rinse-in shampoo (1% zinc pyrithione) and Head and Shoulders shampoo (1% zinc pyrithione) with Head and Shoulders conditioning rinse (0.3% zinc pyrithione) versus Merit shampoo with Merit Moisture Rinse. Nishininon J Dermatol 1990; 52:1208-1216.

61. Saple D, Ravichandran G, Desai A. Evaluation of safety and efficacy of ketoconazole 2% and zinc pyrithione 1%

INTRODUCTION

Wrinkles are the most obvious and perhaps the most disliked aspect of facial ageing. Considering this, it is surprising
that relatively little is known about the biological changes that cause a wrinkle, what is its physical structure and why is it so hard to erase a wrinkle once it is formed. Many people, scientists and laymen alike, have considered wrinkles to be cosmetic and so not worthy of research. There was a common belief that as the skin aged, collagen stiffened, elastic networks collapsed and the mechanical properties of the skin degraded. Wrinkles were just seen as the “points of weakness” where the degraded skin creased. Nothing has served to make a larger impact on this simplistic model than the success of botulinum toxin in reducing facial wrinkles. Botulinum toxin is injected into the muscles underneath the skin and causes a long lasting paralysis and relaxation of those muscles. The fact that this has such a dramatic effect on the appearance of the wrinkle demonstrates that deep wrinkles are not simply a phenomenon of changed properties of the skin but rather are an effect of the entire integumentary system including not only the dermis but also the subcutaneous fat and muscle layers. More recently “perceived age,” the average estimated age of a person by independent assessors, has gained credence as a highly useful biomarker of ageing and a method by which to study the facial attributes of attractiveness (1,2).
Perceived age has been shown to be a robust indicator of health (1) and to be influenced by facial wrinkles (2). In a 70+ age group perceived age predicted human survival and correlated inversely with physical and cognitive functioning (1). As well as facial wrinkles, hair graying and lip height are also major contributors to perceived age. Twin studies have also recently shown that facial wrinkles are more or less equally influenced by genetic and environmental factors while hair graying and lip height are largely influenced by genetic factors (2). This book chapter briefly reviews what is known about the wrinkle and sets out studies that cast new light on how deep periorbital wrinkles (“crow’s feet”) form and are maintained, pointing to new therapeutic approaches to treat periorbital wrinkles.

WRINKLES AS AN ASPECT OF AGED SKIN

There is a considerable literature describing the differences between youthful and aged skin. In many cases, no attempt is made to differentiate between the area of the wrinkle and the unwrinkled skin around it. In large part this is because it is sometimes difficult to locate a wrinkle in a histological
For a review of the wrinkle literature the reader is guided to the articles by Kligman (3), Contet-Audonneau (4), Lavker (5), and Tsuji (6). The key findings are as follows: 1. The epidermis thins with age and the properties of the stratum corneum change in a multitude of ways including reduced barrier repair properties and decreased elasticity. These changes are particularly important in causing “fine lines” and are the changes that are countered by the vast majority of effective topical moisturizing products. 2. The intricate, interconnected, elastic fiber network in the dermis degrades and is replaced (especially in the case of sun-exposed skin) by large deposits of poorly organized elastin deep in the dermis. This leads directly to loss of resiliency—the ability of the skin to quickly return to its original shape after distortion. In extreme cases the large elastin deposits (so-called elastosis) can cause the skin to look sallow and yellowish in color. 3. Collagen fibers become less well organized and the collagen itself undergoes chemical changes that reduce its mechanical flexibility. Repeated imperfect collagen repair can lead to “scar-like” patches of stiff, aligned collagen. 4. Glycosaminoglycan composition changes. In sun-exposed skin with chronic (i.e., years) of photodamage there is a marked increase in types of sulphated glycosaminoglycans (versican) at the expense of others (decorin). Since these molecules can hold as much as 1000 times their own weight of water in an elastic gel these changes hugely affect the water content of the dermis. 5. The subcutaneous fat layer, especially in women, decreases markedly in thickness. It is self evident that skin which has undergone all these deleterious changes is more prone to wrinkles. However, these changes are not sufficient to cause some types of wrinkling to occur. It is quite possible to find individuals and areas of skin where all these histological and biochemical changes can be seen but no wrinkles are visible. The extra factor that seems to be necessary is repeated movement of the skin causing folding of the skin. Over time, and combined with the overall ageing changes set out above, wrinkles form and progressively get worse. Thus wrinkling can be seen on the face where “expression lines” form but not in other sun-exposed areas even though the histological degradation of the skin may be worse. Cigarette smoking also makes a marked, adverse contribution to wrinkling (7) particularly around the mouth. LOCAL DIFFERENCES IN THE WRINKLE COMPARED WITH SURROUNDING SKIN Considering what an obvious feature a wrinkle represents, there is a surprising paucity of published data contrasting the wrinkle with the surrounding skin. Such studies that have been done suggest that the classic features of solar elastosis are less in the base of
the wrinkle than in the surrounding skin (4,6). One reason for the limited number of studies is that it is very difficult to identify wrinkles—even deep ones—in histological sections. When the skin is excised, the wrinkle opens and partially disappears—evidence that the wrinkle is an aspect of the whole skin. To overcome this problem a novel technique was used whereby a line of cyanoacrylate glue, visible in Figure 30.1, was introduced into the wrinkle and allowed to set prior to taking a biopsy of the wrinkle. With this precaution, the shape of the wrinkle was preserved through processing allowing a better correlation of histological changes to the architecture of the wrinkle. Sections of these biopsies, which were taken from the periorbital crow’s feet area were stained by a variety of techniques using both conventional and immunostaining techniques. We confirmed the finding (4,6) that the elastic fiber network was far less damaged at the base of a deep wrinkle than on the sides of the wrinkle or adjacent skin (Fig. 30.1). This is thought to be a consequence of the base of the wrinkle being less exposed to ultraviolet light during and after formation, than the surrounding skin. It suggests that the damage to the elastic fiber network is unlikely to be a primary cause of the wrinkle. In contrast to the normal-appearing elastin at the wrinkle base the “elastin” at the sides of the wrinkle is heavily disorganized (elastotic), a phenomenon that is worse on the lower, more sun exposed side, viewed as the wrinkle would be positioned when in situ on the face. The collagen fibers orientations were also quite abnormal. In stark contrast to the sides of the wrinkles, where the collagen fibers tended to run parallel to the long edge of the wrinkle and were in places relatively normal, at the wrinkle base there was a dense band of highly aligned collagen fibers running perpendicular to and underneath the wrinkle (Fig. 30.2, also clearly visible in Fig. 30.1). This band of highly aligned collagen was one of the few features of the permanent periorbital wrinkle that correlated clearly with the wrinkle location and gave any clue to what dictated the shape of the wrinkle. However, predicting how a complex material like skin will behave under different flexing force regimes is a difficult challenge and intuitively “obvious” phenomena often turn out to be very different from what intuition would suggest. To investigate this, a computer model of the skin was developed (M. Eastwood and M.R. Green, unpublished data) incorporating the structural information derived from the histology, and building in physical material constants for the different parts of the skin. Other simulated models for immediate wrinkle formation after skin compression have been prepared (8,9) but these do not take account of the
effect of changing tension on the long term biological responses of the skin, and local changes in wrinkle architecture. A novel method using digital image speckle correlation has also been developed to study the mechanical properties of skin, showing that lines of increased tension in skin coincide with the position of prominent wrinkles (10). COMPUTER MODEL OF THE PERIORBITAL WRINKLE Figure 30.3 shows the basic structure of the computer model. It incorporates four different layers: the epidermis, the papillary dermis, the reticular dermis and the highly aligned zone of collagen. Material properties of these zones were estimated from literature values, as shown in Table 30.1. The model was based on finite element analysis using ProMechanica 1 software. The base of the skin in the model was anchored to an inflexible substrate. No attempt was made to simulate the effects of muscle or the attached subcutaneous fat layer. The first and critical finding in preparation of the model was that the simulated wrinkle could only maintain its shape Figure 30.1 Elastic fibers in the periorbital wrinkle (orcein stain).

with compressive forces pushing the wrinkle closed. Three possible sources of this compressive force exist.

1. Overall pressure from the surrounding skin. If older skin has a larger natural area than it is constrained to by its attachment to the underlying tissue, then the whole area of skin will be under compression. This is probably a significant factor where there has been significant loss of the subcutaneous fat layer leading to shrinkage of the attachment area for the skin. Conventional “face-lift” procedures act on this compression effect by reducing the natural area Figure 30.3 Visualization of the wrinkle computer model. Source: Courtesy of M. Eastwood. Figure 30.2 Highly aligned collagen at the base of the wrinkle. Red, tropoelastin; green, fibroblasts; blue, mature collagen (left). Red, nuclei; green, fibroblasts; blue, mature collagen (right). Source: Courtesy of J. Wares. of the skin so that wrinkle compression is replaced by a tension. Skin is usually maintained under tension as is evident from its behavior when cut (it will gape) or from instrumental measurements (11-13). 2. Action of subcutaneous muscles. The skin is extensively attached to muscle groups that can actively create tensions in the skin. This is particularly so on areas such as the forehead and around the mouth. Where muscle groups act to compress areas of skin, the compression can generate and sustain wrinkles. Botulinum toxin injections act on these muscle groups causing them to relax for as long as six months. The
fact that in certain types of wrinkle such injections virtually eliminate the visible wrinkle suggests that for these wrinkles the muscle generated compressive forces are the primary cause. 3. Tension carried within the aligned collagen at the wrinkle base. Figure 30.4 shows the computer wrinkle model when the wrinkle has been allowed to open up, as if it were excised. The color scale shows the amount of stress in the different elements of the model. A major stress is found in a narrow zone at the base of the wrinkle, in the aligned collagen domain. This stress arises because of the removal of the compressive force on the wrinkle sides, and gives an indication of what might happen during day to day flexing of the wrinkle on the face. Put simply, the aligned collagen band is stiff but under little stress when the wrinkle is closed. As the wrinkle opens, the stiff collagen band deforms and resists the opening of the wrinkle. This strongly implies that the aligned collagen band is a major factor in maintaining the shape of the periorbital wrinkle.

ORIGIN OF THE ALIGNED COLLAGEN LAYER Why does the wrinkle possess this deep zone of highly aligned scar-like collagen? While it is clearly important to the maintenance of the wrinkle once formed, it is unlikely to have a role in the initial formation of the wrinkle. Indeed if such a zone were present in an area of unwrinkled skin it would probably cause the wrinkle to form elsewhere rather than in the rigid zone. To understand how the zone could form it is necessary to consider the interplay of forces within the tissue and the biological behavior of fibroblasts within the tissue. Fibroblasts are richly endowed with surface molecules that will bind to components of the connective tissue—collagen, fibronectin, etc. When these surface molecules bind to the connective tissue matrix, they transduce mechanical forces acting through the binding sites into biological changes in the cell. One outcome of this is that fibroblasts within a connective tissue matrix that is under tension increase their synthesis of collagen and deposit it preferentially in the direction of the tension (14–16). What does this mean for the skin? In unwrinkled skin under tension, individual collagen fibers have a random direction of alignment. When unwrinkled skin is flexed so as to form a temporary “expression” fold, the greatest tension is experienced by the tissue at the base of the fold. In response to that Table 30.1 Physical Constants Used in the Wrinkle Model

<table>
<thead>
<tr>
<th>Epidermis</th>
<th>Papillary dermis</th>
<th>Reticular dermis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus (MPa)</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.45</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Figure 30.4 Strains calculated in the computer wrinkle model of a “relaxed” wrinkle (left) compared with the histology of an excised, relaxed human periorbital wrinkle where the
cyanoacrylate glue failed to hold the wrinkle sides together (right).

tension fibroblasts deposit collagen in the direction of the tension, perpendicular to the fold. The next time the skin is flexed and the fold forms, the tissue at the base of the fold is just a little stiffer because of the deposited collagen. That makes the tension at the wrinkle base just a little higher and induces the deposition of still more aligned collagen. Over time this vicious circle continues until the aligned collagen comes to dominate the stress field in the skin to the point where it maintains a permanent wrinkle. Sunlight, particularly UVB radiation, exaggerates this effect by activation of proteases and the triggering of further collagen realignment (17) and loss of elastic fibers (18).

IMPLICATIONS FOR TREATMENT OF WRINKLES

It is clear from the discussion above that there are multiple distinct factors such as acute and chronic sun exposure, natural skin tension and flexing, intrinsic ageing changes including the thinning of the dermis and loss of subcutaneous fat, causing and sustaining wrinkles. In all body and facial sites it is likely...
that all the factors contribute to the overall wrinkling effect, but
the relative contribution of the different factors will differ,
giving rise to different wrinkle structures, suggesting a differ
ent optimum treatment regimen. On the forehead, the
dominant factor sustaining wrinkles
appears to be the action of the subcutaneous muscles. Botu
linum toxin injections are therefore effective. On the
cheeks and around parts of the mouth, loss of
subcutaneous fat and elastic fibers leads to a general loss of
tension of the skin. In these cases, botulinum toxin is less
effective and surgical removal of flaps of skin or
generalized
contraction of the skin using laser treatment is necessary to
have a substantial effect. The crows feet area is
characterized by wrinkles main
tained by the stiffened aligned collagen zone at the
wrinkle base.
Botulinum toxin has relatively little effect on these
wrinkles and
while surgical face-lift procedures may have temporary
benefits,
the analysis above suggests that stretching the wrinkles out may
well cause yet more deposition of aligned collagen at the wrin
kle base, ensuring that the wrinkles will return and possibly
making the problem worse in the long term. The analysis
above suggests that a promising route for
treatment of such periorbital wrinkles would involve stimula
tion of deep dermal collagen remodeling, to put into
reverse the
vicious cycle that caused the aligned collagen zone to
form. If
collagen turnover could be stimulated while the skin was
exposed to tension parallel to the long edge of the wrinkle,
then the existing perpendicular collagen fibers would be
reduced and remodelled while new fibers forming parallel to
the wrinkle would no longer sustain the wrinkle shape. Reti
noic acid might be effective used in this way, as it has
been
shown both to increase collagenase expression in skin and to
increase the deposition of newly synthesized collagen. To
our
knowledge, such a combined topical tension and topical treat
ment experiment has yet to be attempted.

ACKNOWLEDGMENTS

I thank Dr I.R. Scott for coauthoring the first edition of
this book
chapter and W.E. Parish (Unilever Research, Colworth Labora
Figure 31.1 Anatomy of the nail apparatus. Abbreviations: M,
matrix; NB, nail bed; H, hyponychium; NP, nail plate; PNF,
proximal
nail fold. Source: After Dr E Haneke.

Figure 31.2 The racket nail of the middle finger is less
attractive
than the nail exhibiting the ideal ratio. Figure 31.4
Painted nails are more attractive than plain nails.

Figure 31.3 There is a tendency to cut the tips of the nails more squarely. Figure 31.5 Intricate jewelry attached to the free top extremity of the nail. Figure 31.6 Nail art. Figure 31.7 Onychoschizia (splitting into layers).

Abrasive files are inexpensive and often used by nail salon’s offering low-cost services and are considered single-use disposable items.

Other Abrasive Nail Files

Other types of abrasive nail files are made by coating an elongated board made of metal, glass, fiberglass, hard plastic, or wood with abrasives particles ranging in sizes and hardness.

The “grit” of abrasive nail files is a measure by counting the number of abrasive particles per cubic centimeter. Low-grit boards (60-120 grit) are used to quickly removing layers of the artificial nail and should not be used directly on a natural nail.

Medium-grit boards (120-240) are for smoothing and shaping both artificial and natural finger and toenails. High-grit boards (800-2400) are used for buffing, polishing, and finishing.

Grit is not the only determining factor. Nail files can be coated with either crystalline aluminum oxide or silicon carbide.

Silicon
Carbide is 20% harder than aluminum oxide, making these materials significantly more aggressive. Fine particles of diamond dusts are electroplated onto a metalized fiberglass board, giving these abrasive files great durability and longevity. Diamond's high cost and extreme hardness (50% higher than silicon carbide) is the reason that these files have limited value for this application.

Blocks

These are also abrasive nail files, and they take the form of a larger, rectangular foam block that fits comfortably into the hand. Blocks are the most widely used primarily because of their improved comfort, ease of use, and efficiency.

Nail Buffer

Specialty nail files are designed to create very smooth and high shine surfaces on natural or artificial nails. They are normally used as “three-way buffer,” having three different grit sizes used in succession from coarse to finest particle size, which remove scratches and create smooth, uniform surfaces. Padded chamois buffers used in conjunction with mild pumice-type abrasive creams or waxes and oils will produce a very high shine on the nail surface. Such systems have been used for generations. This is not a widely used mainstream technique, but instead considered a more traditional technique used by more traditional practitioners.

Pushers

These devices are used to gently push back the eponychium and expose more of the lunula. They can also be used to carefully loosen, scrape, and remove cuticle tissue from the nail plate. Pushers can be polished, metallic probes with variously shaped rounded ends and relatively dull edges to minimize the potential for soft tissue injury. Another type is a pencil-shaped plastic or wooden implement used in the same fashion. The advantage of using wood is safety, since they are less likely to cause injury to the nail folds. Originally fabricated from orange wood, now they are primarily birch and are considered a single-use disposable item.

Cuticle
Trimmer The small, clipper-jawed scissors are used inappropriately for cutting frayed skin and living tissue (Fig. 31.9). Devices that are curette-like, using a V-shaped blade mounted to a plastic handle, are used to shave living tissue. Nail technicians are using them for cutting the nail fold, which they mistakenly believe it is the cuticle. Trimming this living skin creates hardened tissue. When nail technicians cut this tissue a way with any device, they often breach the skin barrier, this increases potential for infection; this is why government regulations usually forbid service providers, such as nail technicians, from intentionally cutting living skin as part of their professional services. Like all

Figure 31.8 Complete transverse breaking. Figure 31.9 Cuticle trimmer. devices designed to shave the skin, they should not be used to perform salon services. Nail Whitener This is a pencil-like device with a white clay (kaolin) core used to deposit color on the under surface of the free edge of the nail. These should be avoided in professional salon settings since reuse can contribute to transmission of pathogenic organisms from client to client. Disinfectant Container and Cover A disinfection container should have a cover and be large enough to contain enough disinfectant solution to completely cover all items intended for disinfection. Many have a tray for removing implements and helping to prevent skin contact with potentially irritating, disinfectant solutions or provide tongs for reaching into the solution to withdraw implements.

Pedicures Pedicures require specialized implement. Toenails are larger and thicker, and hardened callus can be tough to handle without the proper tools. Heavy-duty toenail cutter with a squeezegrip action are used along with abrasive files to smooth and shape toenails. Abasive grit foot buffers are used on calluses. Recently, California prohibited the use of metallic razors or abrasives on calluses in nail salons. The concern was that such tools were too aggressive and dangerous for use in nail salons. Aggressive tools and procedures, that is, use of highly acidic or alkaline callus, that completely remove the callus are more concentrated and therefore have a higher potential to injure the underlying tissue. A risky practice performed by some nail technicians is to use razor-type devices to cut calluses from the foot. Complete removal of the callus is considered medical procedure and is not appropriate for salon services and should be discouraged. Salon services should only smooth callous, and not remove them.

TOILETRIES AND COSMETICS Evaporative coatings, including base coats, top coats, and nail varnish. Nail Varnish Formulation Whether they are called nail varnish,
enamel, lacquer, varnish, or color, these products are identical in function and, for practical purposes, nearly the same in basic composition. These different terms are merely marketing terms used to establish brand identity. The varnish may be clear, opaque, or shaded with color. Varnishes may appear to be nothing more than a paint-like coating for the nail, but the chemistry is much more complex. In its simplest form, a nail varnish is defined as a durable film coating created by evaporation of a volatile solvent component. However, the coating must withstand severe abuse without losing color, gloss, or adhesion. Luckily, a clever formulator has a wide range of raw materials from which to choose, and through proper ingredient selection these properties can be greatly enhanced. However, the cosmetic appearance and durability of the final product are not the only considerations when choosing ingredients. Regulatory agencies and consumer perception also play important roles. For these and other reasons, it is instructive to examine each ingredient type to gain a better understanding of these useful cosmetics.

Nail Varnish Basics A typical varnish formulation consists of seven basic types of ingredient: 1. Film formers 2. Film modifiers 3. Plasticizers 4. Solvents/diluents 5. Viscosity modifiers 6. Stabilizers 7. Coloration additives Each of these contributes to the quality of the final product. If proper ingredient selections are made and correctly balanced, the varnish will be easy to apply and remove, quick-drying, waterproof, glossy, chip and scratch-resistant, and flexible, and will adhere well to the nail. Ideally a properly applied coating should remain cosmetically attractive and intact for five days to a week. Also, the varnish coating must have a low potential for toxicity and adverse skin reactions. Film Formers The role of the film former is to create a smooth, continuous coating over the nail plate. The coating material of choice is an organic polymer called nitrocellulose (cellulose nitrate), the first natural polymer to be successfully modified by chemical manipulation, was commercially produced in 1860 by treating cellulose with a mixture of nitric and sulfuric acids. Originally used in high explosives, dry powdered nitrocellulose is highly unstable and sensitive to light, heat, atmospheric moisture, and oxygen, as well as an alkaline pH. It is so chemically reactive that it must be transported in a polar organic solvent, usually ethanol or isopropanol, to prevent explosive detonation. Formulators can choose from several viscosities and grades of materials and use them alone or in synergistic blends. Nonnitrated cellulose such as cellulose acetate and derivatives are also used with varying degrees of success. Polyurethanes, polyamides, and
Polyesters have also been utilized, but cannot match the surface gloss and hardness of nitrocellulose. Also, nitrocellulose blends superbly with colored pigments, producing bright and vibrant colors. Still, disadvantages of nitrocellulose drive formulators constantly to seek alternative materials, since the coatings it produces are brittle, adhere poorly, discolor quickly, and shrink excessively to cause poor adhesion. Examples of other film formers are meth(acrylate) polymers or copolymers. Film Modifiers The purpose of a film modifier is to favorably offset some deficiencies of the primary film former. Specifically, film modifiers are used to improve adhesion. Until recently, the most commonly used modifier is toluenesulfonamide/formaldehyde resin (TSFR) or tosylamide/formaldehyde resin (TF), the name listed in the International Nomenclature of Cosmetic Ingredients Dictionary (INCI). Because of the public’s erroneous and unfavorable association with formaldehyde gas (see “Formaldehyde Controversy”), this resin has fallen out of favor therefore it is being replaced by other resins, that is, tosylamide/epoxy resin (4), polyvinyl butyral, ester sucrose benzoate, polyesters (5), acrylic ester oligomers, sucrose acetate isobutyrate (SAIB), and arylsulfonyleurethanes (6), and various copolymers, that is, adipic acid/fumaric acid/phthalic acid/tricyclodecane dimer thanol.

Plasticizers

Plasticizers keep polymer films flexible and offer a useful way to improve the strength of nitrocellulose films. They reportedly increase separation between the cellulose chains and act as an internal lubricant (7). Film modifiers counterbalance the negative aspects of nitrocellulose, whereas plasticizers alter the properties of the entire film and can have profound,
positive effects on flexibility and adhesion. The plasticizer must be compatible and remain in solution without negatively affecting viscosity, consistency, flow, color, or shelf-life. It must not readily escape from the film through migration or volatilization and must be dermatologically innocuous. Camphor (bp 968°C) is the most common example of low molecular weight, high-boiling point plasticizers. Other examples of plasticizers are acetyl tributyl citrate, castor oil, sucrose benzoate, glycercyl tribenzoate, PPG-2 dibenzoate, ethyl tosylamide, glycerol, triacetin, and a polymeric plasticizer called NEPLAST (a polyether-urethane) (8). Dibutyl phthalate (DBT) was for many years the preferred plasticizer for nail varnish. In 2003, DBT was reviewed in the United States and declared ”safe as used” by the Cosmetic Ingredient Review Expert Panel (CIR). However, in that same year, new regulations in the European Union (EU) required that any ingredient listed as category 3 on the EU Dangerous Substance List or CMR List (Carcinogen, Mutagens, and Reproductive Toxicants) must prove to the EU’s Scientific Committee on Consumer Products (SCCP) that they are safe before they are
allowed for use. DBT was listed as a category 3 (as an additive
in spray paint) so rather than undergoing exhaustive and
onerous toxicological testing, nail varnish manufacturers
around the world began to eliminate this ingredient since
they did not wish to carry a separate inventory for the EU.

Solvents and Diluents

Nail varnish solvents give these products their characteristic
odor and flammability, but solvents are vital since they dissolve
solid ingredients, and on evaporation, deposit them on the
nail plate. The most commonly used are alkyl esters (ethyl, amyl
and n-butyl acetate) and glycol ethers (propylene glycol mono
methyl ether). Since each solvent has a different boiling point
and evaporation rate, a skillful formulator can balance several
solvents to achieve the desired drying time. Good solvents are
those that easily dissolve solid ingredients and reduce viscosity
or improve brushability. Even though they are not solvents for nitrocellulose,
ethanol, isopropanol, and butanol act as coupling agents and
through hydrogen bonding act synergistically to increase the
overall solubility and flow of the system. Diluents are usually
nonpolar compounds that are also nonsolvents for nitrocellul
lose, but help to regulate evaporation rates and stabilize viscosity to prevent uneven evaporation that may affect surface gloss, color, and clarity, especially in humid conditions. A great advantage of diluents is that they may be added in controlled amounts without reducing viscosity. In the past, toluene was used without significant problems since the 30s as a nail varnish diluents and often accounted for up to 25% of the formulation. Toluene was added to the list of chemicals for which California’s Proposition 65 requires a warning label since it is suspected of causing birth defects and cancer (9,10). However, study by the Nail Manufacturers Council (NMC) performed under the auspices of the California State Attorney General indicates that nail technicians’ salon exposure levels are approximately 1000 times below U.S. Federal safe limit set by the Occupational Safety and Health Administration (OSHA) (11). Even so, in 2008 the California Air Resources Board (CARB) identified toluene as an air contaminant that contributes ground level formation of ozone; therefore, most manufacturers have voluntarily discontinued use of the solvent, replacing toluene generally by increasing the levels of ethyl and butyl acetate (12). Viscosity Modifiers Ideally, a nail varnish should have a gel-like consistency to keep pigments suspended, but thinner, more brushable liquids produce better and more uniform films. Luckily, both consistencies are possible in systems that display thixotropic behavior. Thixotropic systems become thinner as they are mixed and brushed, but while at rest they will reform a semigel structure. Examples of substances used to create this useful effect are cationic modified montmorillonite clays that are approximated by the formula \((\text{Al,Mg})_2(\text{SiO}_2)(\text{OH})_2 \cdot n\text{H}_2\text{O}\). Treating these clays with quaternary ammonium compounds will render them organophilic. Stearalkonium hectorite is the most frequently used of these clays. The main disadvantage of clay additives is that they lower surface gloss. This can be offset by the addition of various polymers, for example, acrylate copolymers and nylon. These additives improve gloss, as well as toughness and scratch resistance. Amorphous (noncrystalline) silica
is also used as a viscosity modifier at very low levels.

Stabilizers Color stability is a very important property in nail varnishes. Special stabilizers are added to nail varnishes to prevent the colors from fading and shifting. Nitrocellulose is usually the culprit, since it is inherently unstable in ultraviolet (UV) light. Solutions of nitrocellulose will change from a clear to a yellow to a brown liquid with relatively little UV light exposure. Pigments and dyes may also become unstable with longer periods of exposure. Lighter colored varnishes are less stable than darker colors. Sheerer varnishes with lower levels of colorant are more susceptible to UV light than richer varnishes with higher levels of colorant. Generally, varnishes with colors nearer to the blue end of the spectrum shift more readily and dramatically than colors found nearer to the red side. To help prevent discoloration problems, nail varnish formulations utilize UV light-absorbing stabilizers that absorb UV light and convert it into harmless visible light and infrared energy (heat). The most common of the stabilizers of this type are benzophenone-1 and octocrylene. Coloration Additives Unless the nail varnish is clear and colorless, additives must be used to alter the opacity and shade. Color additives must have very low or no heavy metal content, to be certified by the Food and Drug Administration (FDA) and if sold internationally, it must also be allowed in the EU, Canada, and Japan. Occasionally, smaller manufacturers will risk using nonapproved colorants (e.g., “day-glo” colors) to satisfy the faddish demands of younger consumers, but for the most part these regulations are adhered closely. Colorants must have relatively high light fastness and should not stain the nail plate. Colorants can be stabilized by precipitating a particular pigment with aluminum hydroxide to form a salt complex called a “pigment lake,” that is, D&C Red No. 7 Calcium Lake and D&C Yellow No. 5 Zirconium Lake. Pastel shades are achieved by the addition of titanium dioxide (TiO₂). Ferric ferrocyanide (Prussian blue) is used in small amounts to enhance blues and alter other shades. To achieve complete pigment dispersion and suspension, high-energy ball or roll mills must be used to ensure uniform colors and to reduce the amount of colorant needed, that is, 2% dry colorant or less. Pearlescent pigments continue to be highly desirable commodities in modern varnishes. Bismuth oxychloride and mica coated with TiO₂ and other colorants are used to create the many beautiful iridescent shades. More complete information on approved colorants can be obtained from the CTFA’s International Color Handbook (now known as the Personal Care Product Council or PCPC) (13). Colorants are usually indicated on the label by their international color
index number (CI), which is accepted by most regulatory agencies around the world; however, sometimes both the CI and INCI nomenclatures are used, for example, CI 77891 (titanium dioxide), unless there is a lack of space on the label. Other Additives A variety of highly specialized additives are known to those skilled in the art of nail varnish formulation. Even tiny amounts of many of these special additives can give dramatic differences in performance. Some examples are surfactants to improve wetting and adhesion and organic acids to stabilize colorants. However, some additives serve no function other than to increase consumer appeal. These include proteins, minerals, pearl, gem dusts, and vitamins. Base and Top Coats Base coats are applied to the nail plate before application of the nail varnish. They are usually of similar composition to varnish but contain more additives, which improve adhesion and act to protect against staining of the nail. Top coats utilize higher levels of ingredients that maximize surface gloss and hardness. Often, the top coat contains special UV-absorbing materials to prevent discoloration. Not all top coats are evaporative coatings, since some are UV-cured urethane (meth)acrylate oligomers and blends (14). Film-Drying Accelerant Silicone oil blends and silicone oil-in-water emulsions are often used to accelerate nail varnish dry times. Film-drying accelerant is sprayed or brushed over freshly applied nail varnish to give rapid drying and increased protection from minor dents or surface scratches while remaining solvent evaporates from the coating, allowing it to reach a hard set. Drying is accelerated because the thickener's microstructure collapses, allowing solvents to escape more quickly. Formaldehyde Controversy Formaldehyde is an anhydrous gas and cannot be utilized as a cosmetic ingredient for that reason. When formaldehyde is mixed with water, it does not simply dissolve but instead undergoes a chemical reaction that converts it from the aldehyde into methylene glycol and trace levels of free formaldehyde in equilibrium. Unfortunately all around the world, formalin is incorrectly thought of as aqueous formaldehyde, even by medical and scientific professionals. The so-called “formaldehyde releasing” preservatives do not release formaldehyde gas, but instead they release methylene glycol. Until recently, the INCI dictionary, which cosmetic product manufacturers are supposed to use to name their ingredients, incorrectly requires formalin to be called formaldehyde. No one worried about the misnaming until advocacy groups began saying that cosmetic products contain cancer-causing formaldehyde as an ingredient, which is clearly incorrect. The NMC petitioned INCI to address this issue and as of December 2008, the INCI name for formalin is methylene glycol. The FDA allows
the use of up to 5% formalin in nail hardeners and requires warning labels on nail-care products, as well as “nail shields that restrict application . . .” (15). EU regulations require “formaldehyde” warning labels when concentrations exceed 500 ppm formaldehyde gas. These levels of free formaldehyde gas are much greater than what is found in nail hardeners, which typically contain less than 12 ppm, based on equilibrium calculations for these products, which typically contain 1.5% formalin or less (16). It is suspected that formalin cross-links proteins (17) in the nail, resulting in increase in surface hardness and decreased flexibility, which the user misinterprets as improved strength and durability. After months of continued use, nail hardeners may eventually increase nail plate hardness and rigidity to the point that brittleness becomes obvious. Users remember the early success of the hardener and usually respond to the brittleness by increasing the frequency of application. This leads to further cross-linking, and nails may end up in a worse condition than before. Onycholysis and abnormal growth of the hyponychium may be the results of prolonged formalin overexposure, but this is probably uncommon. Typically, these problems are a result of aggressive manicuring services (18). Microbiological Contamination and Water-Based Varnish Microbiological studies commissioned in 2009 by the NMC show that traditional solvent-based nail polishes will quickly kill common pathogens without additional preservation and do not create the potential for transmitting pathogenic organisms (19). Water-based nail varnishes are available, but they cannot compare to the performance of traditional nail polishes and, being prone to bacterial contamination, must be preserved with, for example, quaternium (15). New Developments New industry trends are turning toward UVA-curable top coats, base coats, and nail color, which applies like traditional nail varnish to form durable, long-lasting coating when exposed to low levels of UVA light. Also, nail varnishes that improve nail plate health are currently the hottest topics of interest for consumers. There is therefore a tremendous economic incentive for manufacturers to discover ingredients that provide demonstrable benefits to the nail. Improved nail toughness and solutions for yellow, dry, brittle, and splitting nails would be enormously beneficial. When these technologies are developed, it may eventually lead to the holy grail of nail varnishes—one that truly prevents or helps treat common nail pathologies.
Nail Varnish Solvents (Nail Varnish Remover)

Acetone and/or butyl or ethyl acetate, methyl ethyl ketone, ethoxy ethanol, or similar compounds are used for rapid softening and solubilizing of nail polish, as well as to remove oils and waxes to cleanse and prepare the nail for varnish application. Some varnish removers claim to minimize stripping of moisture and oil from already brittle nails. The removers are based on solvents such lactones or dimethyl esters of adipic, glutaric, and succinic acids (dibasic esters).

Nail Creams and Lotions

Oil-in-water emulsion preparations aid in softening the keratin of the nail plate and contiguous skin. This is achieved initially by the addition of water and, subsequently, by the reduction in evaporation of water from the nail. Cosmetic preparations are of two basic types: those designed to deliver water-soluble, hydrophilic substances into the nail plate and those designed to deliver hydrophobic substances, such as natural jojoba or almond oil. Once absorbed, these ingredients have the potential to plasticize, increasing flexibility, toughness, and durability, and are
claimed to be especially useful for dry and/or brittle nails.

Cuticle Removers

These are lotions or gels containing approximately 2% to 4% sodium or potassium hydroxide (pH 12-13.5). They are applied in the vicinity of the cuticular ridge to eliminate the remnants of cuticle that adhere to the nail plate as it grows outward. The lotion is left in place for approximately one to two minutes and then washed off. In nail salons, the process is hastened by using a cuticle pusher. Creams containing low levels of a-hydroxy acids are also used as cuticle removers. These usually contain 1% to 5% lactic acid (pH 2.5-3.5). Besides their ability to soften and remove cuticle, daily use can eliminate hangnails.

Adverse Reactions to Nail Cosmetic Procedures

Adverse reactions to nail cosmetic procedures (20) may be divided into two main categories: reactions to applied cosmetics and nail tool/implement damage.

REACTIONS TO APPLIED COSMETICS

Cosmetics may produce reactions both at the site of application to the nail area and secondarily elsewhere on the body. The fingernails act as a reservoir for small amounts of cosmetic preparations transferred by the hand to other areas of
Nail Varnish Dermatitis

Nail varnish dermatitis of allergic origin can appear on any part of the body accessible to the nails (Fig. 31.10), but often with no signs in the nail apparatus. Exceptions, however, may exist, mainly in the periungual area (21) (Fig. 31.11). The eyelids (Fig. 31.12), the lower half of the face, the sides of the neck, and the upper chest are the most commonly affected areas (22,23). In addition to ectopic dermatitis, allergic airborne contact dermatitis caused by nail ingredients should be suspected when lesions on the face, neck, and ears are symmetrical (24). The allergen in nail varnish is usually thermoplastic resin. Diagnostic skin patch testing with nail varnish should be performed without occlusive covering, or with dry varnish films to avoid false-positive reactions from the solvent. The thermoplastic resin used to promote adhesion is often the main culprit (25–28), but when the nail varnish is completely dry it is only a weak allergen (29). However, nail varnish that has completely dried on the fingernails contains water-soluble components that may reach the skin during extensive, transient contact (30). To make “formaldehydefree” claims, cosmetic manufacturers have reformulated their nail varnish replacing TF resin with...
other resins, that is, tosylamide/epoxy resin [trade names
Lustrabrite 1 and Nagellite 1, a condensation product of
bis-phenol A epoxy resin (31)], phthalic and trimellitic
anhydride/glycol copolymer (32), glycerophthalic polyester
resin (PhaseTM), 4-methylbenzene sulfonamide-epoxy resin
(CliniqueTM), phthalic polyester resin (ShiseidoTM), or
polyester saturated hydroxylated resin (DeborahTM) (33).
Unfortunately, some of these and related “hypoallergenic”
resins (34,35) have already produced distant contact
dermatitis. Another potential exposure source is the
(meth)acrylates used in some UVA-curable nail products. The
following substances should be included in a test battery:
l Tosylamide/epoxy resin (10% petrolatum) l TSFR (10%
petrolatum) l Glyceryl phthalate resin (polymer resin) 10%
petrolatum l Formalin (1-2% methylene glycol in aqua) l
Phthalic and trimellitic anhydride (1% petrolatum) l
Colophony (resin) 10% or 20% petrolatum (36) l Drometrizole
(Tinuvin P) 1% to 5% petrolatum l Nickel (0.5% petrolatum)
and 1% dimethylglyoxine spot test for nickel from varnish
mixing beads l Benzalkonium chloride (0.01% to 0.1% water)
Contact Urticaria Recurrent urticaria involving the same
area as contact dermatitis plus the distal phalanx of the
fingers has been reported with isomorphic response to nail
varnish testing, immediately after simple contact (37).
Nail Plate Staining Nail staining from the use of deeper
shades of red and brown nail varnish is most commonly
yellow-orange in color (38) (Fig. 31.13). Typically, it
begins near the cuticle area, extends to the top of the
nail, and becomes progressively darker from base to tip.
Colorants such as D&C Red no. 6, 7, 34; FD&C Yellow no. 5
Lake can penetrate into the nail too deeply to be removed,
but this can be significantly avoided with the use of a
base coat prior to nail varnish application. Fingernail
discoloration can be produced by chloroxine, an active
ingredient in a shampoo used for control of seborrheic
dermatitis is highly reactive to metals such as iron oxides
commonly used as pigments in nail varnish, and it is likely
that discoloration may result from a reaction between the
two (39). Patients undergoing therapy with minocycline may
develop discoloration of the nails (40). Analysis of the
nail clippings from minocycline-treated women showed a
large amount of iron concentrated only in discolored areas
of the nail, which did not occur in women who did not
varnish their nails, nor in men with nails free of a
significant amount of iron. Nail discoloration may also
result from the combined effect of nail varnish and
dermatological treatment containing either resorcinol or
resorcinol monoacetate (41). Nail Keratin Granulation
Injury to the nail from nail varnish is rare. However,
“granulations” of nail keratin (Fig. 31.14), presenting as
superficial friability (42), can sometimes be observed. In these cases, individuals continually remove old varnish and apply fresh coat over for periods of weeks. Nail keratin granulation may be avoided by lessening the frequency of removal and reapplication of nail varnish, that is, no more than once per week to avoid damaging the surface of the nail. These products contain acetone and/or butyl or ethyl acetate, methyl ethyl ketone, or similar compounds that can dehydrate the nail plate and decrease corneocyte adhesion, extract lipids, and contribute to brittleness (43). Some polish removers contain significant amounts of water (17%) and/or conditioners for skin, to reduce tissue damage, making them the preferred solvent for varnish removal. Oils are sometimes added to prevent excessive drying of the nail. Nail varnish removal may cause inflammation of the paronychial area when the solvent remover solution is left in contact with the skin. Rarely, irritant and allergic contact dermatitis, blistering, onycholysis, and brittleness may occur (43). Figure 31.13 Yellow–orange nail-plate staining. Source: Courtesy of A Tosti. Figure 31.14 “Granulation” of nail keratin.

Cuticle Removers and Softeners

Removers (see the preceding text) are designed to destroy keratin by attacking the disulfide bonds of cystine. After the nails have been soaked in soapy water, cuticle removers are applied and left in place for approximately two minutes before being washed off. The loose cuticle tissue is usually removed from the nail by being rubbed gently with a wooden stick covered with cotton. Removers should not be applied to the fibrous cuticular ridge, nor should this tissue be removed with sharp implements such as nippers or V-shaped curettes. Cuticle softeners are often misnamed since they are actually designed to soften and moisturize the eponychium and lateral folds and not designed to remove cuticle tissue.
from the nail plate; the pH of these products is typically 4.5 to 6.0. Skin conditioners or softeners often contain substances such as quaternary ammonium or urea or a-hydroxyacids at low concentrations and are used as emollient creams. Triethanolamine is used to adjust the product’s pH and may act as a sensitizing agent (5% in petrolatum for patch testing).

Stick-On Nail Dressing

“Stick-on nail dressings” (decorative coatings) are thin, clear, or colored synthetic films (Fig. 31.15) with an adhesive that fixes them firmly to the nail. Recently, decorative adhesive films have undergone a resurgence and become very popular. In some cases, pathologic changes (44) of traumatic origin are said to be produced in nails by the occlusive nature of the film. In fact, they can be attributed to a temporary overhydration of the nail plate. The same is true for any occlusive or semioocclusive coating on the natural nail. For example, when the artificial nails are removed, the nail may feel weaker and thinner because of the higher moisture content increases flexibility. Press on nail
extender tips are also used for temporary extension of the nail.

Generally, these are only used for special occasions, that is, weddings, and are removed within a day or two.

POTENTIAL FOR INJURY/INFECTION

Traumatic injuries from nail files, wooden or plastic sticks, and metal or porcelain spatulas may cause not only infection but also onycholysis (Fig. 31.16) and Beau’s lines or transverse white streaks from overzealous manicuring, pedicuring, or filing on the nail (45). It is, therefore, wise to use wooden sticks covered with cotton or instruments with blunt edges. Nail technicians usually remove too much of the natural nail plate with coarse abrasives and powered electric files, which should only be used on artificial nails. Cutting the nail with dull or blunt tools may contribute to increased weakening, peeling, fracturing, and splitting. Tools should be sharpened regularly or the blades changed when they become dull. An alternative method is to shape the fingernail with an abrasive board, filing from the sides of the nail toward the center. Procedures for consistent and proper hand washing by all hospital personnel should be reinforced, as well as the maximum 3-mm rule for end-of-fingernail lengths (46). The subungual space of the hand is heavily colonized with microorganisms, and contaminated instruments may lead to acute bacterial or chronic Candida paronychia and onycholysis. Overfiling of the nail plate with coarse abrasives or heavy-handed filing techniques with even the mildest buffing block can disrupt the thin tissue seal that holds the plate to the bed and lead to onycholysis and possibly subsequently Candida or other infections. Acrylic nail extensions are also implicated in Candida nail bed infection (47), but much more commonly the issue is increased bacterial carriage versus natural nails (48), particularly Staphylococcus aureus and S. epidermidis, which are not uncommon under the free edge and are more difficult to remove out of this area despite surgical scrubs (49). In contrast to fresh nail polish worn on short healthy nails (50), chipped nail varnish is a known potential reservoir for bacterial growth on natural nails (49). In addition, bacterial carriage is
higher in subjects with artificial nails than in those with natural nails, possibly because of the longer length of artificial nails and more surface area for colonization (51). Serious eye infections have also been reported following Pseudomonas involvement in the nail apparatus (52), as has subacute bacterial endocarditis after nail trauma (53). Warts can affect mainly the periungual tissue and sometimes are found on the proximal nail fold as a result of nail biting or other insult (54). In the mid-90s, a woman was awarded $3.1 million after contracting herpes on all 10 fingers at a salon (55). Transmission of more serious diseases such as hepatitis B and AIDS (HIV) seems to be virtually impossible through nail

19. Nail Manufacturers Council (NMC) data, publication forthcoming.

34. Shaw S. A case of contact dermatitis from hypoallergenic nail varnish. Contact Dermatitis 1989; 20:385.

then artificial nails are acceptable; however, for potentially chronic conditions such as onycholysis, it might be prudent to avoid artificial nails until the condition is resolved. This will avoid medicolegal problems (3). For the same reasons, an ultraviolet (UV) light-cured acrylic should never be used in people who are taking photosensitizing medications, or who are affected by photodermatitis. ARTIFICIAL NAILS There are three major methods for applying artificial nails: approximately 30% are sculptured on a form, 60% are molded on an acrylonitrile butadiene styrene (ABS) plastic tip, and 10% are applied as thin overlay on the natural nail. Each is popular for a variety of reasons. 1 All three methods can correct the coloration of nail plates or beds. 1 Each method can build a natural-looking curvature to a flat natural nail. 1 All will increase the durability of the nail plate and may be decorated with colors, designs, ornaments, and jewels. 1 Each type can attractively replace a deteriorated nail plate, one reduced by onychophagia (e.g., affected by splitting), or one that is simply broken-acrylics can even cosmetically correct ski-jump nails or the unsightly racket nails. 1 Sculpting and plastic tips specifically add length beyond the free edge and can create the illusion of a longer nail bed. 1 Plastic tips require less technical skill to create a naturallooking nail. 1 Natural nail overlays add no length and require lower maintenance while providing a protective coating. Artificial nail products are applied both in salons and in the home. Since the sculpting technique requires considerably more skill, it is usually restricted to the salon setting. There are three basic types of product used to perform these services; they share similar ingredients, but feature different chemistries. All three are discussed in this chapter. They are “liquid/powder” (methacrylate based), “UV gels” [(meth) acrylate based], and “wraps” (cyanoacrylate based). In this chapter the term (meth)acrylate will be used to indicate methacylates and/or acrylates. A typical methacrylate liquid/powder-based kit contains (4) 1 a metallized paperboard template, placed on the natural nail surface to frame the new nail for sculpting; 1 a liquid methyl a, ethyl or isobutyl methacrylate monomer blend containing proprietary blends of other mono-, di-, tri-, and tetrafunctional methacrylate monomers; 1 a powdered, spherical polymer made from poly(methyl methacrylate) and/or poly(ethyl methacrylate) polymer (or a copolymer of both methacrylates) with benzoyl peroxide as an initiator; 1 a stabilizer such as resorcinol, eugenol, thymol or (most commonly) hydroquinone (HQ) or methyl ethyl hydroquinone (MEHQ); 1 a catalyst, such as N,N-dimethyl-P-toluidine to catalyze the production
of free radicals from benzoyl peroxide in the polymer powder; 1 plasticizers such as tricresyl phosphate; 1 very low levels of solvents to act as clarifiers or solubilizers; and 1 dyes. In salons, metalized nail forms (Fig. 32.1) and mylarcoated nail forms predominate over reusable. Teflon nail forms (Fig. 32.2). The nail is first thoroughly cleansed by brushing with soap and water and often painted with antiseptic solutions. The dried nail is sometimes coated with a adhesion promoting primer. In the past these primers were based on diluted methacrylic acid, but developed acid-free primers are designed to react covalently with the keratin and the acrylic, providing increased adhesion to both surfaces. Primers are “adhesion promoters.” Nonmethacrylic acid primers are adhesion promoters in a solvent base, and are not corrosive and therefore not likely to burn the soft tissue on contact, as is the case with methacrylic acid. Newer artificial a Methyl methacrylate monomer is specifically prohibited for use to create artificial nails in most U.S. states and Australia.

nail formulations no longer require pretreatment of the nail with a primer. Using a paper or Teflon nail form, the natural nail is coated with a fresh acrylic mixture that hardens at room temperature in less than three minutes. The prosthetic nail can be filed and manicured to shape, and as the nail grows out, further applications of the acrylic mixture are added every two to three weeks to fill in the new growth of nail plate at the lunula. These types of service can be performed by sculpting either on a form or over a tip. Colored polymer powders can create the illusion of a beautiful nail by using a combination of natural pink color over the nail bed and opaque white distally for the nail plate’s free edge. This combination perfectly simulates a natural nail and nail varnish need not be used. Various shades of pink powders are used to hide visible defects in the nail bed and plate. ALLERGIC REACTIONS These may occur two to four months, and even as long as 16 months, after the first application (5). One of the first indications is an itch in the nail bed. Paronychia, which is usually present in allergic reactions, can be associated with excruciating pain in the nail area, and sometimes with paresthesia. The nail bed is dry and thickened (Fig. 32.3), and there is often onycholysis (Fig. 32.4). The natural nail plate may appear thinner
Figure 32.1 Metalized paperboard template for sculptured artificial nails.

Figure 32.2 (A, B) Teflon templates for sculptured artificial nails. Figure 32.3 Nail bed and hyponychium thickening from sculptured artificial nails. Figure 32.4 Onycholysis due to sculptured artificial nails. (Fig. 32.5), split, and sometimes discolored. It takes several months for the nails appearance to return to normal. Permanent nail loss (Fig. 32.6) is exceptional, as is intractable prolonged paresthesia (6-8). Distant allergic contact dermatitis may affect the face and the eyelids (9), and is probably caused by touching the face with the hands. The arms and wrists of nail technicians may be affected if these areas are repeatedly exposed to filing dusts. Filings contain small amounts of monomer that has not yet reacted, since it takes 24 to 48 hours for the enhancement to cure fully. Technicians should be instructed to wash their hands before touching the face or eye area. The area involved is usually the chin, where some technicians tend to rest their heads in their hands. They should also be warned to avoid contact with the dust of freshly applied product and to avoid using the product with too high a ratio of liquid to powder. A medium dry consistency of the slurry is considered ideal. The filings from UV gel nails (discussed below) are also responsible for skin sensitizations. The UV bulbs used to cure this type of artificial nail system lose about half of their original peak UV output after about four to six months, depending on usage. Technicians should be told to change the UV bulbs in their lights three times per year, even though they will continue to emit visible blue light for many years. Applying multiple thinner coats of products, rather than fewer and thicker coats, is preferred. The thicker the coating, the more difficult it is to cure the gel. UV penetration is low and the number of photons reaching beyond a depth of 2 mm is greatly reduced and a complete cure cannot be assured if applied too thickly. Although sensitization to butylhydroxytoluene is possible, gels use acrylated oligomers and monomers. Acrylates are many times more likely to cause sensitization than methacrylates or stabilizers. These systems also rely on photoinitiators, such as benzylidimethyl ketal or camphorquinone (1-3%) or benzophenone, which can all be sensitizing. Glutaraldehyde and acrylic acid are also sometimes used in low levels (<1%), as keratin adhesion promoters and certainly contribute to adverse skin reactions. Since UV gels contain oligomers with high molecular weights, they tend to be very sticky and messy,
which further increases the risks of overexposure. Patch Testing to Identify Reactions to Sculptured Artificial Nails Patients who are allergic react strongly to the acrylic liquid monomer (10) (1–5% monomer in petrolatum or olive oil). In the series of 11 patients of Koppula et al. (10), 0.1% ethyl acrylate in petrolatum detected 91% of the acrylate-allergic users of artificial nails. These authors proposed the following five chemicals be used as screens: ethyl acrylate, 2-hydroxy ethyl acrylate, ethylene glycol dimethacrylate, ethyl cyanoacrylate, and triethylene glycol diacylate. The pattern of acrylate cross-reactivity among the most frequently positive acrylates suggests that a functional group that is a carboxyethyl side group may be requisite for allergic contact dermatitis to acrylates. Kanerva et al. (11) reported that six out of 23 patients who were acrylate sensitive were sensitive to ethyl methacrylate, which is consequently a significant allergen. The powder contains ethyl methacrylate homopolymer or ethyl/methyl methacrylate copolymer, but also small amounts of monomeric methyl methacrylate monomer and ethyl methacrylate (<0.1%) and up to 2% benzoyl peroxide. This explains why the powder may in some cases provoke an allergic patch test reaction (11,12). Benzophenone and other UV light absorbers used in nail enhancement may produce eyelid dermatitis (13). UV absorbers are often used at low levels (<1%) to protect the coating from UV-related discoloration. Since there are no real monomer-free acrylic resins, an adaptable nail prosthesis made of silicone rubber is sometimes an alternative. This “thimble-shaped” finger cover takes nail polish well (Fig. 32.7) (14,15). A recent development is for UV gel nail systems to be used as prosthetic devices for toes (Dr Robert Spaulding, personal communication). NONALLERGIC REACTIONS With continued wear the edges of the sculptured nails become loose. These must be filed or clipped and then rebuilt to prevent development of an environment prone to bacterial and, beneath the nail plate, Candida infection. In fact, this is a result of improper application and maintenance. Failure to undergo Figure 32.5 Thinning of the nail plate after use of sculptured artificial nails. Figure 32.6 Permanent loss of the nails due to sculptured artificial nails. Source: Courtesy of A. Fisher.

filling every two to three weeks may result in creation of a lever arm that can predispose to traumatic onycholysis or damage to

the natural nail. Older clients’ nails grow much more slowly
and require regular maintenance less frequently. Onycholysis (16) is more common with nail extensions that are too long (lever effect). It has also been said that the bond between the sculptured and the natural nail can be stronger than the adhesion between the nail plate and the nail bed. There is no evidence that an occlusive prosthetic nail interferes with the nail’s normal vapor exchange. Irritant reactions to monomers are possible (4). These are manifest as a thickening of the nail bed’s keratin layer, which can sometimes cause the entire nail bed to thicken, with or without onycholysis. Still, without question, the overwhelming majority of cases result from physical trauma or abuse. Damage to the natural nail is not unusual after two to four months of wear of a sculptured nail. If it becomes yellow or crumbly, this means that the product was applied and maintained incorrectly. Higher-quality products, which are properly prepared, do not suffer from these problems. Therefore, instead of recommending wearing prosthetic nails for no more than three consecutive months with one-month intervals before resuming applications (17), or the dermatologist should find a better qualified nail technician. It is probably unrealistic to assume that clients will remove their artificial nails for any period. The problem may well not be the acrylic nail
materials but rather the thinning of the nail due to overfilling with heavy abrasives. Acid-based primer (methacrylic acid) is a strong irritant, which may produce third-degree burns, so it is fortunate these are rarely used any longer. Acid-based primer is hazardous if one floods the soft, living tissue, neglects to wash up spills immediately, or ignores an individual complaining of burning. One must rinse any area immediately with water when the client says it is burning. Acid primer can permeate the plate and soak the nail bed if the nails are too thin. Soap or baking soda, used with water, are excellent neutralizers. If acid primer gets in the eyes, the eyes should be flushed with water for at least 15 minutes, making sure all traces of the chemical have been rinsed, then a poison control center should be called and emergency medical treatment sought. There is a general tendency to disregard manufacturers’ instructions and warnings, which causes the majority of disorders. Contact Urticaria Butylhydroxytoluene has been reported as a cause of nonallergic contact urticaria (18). Removing Sculptured Artificial Nails and Nail Polish Acetone is the primary solvent used to remove artificial nails. Usually, 20 to 30 minutes is all that is required for methacrylate-based, liquid/powder systems. Most UV gels are extremely difficult to remove with solvent, so they are more frequently removed by filing with a course abrasive. The use of acetone-free nail polish remover on painted nails is not necessarily desirable. The alternative solvents, especially methyl ethyl ketone, have higher orders of toxicity and can damage the underlying polymer surface. Acetone diluted with 10% water works well for removing colored polish without excessively drying the skin or damaging the artificial nail. Reports have been published of severe and even fatal cases following ingestion or inhalation of acetonitrile-containing nail polish and acrylic nail removers, because the acetonitrile is metabolized into cyanide (19–22). Nitroethane poisoning from artificial finger nail remover has led to cyanosis and 39% methemoglobinemia (23). Ethyl methacrylate monomer and polymer nails and the UV or photobonded variety may produce severe and prolonged paresthesia, even without associated allergic dermatitis (3), but this is relatively rare. Unfortunately, the product the patient was using could have contained methyl methacrylate monomer, since this ingredient is used in gray market products, but not by mainstream manufacturers; it is often not disclosed in the ingredient listing. LIGHT-CURING GELS (UV GEL SYSTEMS: GEL NAILS) The word gel applies to the form of the product—not the product itself. UV gel systems require no premixing of a powder component and are eitheracrylate or methacrylate
based (approximately 30% of the market worldwide). Cyanoacrylate-based “no-light gels” (1% or less of the market worldwide) do not cure via UV light or photochemical reaction (11). These products cure via moisture and can be accelerated with internal or externally applied catalyst. Both have very little odor, making them popular in full-service beauty.

Figure 32.7 Adaptable nail prosthesis made of silicone rubber.

39. Burrows D, Rycroft RJG. Contact dermatitis from PTBP and tricreyl ethyl phthalate in a plastic resin. Contact
Hand and body lotions

INTRODUCTION

Skin, the largest organ of the body, plays a critical role as the interface between the human body and the environment. Originally it was thought mainly to have a passive role, being a physical barrier to environmental threats such as low humidity, biological pathogens, UV radiation, physical trauma and environmental pollutants. It has always been recognized as playing a vital role as a sensory organ alerting us to the presence and nature of objects surrounding us, extremes of temperature and noxious chemicals. More recently its active interactions with the environment have become more appreciated. It is physiologically active: the immunological response involving keratinocytes and Langerhans cells as well as the Tand B lymphocytes. Melanin in the skin protects it from UV damage. Upon exposure to strong light, melanin can be redistributed to the keratinocytes protecting the cells of the lower epidermis. The skin has significant levels of enzymes such as cytochrome P 450 that can metabolize xenobiotics. However, it is most effective as a barrier if it is intact. Hand and body lotions play a vital role in...
helping to maintain the integrity and plasticity of the stratum corneum (SC) in the face of many outside threats. Furthermore it provides a crucial benefit to consumers, your patients, in improving the feel of their skin and eliminating the negative sensations of dryness and itching associated with dry skin. Dermatologists continue to see many patients suffering from dryness and itching often associated with visible scaling and flaking of their skin. Even more consumers treat themselves without medical intervention. There are many causes for the increasing prevalence of dry skin. Shifting demographics, specifically the aging population in combination with increased usage of low humidity central heating and air conditioning systems has significantly contributed to the increase in dry skin complaints. In addition, skin is exposed to household detergents and personal cleansers, which can quickly damage the SC proteins, extract small hygroscopic molecules and deplete or rearrange the bilayer structure of key intercellular lipids. This causes a dramatic decrease in the skin’s ability to act as a barrier. Detergent induced dryness and primary irritation has made dermatitis one of the most common forms of occupational disease in developed countries. Health care workers, hairdressers, nurses and food handlers are especially at risk (1,2). During the last 100 years hand and body moisturizers have been designed to provide relief to dry skin sufferers by increasing the skin’s softness and smoothness (plasticity) while eliminating skin scaling. There are several mechanisms to achieve this. They include increasing the skin’s water content by forming an occlusive barrier, by binding more water more effectively (humectancy), and by supplementing the water with other plasticizing materials. Indeed individual moisturizing ingredients may deliver benefits to the skin by several mechanisms. For instance, glycerin works as a humectant, a fluidizer of the lipid bilayer and an activator of SC enzymes. It also is a skin softening agent (emollient). Today’s moisturizers are far superior to those of the past. This is due to new materials that are capable of mimicking the skin’s biological moisture holding mechanisms and the ability to deliver these materials effectively to the skin. Ingredients such as ceramide analogs, provitamins, and essential fatty acids, have been successfully incorporated into hand and body lotions. When moisturizers are used regularly, they help to mitigate dry skin. Furthermore, advances in formulating have produced esthetically superior products that consumers enjoy using, yet maintain their efficacy. The leading hand and body lotion brands in the United States are shown in Table 33.1. A second role for hand and body moisturizers is as a vehicle for active ingredients including OTC drug actives
such as sunscreens, and cosmetic ingredients such as antioxidants, antiirritants, a-hydroxy acids (AHAs), and a multitude of botanical extracts. As a result of increased awareness regarding the effects of the sun, recent marketplace trends show an increase in the number of hand (and facial) moisturizers that have the ability to block UVA and UVB exposure. Hand and body moisturizers serve as an effective and convenient vehicle for the delivery and application of sunscreen ingredients. Importantly, esthetically optimized SPF moisturizers are now available, which provide consumers with much preferred tactile benefits such as a nonsticky, nongreasy, and nonoily skin feeling; attributes not traditionally found in sunscreen products. The efficacy and esthetics of hand and body lotions depends on several factors. Gross chemical composition is not the only factor that effects both efficacy and skin feel. Most lotions are emulsions, heterogeneous mixtures of oil and watersoluble materials. How ingredients are distributed between the oil and aqueous phases plays a significant role in how they are delivered to and partition into the skin to have their moisturizing effects, and the feel of the skin during and after application. To account for these factors, this chapter will discuss the ingredients used in lotions separately from emulsion structure. Assessing the safety and efficacy of lotions will also be discussed. In conclusion, although many skin characteristics are genetically determined, the environment also has significant effects. These negative effects can be ameliorated by regular use of cosmetic moisturizers. The regular use of moisturizers, a healthy diet, protection from the sun and regular exercise will contribute to significantly healthier, younger looking skin.

INGREDIENTS FOR HAND AND BODY LOTIONS

Overview

As anyone who has looked at the ingredient statement for a typical hand and body lotion can attest, the number and variety of ingredients used in these products can be somewhat intimidating. Consequently, it is clear that a review of all of these ingredients is beyond the scope of this chapter. However, this
chapter will attempt to cover the major categories of ingredients, organized according to their function in the product. Before we begin the review of specific ingredients, a few general comments about ingredient disclosure may be helpful. In the United States, manufacturers of cosmetic products are required to provide a complete disclosure of the ingredients used in their products. This requirement was established for the purpose of allowing consumers to monitor ingredients and to make an informed purchase. Package labeling guidelines require listing ingredients in descending order of weight percent. One exception is for ingredients used at levels of 1% or less. Such minor ingredients can be listed in any order. Since many of the ingredients used in hand and body lotions are complex or ill defined chemical entities, a standard nomenclature has been developed by the Personal Care Products Council (PCPC; formerly the Cosmetics, Toiletries, and Fragrance Association). Under the PCPC guidelines, manufacturers are obliged to use the assigned “International Cosmetic Ingredient” (INCI) name for all ingredients used in their products. Information about these ingredients, manufacturers and chemical structures are compiled.
in the PCPC International Cosmetic Ingredient Dictionary, which
is a highly recommended resource for cosmetic formulators.

Ingredient Classes

Water

This ingredient can be found at the beginning of nearly all
ingredient statements for hand and body lotions since it typi-
cally makes up 70% or more of the formula. Water has two
important functions in a hand and body lotion. First, it is the
vehicle by which many other ingredients are delivered to the
skin. Second, water can be viewed as an active ingredient in
the sense that it hydrates the skin for a short time, usually less
than 15 minutes, before evaporating. Although the PCPC does
not recognize the use of any particular type of water (such as
“purified water”) for the purpose of ingredient labeling, most
manufacturers do use treated water. They use water that is
softened or deionized (demineralized) water in their products
to avoid any interactions between calcium, magnesium, and
iron ions and other components in the formula. It is also
customary in the industry to process the deionized water to
remove problematic microorganisms. Since the water
concentration is transient after application and quickly
evaporates, materials that are minor components of the
formula become concentrated on the skin. This fact is often
forgotten when determining the benefits and risks of these
minor ingredients. Emollients An emollient can be defined
as an ingredient that softens the SC. Emollients used in
hand and body lotions are frequently oily materials that
help plasticize dry skin either by direct interaction with the SC or by providing an occlusive barrier that traps water from the underlying skin strata. However, glycerin has a similar skin softening effect. The plasticized SC is more flexible and a surface that is more uniform, which consumers perceive as smooth and soft.

Historically, lanolin was one of the first commercial emollients used widely by the industry. It was a prominent ingredient in apothecaries from the 1920s to the early 1960s. Pharmacists used lanolin as a base for compounding ointments. It has the unique ability to absorb up to 30% of its weight in water. It is a refined portion (deodorized and bleached) of raw wool wax. Wool wax is the fatty, waxy residue separated from the washings of sheep’s wool, which yields a complex mixture of semisolid oils, fats and waxes. As an emollient, lanolin provides a strong occlusive effect when applied to skin and may also directly plasticize the SC. Lanolin, its constituents and derivatives are still used in some hand and body lotions, but have largely been replaced by other emollients because of its reported sensitization potential. These adverse reactions may be due to the presence of low levels of alkane-a,b-diols and alkane-a, o-diols (3). Pesticide residues were an issue for lanolin, and the U.S. Pharmacopoeia monograph specified limits for organic pesticides (4). This change in the monograph has forced manufacturers to commercialize a higher purity of an old emollient. Two of most common emollients used today are mineral oil and petrolatum, which are hydrocarbon based materials derived from petroleum. Petrolatum, in particular, resembles lanolin in its physical characteristics and its occlusive effect on the skin. In addition to forming an occlusive barrier, Ghadially et al. (5) showed that petrolatum penetrates into the intercellular lipids of the SC. Kligman (6) reported that petrolatum was very effective at reducing observable skin dryness and preventing its reappearance.

Compositionally, the only difference

Table 33.1 Leading Hand and Body Lotions in the United States

<table>
<thead>
<tr>
<th>Brand</th>
<th>Manufacturer</th>
<th>Emulsion type</th>
<th>Key moisturizing ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jergens</td>
<td>Kao Brands Company Cincinnati, Ohio</td>
<td>Oil in water</td>
<td>Glycerin, petrolatum, mineral oil, Nonionic emulsifiers</td>
</tr>
<tr>
<td>Vaseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensive Care</td>
<td>Cheseborough-Ponds (Unilever) Trumbull,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Several brands have many variants—the “key ingredients” are a composite between variants. Between mineral oil and petrolatum is the number of carbons in the hydrocarbon chains with mineral oil having fewer carbons. Mineral oil is less occlusive, but has better spreading properties and is generally believed to have a less greasy feel on the skin compared with petrolatum. Silicones are a class of synthetic polymers that are also widely used in hand and body lotions. Most silicones are used for their good spreading and detackifying properties as well as their emolliency. They also form good barriers to environmental agents and often are the principle ingredient in skin protective products. Common examples are dimethicone and cyclopentasiloxane. Another class of emollients is triglycerides, which are derived from animal fats or vegetable oils. These oils are usually named according to the original source such as sunflower seed oil. Triglycerides (oils) contain approximately 5% free fatty acids. Many triglycerides contain essential fatty acids. Essential fatty acids are unsaturated fatty acids that cannot be synthesized by the body yet are required for maintaining the SC barrier function. Experiments have shown that when EFAs are withheld from rats’ diet, their skin becomes scaly and water barrier function is compromised (7). Healthy skin can be restored by topical application of triglycerides that are rich in EFAs. Similar results were observed in human patients whose lipid intake had been
reduced because of stomach surgery (8). Processing of triglycerides is a major industry. Triglycerides as neutral fats and oils are hydrolyzed to form fatty acids, fatty alcohols, and a predominant raw material in the manufacturing of soap. The hydrolysis produces monoglycerides and diglycerides, which are also used in emulsion products as a secondary agent for stabilizing the suspension. The use of unsaturated triglycerides in a hand and body lotion can create problems due to the susceptibility of these oils to oxidation, producing discoloration and off odors (rancidity) over time. To prevent this oxidation, stabilizers such as antioxidants, for example, tocopherol (vitamin E), BHA, or BHT, chelators, for example, EDTA salts, are often added to the formula. Triglycerides may be processed to provide a large variety of other emollient ingredients. Glycerides are used not only for emolliency, but also for their ability to stabilize the lotion by emulsification (see section “Physical Structure of Hand and Body Lotions”). Examples of glycerides are glyceryl stearate (monoglyceride), glyceryl dilaurate (diglyceride), and palm oil glyceride (mixed glycerides). Fatty acids are also processed to produce fatty esters. Numerous types of fatty esters are used in hand and body lotions. Some common examples are isopropyl myristate, isopropyl palmitate, octyl hydroxystearate, and cetyl palmitate. Humectants Humectants are water-soluble organic compounds, typically polyhydric alcohols, which have an affinity for water. The most common humectant is glycerin, but others include sorbitol, propylene glycol, dipropylene glycol, and butylene glycol. Once it was believed that these ingredients helped to moisturize the skin simply by binding additional water in the SC, thus plasticizing the SC and reducing the rate of evaporation. However, within the last 20 years, two additional mechanisms by which glycerin may moisturize have been proposed. Froebe, Matti and their colleagues showed that glycerin at low humidity can prevent the conversion of liquid crystals in the intercellular lipids to a solid, rigid crystal within the SC (9,10). The solid crystal is more readily removed by environmental factors, for example, cleansing, and provides less resistance to water loss. This effect may be responsible for the improvement in barrier function observed when glycerin (and possibly other humectants) is applied to the skin. Rawlings et al. showed that glycerin is able to promote normal desquamation by enhancing the activity of the proteases that degrade desmosomes (11). It is likely that all three mechanisms occur in the SC simultaneously. Emulsifiers Classically, these are surface-active ingredients, which are used to promote temporary mixing, and suspension of the
discontinuous phase (often oils) into the continuous phase (usually water). This will significantly slow the rate at which the two phases separate (Fig. 33.1). Conventional emulsifiers are often classified on the inherent charge associated with the surface-active ingredient. The classes are anionic (negative charge), cationic (positive charge) and nonionic (no charge/neutral). Figure 33.1 (A) Emulsifiers reduce the rate at which the oil and aqueous phases separate. The left-hand bottle contains an emulsifier with the oil and aqueous phases, whereas the right-hand bottle contains no emulsifier. After mixing the system on the left separates more slowly. (B) Emulsions are opaque systems (left) compared with an unemulsified two-phase oil/water system (right). The anionic emulsifiers were widely used for many commercial moisturizers. In most early oil-in-water (o/w) emulsions utilized a soap (anionic) formed in situ by neutralization of a fatty acid with a metallic hydroxide or an amine.

The common material used as a soap emulsifier is neutralized stearic acid. The anionic emulsifiers tend to be more irritating and their level of use should be balanced between having a product that is stable yet nonirritating to skin. Nonionic emulsifiers are probably the most commonly form used today. They produce stable and nonirritating emulsions or suspensions. The cosmetic formulator again will use these materials judiciously to maintain the desired properties without adding excess amounts of the surface-active agents.

Since these emulsifiers are surfactants, they have the potential to be irritating to the skin and any excess adds more cost to the formula. Common nonionic emulsifiers are ethoxylated or
propoxylated fatty alcohols, such as ceteareth-20 or steareth-2. The third class, cationic emulsifiers has become more widely used for moisturizers that are more therapeutic or long lasting. The cationic products are substantive to the SC. The SC surface is negatively charged from the fatty acids and basic amino acid residues and therefore a positively charged droplet is attracted to the skin. These types of emulsions resist wash-off with water and possess different esthetics. Common cationic emulsifiers are the long-chained fatty alcohols bonded to quaternary nitrogen, such as distearyldimonium chloride or behen trimonium chloride. Recent advances in polymer science have now created a quasi fourth class of emulsifiers. The new emulsifier is based on a hydrophobically modified polymer poly (2-acrylamido-2 methylpropanesulfonate), which is also known as AMPS. It is an amphiphatic and when a nonionic emulsifier is added the emulsion yields a stable o/w emulsion. Most suppliers of polymers for personal care products now have variations of the AMPS copolymers within their product line (12).

Water-Soluble Polymers (Thickeners and Conditioners)

Common additives to emulsion products are water-soluble
polymers. The polymers can be synthetic or natural. The most common class is the acrylates. These polymers are synthetic with an anionic charge. Some common examples are acrylates/C10-30 alkyl acrylates cross-polymer and carbomers. Acrylic acid polymers often require neutralization with a base to realize their benefit in emulsion products. The base neutralizes the pendant acid chains allowing them to “unfold” creating spoke-like projections, which form an intricate network. The network builds viscosity and resists separation of the emulsion phases. There are many water-soluble polymers that are derivatives of cellulose. The cellulosic polymers possess an anionic or nonionic charge and numerous grades with various properties are commercially available. The commercial grades vary in molecular weight, ether linkages and electrolyte tolerance. Examples of common cellulosics are: sodium carboxymethyl cellulose, hydroxypropyl methylcellulose, and hydroxyethylcellulose. There are also cationic water-soluble polymers both synthetic and natural. They are derivatives of cellulose, polysaccharides and modified acrylic acids. These polymers are usually restricted to cationic and nonionic emulsions because of the inherent instability that arises when added to anionic systems.
Polyquaternium-10, chitosan and derivatized guar gum are three such polymers frequently found in hand and body lotions. The water-soluble polymers enhance emulsion stability by preventing the small, suspended droplets from fusing together. The polymer network stearically restricts the movement of the dispersed phase and enhances the formula’s apparent viscosity. Minor Components Preservatives and fragrances. Although they make up a very small percentage of the total formula, these ingredients are of concern to dermatologists as they cause many of the sensitization reactions from lotions that require medical attention (13). Indeed the mixture of fragrances used in patch testing has one of the highest incidence rates observed for cosmetic ingredients. Consumers’ recognition of the association between fragrance and adverse reactions has prompted many manufacturers to develop unscented products. Their increasing popularity has led some manufacturers to include various botanical extracts, which technically are not fragrances, yet still include many of the same chemicals found in certain fragrances. The European Union requires common fragrance ingredients that are believed to be allergens to be declared in the ingredient statement when exceeding minimum thresholds established. This is 10 ppm for leave-on and 25 ppm for wash-off products. Preservatives are included in hand and body lotions to prevent the growth of microorganisms, specifically bacteria, mold and yeast. These are necessary for several reasons. First, most hand and body lotions contain a high percentage of water, which makes them a good growth media for these microorganisms. Inadvertent contamination by consumers during use can lead to rapid bacterial growth and spoilage of the product. Further, if the growth of opportunistic pathogenic bacteria such as pseudomonas is not prevented, blindness could result when applied to compromised skin or near the eye. Given the need to prevent growth of microorganisms in their products, manufacturers use a variety of biocide and biostatic agents in sufficient concentrations to provide a product that does not allow for active growth. In other words, the preservative system is designed and tested to withstand multiple contaminations so that any microorganisms introduced into the product are either killed or prevented from actively multiplying. These agents are most often used in various combinations to provide effective preservation against a broad spectrum of bacteria and mold. The preservatives are also an ingredient class, which receives a significant amount of consumer concern. In today’s environment misinformation can often be
represented as scientific data. Unfortunately, the majority of consumers do not have the training to scrutinize data and determine its scientific validity but they do understand fear and wish to avoid harm to themselves and their loved ones. This has been the situation with the common biocides in personal care products and especially parabens. With consumer access to the internet, many materials can be erroneously classified as dangerous. Our challenge as an industry is to counter and correct consumer misperceptions. To help in this process the PCPC has launched a website (www.cosmeticsinfo.org) that provides accurate information on the safety of cosmetic ingredients. The following is a partial listing of some of the common biocides used in hand and body lotions—preservatives that work by releasing formaldehyde (formaldehyde donors): 1 DMDM hydantoin 1 Diazolidinyl urea 1 Imidazolidinyl urea 1 Quaternium-15 Preservatives that work by mechanisms other than releasing formaldehyde are as follows: 1 Parabens (esters of P-hydroxybenzoic acid)—the most common are methyl paraben and propyl paraben, but other esters are also used 1 Methylidibromo-glutaronitrile 1 Benzyl alcohol 1 Methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) 1 Ethanol 1 Phenoxethanol 1 Iodopropynyl butylcarbamate Skin care additives. Many lotions have cosmetic materials added at low levels for marketing purposes, that is, to persuade consumers of additional benefits from these ingredients and to buy the product. In these cases the moisturization benefits that consumers require are delivered by the overall product. However, in the last few years, additives have been identified that improve the appearance and feel of the skin over the vehicle alone. These include AHAs, retinol and ceramide analogs (14,15). Imokawa et al. showed that ceramide analogs increase the water holding capacity and barrier function especially of damaged skin. Stiller et al. showed that 8% lactic or glycolic acids reduce the signs of photodamage compared with a vehicle after 22 weeks of treatment. However, these levels of AHAs have also been shown to increase the skin’s sensitivity of the sun (16). Physical Structure of Hand and Body Lotions Overview Most hand and body lotions are emulsions. A simple definition for an emulsion is a thermodynamically reversible suspension. The insoluble ingredients are dispersed in a vehicle (usually water). The vehicle is the continuous phase and the suspended droplet or particle is the discontinuous phase. The particle size of the suspended droplet in most emulsions occurs in the range of 10 to 20 mm, which are not visible with the human eye but do effectively scatter light. This gives these products their characteristic opaque, white appearance (Fig. 33.2). Hand and body lotions can be further
characterized as being one of two emulsion types. The first type of emulsion, which is by far the most common, is referred to as an o/w emulsion, often abbreviated “o/w.” This type of emulsion consists of tiny droplets of oils and/or waxes dispersed in water (the continuous phase). The second type of emulsion takes the opposite form: droplets of water dispersed in a mixture of oils. This is referred to as a water-in-oil (“w/o”) emulsion. In addition to the binary (o/w or w/o) emulsions, there are more complicated tertiary emulsions, which will be discussed briefly at the end of this section.

Oil-in-water emulsions. This is the typical form of emulsion used in hand and body lotions. The water-insoluble ingredients (oils) are the emollients that are typically used in the range of 5% to 25% of the total formula, and the fragrance. The water-insoluble ingredients are dispersed into the aqueous phase, that is, water with all of the aqueous soluble materials, for example, humectants. In an o/w emulsion, the emulsifiers have two important functions. First, the emulsifiers act at the interface between the oil and water phases to reduce the energy required to overcome the inherent surface tension of water. By reducing the required energy, a fine dispersion of the oil ingredients into the water is easily obtained. The second function of the emulsifiers is to stabilize the emulsion, retarding the natural tendency of the oils to separate from the water phase of the formula. Emulsifiers stabilize the formula by forming a film (“coating”) around each oil droplet and preventing it from coalescing with other oil droplets and thereby growing in size. Preventing growth in droplet size is critical for stabilizing an emulsion. The appearance of large droplets would compromise the lotion’s smooth texture and appearance. In terms of esthetics, o/w hand and body lotions can range from very “light” (low oil content) to heavy (high oil content). The skin feel of the product during rub in and after drying is affected not only by the amount of oil, but also the types of the emollient oils used in the formula. For example, if the emollient oil mixture is composed mainly of mineral oil, the...
the use of emollients like lanolin or petrolatum gives a heavier
“greasy” skin feel. o/w emulsions may be better able to deliver water-soluble
materials to the skin. Sah et al. showed enhanced delivery of lactic
acid to the skin from an o/w emulsion compared with a w/o
emulsion that had a similar composition (17). A tertiary
w/o/w
emulsion (see below) showed an intermediate rate of
delivery. Water-in-oil emulsions. This type of emulsion is
much less
common than the o/w type for several reasons. One key reason
is esthetics. To have enough emollient oil to surround the
water, a relatively large percentage of oil is required, usually
in excess of 25%. Thus it is very difficult to formulate a
w/o
hand and body lotion with a light skin feel. Another reason
w/o emulsions are not common is they are more expensive to
manufacture than o/w emulsions. Oils are more expensive
than water and increasing the oil content will increase
formula
cost. Additionally, to produce and stabilize w/o emulsions,
special emulsifiers are necessary, which generally cost more
than o/w emulsifiers. Recent advances in silicone
technology have created a
new type of w/o emulsion that has a higher percentage of
water. The silicone emulsifiers facilitate the formation of a
monolayer of oil surrounding the water droplet. This allows
the oil percentage in the formula to be in the range of 10% to 15%, which is equivalent to a conventional o/w emulsion. The benefit of the silicone based o/w emulsion is that when it is applied to the skin, it is resistant to wash-off. This type of technology is ideal for long-lasting sunscreen products particularly when swimming. For commercial hand and body lotions, simple test will often determine if the emulsion is o/w or w/o. If the lotion rinses away easily from the skin in running water, it is probably an o/w. If the product will not rinse away and leaves an oily shine on the skin, it is probably a w/o. In the laboratory an electrical bridge can be used to differentiate the two types of lotion. O/w emulsions with their continuous aqueous phase conduct electricity well. In contrast w/o emulsions, which have a continuous oil phase do not conduct electricity. Complex emulsions. In addition to the binary emulsion systems already discussed, there are more complicated emulsions, which have been developed for use in personal care products. One such system is the w/o/w emulsion where a water phase is first dispersed and stabilized into an oil phase, and this w/o emulsion is in turn dispersed into a second
water phase. The purpose of this elaborate emulsion structure is to protect water-soluble ingredients by sequestering them inside the oil phase where they would not come into contact with other ingredients in the second water phase that may degrade them. Examples of ingredients, which might require such protection, would be biological materials such as enzymes.

Assessing Moisturizer Efficacy

Overview

The primary use of hand and body moisturizers is to alleviate skin dryness and irritation and prevent their return. Measuring these effects, both from a consumer and an objective perspective are primary objectives for assessing a moisturizer's efficacy. Clinical methods with controlled application have been developed that assess dry skin and irritation or their absence by visual scoring by a trained observer, using biophysical measurements of the skin and by panelists’ self-assessments. However, clinical efficacy alone is not sufficient to make a product commercially successful. To appeal to consumers, the lotion must be both efficacious and esthetically pleasing, that is, pleasantly scented (or unscented) and have acceptable tactile characteristics during and immediately after application. Clinical evaluation of moisturizer efficacy Alleviating dry skin

Clinical evaluation is an important component in the measurement of moisturizer efficacy. The visual assessment of skin dryness is a direct link to the perceivable benefits of "moisturization" that consumers readily
recognize. Signs of dry skin include flaking and scaling, fine dry lines, rough texture, ashiness, and skin cracking. Figure 33.3 shows the different levels of skin dryness observed in clinical studies. In many studies, visual assessments are supplemented with instrumental measures of skin hydration, surface topography, or elasticity. These instrumental measurements are more easily standardized than observer assessments and each will provide an objective assessment of a particular cosmetic benefit. There are a variety of methods used to assess the ability of moisturizers to alleviate dry skin. These include the single application test and the regression test developed by Kligman and later modified by others (6). Typically, these studies start with dry skin, frequently on the legs, and then the skin is treated. In the single-application test, the condition of the skin can be reassessed as little as 2 hours after product application and at subsequent time points, some even beyond 24 hours. It is important to include time points of two hours or greater post application, as many lotions contain water that rapidly evaporates. This is usually completed within two hours. In these studies, moisturization is frequently assessed by electrical measurements or by observer scoring. The regression test was developed by Kligman to assess the effects of both products and their constituents on dry skin. Test material (2 mg/cm²) is applied to the lower legs of 12 to 30 female panelists twice daily for up to three weeks (Fig. 33.4). The visual dryness was assessed prior to treatment (baseline) and at the end of each week. Panelists started with dry skin and the improvement in dryness from baseline was the measure of moisturization efficacy, or the relief of dryness. Using the regression test, Kligman showed that hydrophobic oils, such as mineral oil or olive oil, alone had little ability to alleviate dry skin. The efficacy of these oils was enhanced when they were formulated with hydrophilic materials into cold creams. Kligman’s data suggested that the moisturizers composition could have a greater influence on its efficacy than the number of applications (dosage). He demonstrated a large range in the ability of ingredients to alleviate dryness, but increasing the dosage had limited effects especially beyond four applications a day. The Kligman regression protocol has been modified by several groups to meet different assessment needs. Boisitis et al. (1989) (18) applied more rigorous conditions to reduce the experimental variability and increase test sensitivity. The most notable modifications include the following: 1. Conducting the test only if the temperature and humidity were below 45°F and 40%, respectively 2. Throughout the study, washing test sites with ivory soap 1 prior to lotion
application to increase the propensity of the skin to dry out. Requiring leg shaving no more than two times a week and no later than 30 hours before an observation. Biosits et al. claimed the refined methodology allows for better differentiation between products. Another modification has been dubbed the miniregression. Prall et al. (19) reported a regression study conducted using a four-day treatment followed by a six-day regression phase. The protocol was similar to Kligman’s method as the applications were conducted twice daily with a dose of approximately 2 mg/cm². Product efficacy differences were determined during regression in the following descending order of efficacy: 5% lactic acid lotion > o/w lotion > placebo. Grove et al. (20) utilized the same miniregression time frame to examine the efficacy of marketed moisturizers. Clear differences between each of the two products and between the treated sites and the untreated site were observed (Fig. 33.5). In this study skin conductance was used to confirm the observer scored dryness. In a similar study of moisturizers containing glycerin, Appa et al. (21) utilized a seven-day treatment period followed by a seven-day regression. These investigators demonstrated Figure 33.3 Different levels of skin dryness observed in a moisturization study, utilizing a 0 to 4 scoring scale. Figure 33.4 Petrolatum is more effective than lanolin in alleviating dry skin and preventing its return. (A) Effect of petrolatum on dry skin. (B) Effect of lanolin on dry skin. The Kligman regression test was used: test material is applied to the lower leg daily for three weeks; after treatment stops, the legs are followed until the skin’s condition regresses to its original level of dryness. Regression takes longer for petrolatum than for lanolin. Source: From Ref. 6.

that the moisturizer efficacy increased with the concentration of glycerin. A plateau was reached with a 25% glycerin lotion being similar in efficacy to a 40% glycerin cream. These results could also relate to the ability of the products to deliver glycerin into the skin, or to the effect of ancillary ingredients. A third adaptation of the regression test utilizes the lower arms, either the volar or dorsal aspect. Prall et al. (19) used a
miniregression design to compare the performance of two
lotions on the legs using a controlled lotion dosage with per
formance on the outer aspect of the arms using ad libitum
dosage. They concluded that either method accurately
predicted the directional efficacy of the lotions. Grove
(20) originally used the miniregression methodology to
examine lotion efficacy on the volar forearm using the
instrumental method of skin conductance to evaluate
performance. Preventing the return of dry skin Effective
moisturizers are able to prevent the return of dry skin;
even after product applications have stopped. The residual
effect is important to consumers who wish to maintain their
skin’s good condition until the next convenient application
time, even though it is still exposed to the stresses that
causd the dryness in the first place. Both the single
application test and the regression test are able to do
this. An effective product has moisturized the skin, and
the decay of the benefits can be measured after application
ceases. A slow return to baseline is indicative of an
efficacious product with lasting effects. Figure 33.4 shows
the data obtained by Kligman for two cosmetic moisturizing
ingredients, petrolatum and lanolin. The data clearly
demonstrate product efficacy during the treatment and
regression phases. During the regression, persistent
moisturizing effects are demonstrated 21 days after the
last treatment with petrolatum but only two weeks for
lanolin. A more direct approach to measure the prevention
of dry skin was developed by Highley et al. (22). In the
Highley hand wash protocol, the analysis begins with
nondry, healthy skin. The panelists wash their hands with
bar soap for one minute five times a day over a four-day
period. One hand remains otherwise untreated, while lotion
is applied to the other hand after the first four washes of
the day. The condition of the skin is assessed by a trained
observer and by instrumental measurements before the first
wash of the study (baseline) and approximately one hour
after the last (fifth) wash each day. Results show that
ingredients such as petrolatum and effective commercial
lotions can prevent the induction of dry skin, which can be
considerable on the untreated hand (Fig. 33.6 and Table
33.2). By determining the difference between the treated
and untreated hands, more than one product or ingredient
can be compared. Although panels as small as 5 were used by
Highley, it is more usual to use panels of 15 or more to
enable the data to be statistically analyzed. Recently the
test has been modified so only a defined area of each hand is treated with lotion. The surrounding area acts as that hand’s “no-product” control. Reducing primary irritation An adverse environment or working conditions may drive the skin beyond dryness (xerosois) into the realm of primary irritation and dermatitis. In recent years many scientists and dermatologists have realized that moisturizers may reduce the propensity of the skin to develop primary irritation and help accelerate it reduction should it occur. A review by Zhai and Maibach gives a good overview on the subject (24). The prevention of irritation and its reduction when it does occur can be modeled separately. Hannuksela and Kinnunen (1992) (25) performed a similar study using one-minute washes with dishwashing liquid, twice a day, on the arms over a seven-day period. The authors evaluated cleanser induced irritation using transepidermal water loss (TEWL) as a measure of SC integrity and LaserDoppler flowmetry to assess blood flow. They demonstrated that moisturizer application could prevent surfactant induced skin damage and accelerate repair compared with no treatment, but were unable to differentiate between products. Another approach was that of Loden and Andersen (26). They used occlusive patching with 0.5% SLS to generate primary irritation, then applied different lipids to accelerate the rate at which the skin repaired itself. They utilized observer Figure 33.5 Effect of two lotions on skin dryness as assessed by a miniregression test. (A) Effect of products on observable dryness.

(B) Effect of products on skin conductance: product A, product B, untreated. Source: From Ref. 20. and instrument measures of erythema to assess the skin’s response and hydrocortisone as the positive, effective, control. They found that soy sterols that had a beneficial effect. This model has been modified using 5% soap to cause the irritation and evaporimetry to assess SC barrier function. In this case 1% hydrocortisone (an OTC drug in the United States), was effective at reducing erythema but the results on barrier function appeared to be dependent on the vehicle rather than the hydrocortisone itself. Some high glycerin containing moisturizers are also very effective at accelerating erythema reduction and restoring barrier integrity (27). This is consistent with the observations of Fluhr and his colleagues on the restorative properties of
glycerin. Preventing primary irritation The ability of moisturizers to prevent detergent induced skin dryness has important public health implications. Dermatitis is a leading occupational disease and professions that involve frequent hand washings are at particular risk. Frequent, effective moisturization may provide a significant preventative benefit. However, moisturization or using a barrier cream does not provide sufficient benefit alone. Their use must be part of a comprehensive education program to be able to provide a tangible benefit in the workplace (28). There are two main models that assess the ability of a moisturizer to prevent primary irritation. They are the occlusive patch test and a repeated washing test. In the former, test products are applied to the skin and allowed to dry—about 30 minutes. Occlusive patches with dilute SLS solutions are applied for 24 hours and then removed. Twenty-four hours later, primary irritation is assessed by a trained observer, by colorimeter and by evaporimetry. A no-product site is used as a control. High glycerin cationic emulsions were shown to be more effective at preventing the induction of primary irritation than hydrocarbon based moisturizers that form occlusive barriers (27). Similar methods have been utilized to assess the ability of barrier creams to reduce or even prevent the induction of irritation (29). For instance, Schentz et al. (30) standardized the repeated short-term occlusive irritation test (ROIT) to assess the ability of test barrier creams to reduced irritation induced by toluene or 0.5% aqueous solutions of SLS. Sites on the volar forearm were pretreated with the test creams at 25 mg/cm². Ten minutes later the irritants were applied under occlusion for 30 minutes. This was repeated 3.5 hours later, and the twice a day treatment was used for two weeks (excluding the weekend). All four test centers found that the petrolatum based creams were effective at reducing SLS induced irritation as measured by TEWL rates and erythema measurements (both trained observer and colorimeter), but appeared to have a less consistent protective effect against toluene, possibly because of the hydrophobic nature of both petrolatum and the solvent. Wigger-Alberti et al. (31) used a similar approach. They applied petrolatum to sites on the ventral forearm of 20 volunteers. Thirty minutes later, test irritants such as aqueous solutions of lauryl sulfate, sodium hydroxide and lactic acid as well as toluene were applied for 30 minutes. This process was repeated daily for two weeks. Assessments of skin condition by erythema scoring, chromameter, and TEWL demonstrated that petrolatum could reduce irritation although it appeared least effective against lactic acid. Instrumental evaluations of moisturizer efficacy Instrumental evaluation
of skin condition is often used to supplement to visual assessments in clinical moisturization protocols. They provide an objective method to evaluate a specific skin parameter. For example, Raman confocal microscopy and conductance/capacitance have been used as direct and indirect measures of skin hydration, respectively. TEWL is a measure of SC barrier function by measuring water flux from the skin. It must be emphasized that a single instrumental parameter should not be used alone as a measure of moisturization. Instruments Figure 33.6 Ability of petrolatum (A) and lotion (B) to prevent the induction of skin flaking by repeated washing with soap, petrolatum, and lotion, and no treatment. Source: From Ref. 23. Table 33.2 The Ability of Ingredients to Prevent the Induction of Skin Dryness due to Repeated Hand Washings with Soap

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Ability to prevent dryness (higher the score the more effective the ingredient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrolatum</td>
<td>54</td>
</tr>
<tr>
<td>Mineral oil</td>
<td>49</td>
</tr>
<tr>
<td>Glycerin (25% aqueous solution)</td>
<td>34</td>
</tr>
<tr>
<td>Sorbitol (25% aqueous solution)</td>
<td>14</td>
</tr>
<tr>
<td>Propylene glycol (25% aqueous solution)</td>
<td>1</td>
</tr>
</tbody>
</table>

Source: From Ref. 22.

measure a defined physical parameter, which may not always correlate with moisturization or skin condition. For instance, hydrophobic materials such as petrolatum, silicones or mineral oil that can be effective moisturizers reduce skin conductance immediately after application. This contradicts the usual interpretation of this parameter that correlates increased conductance with moisturization. Instead the bioinstrumental measurement should be used to support and expand on observer scoring and panelist self-assessment, and if possible multiple bioinstrumental methods should be used simultaneously. Several bioinstrumental methods will be briefly reviewed in this chapter. More thorough reviews of bioinstrumentation
are available in the literature (32–36).

Measuring Skin Dryness

Biophysical methods have been developed as alternatives to assessments by a trained observer. Chief amongst these is assessing skin dryness harvesting skin scaling with D-Squame sticky tape strips, then quantification by computerized image analysis (19,37). D-Squame tapes consist of clear plastic disks with a homogenous layer of adhesive on one side. The disk is pressed against the skin using uniform pressure. Scales on the surface of the SC are removed along with the disk. These scales can be readily visualized when placed on a black background and scored with a 0 to 4 analog scale or image analysis (19,36). Have analyzed D-Squame disks using image analysis. Prall’s quantization utilized reflected light from the scales. The analysis of Schatz et al. included both the area of scale coverage and the thickness of the scales to yield a desquamation index (DI). This approach appears to be superior to observer scoring as skin scales are readily obscured from trained observer by high humidity or products that matt the scales down but do not cause desquamation. However, as they are still present on the skin’s surface, they still can be harvested.
by the sticky tape and quantified. An ingredient or product that causes desquamation will lower the measured DI. This was demonstrated in a regression test that compared lotions C and E, with a no-product control. While the trained observer perceived few differences, both D-Squame and conductance demonstrated that product C was significantly more effective than lotion E or the no-product control (Fig. 33.7).

Assessing the Integrity of the Stratum Corneum’s Surface

Squamometry has been developed as a method of assessing the integrity of the corneocytes on the SC surface. D-Squame tape is used to harvest the surface corneocytes, which are then treated with a hydrophilic stain, such as polymultichrome stain (PMS). If the corneocytes are in good condition, they do not take up stain and remain relatively clear, and in large sheets. Damaged corneocytes appear in smaller clumps, and take up stain to give a purple color (Fig. 33.8). This can be quantified by colorimetry. Since it is measuring damage to the surface corneocytes, squamometry is a very sensitive measure of damage to the skin’s surface. Previously, Simion et al. showed that increased color uptake correlated to the sensory irritation produced by
different cleansing bars, before any clinical signs were observed

(38). Similarly, Pierard et al. showed that squamometry could
demonstrate that fabric softeners could reduce damage on
sensitive skin (39). Dry skin, as a failure of the normal
desquamation process, resulting in damaged corneocytes
remaining on the surface. There is much staining of the
harvested cells. An effective moisturizer causes
desquamation, removing the damaged cells, so that the
surface corneocytes are in good condition and staining is
reduced. Under the microscope less damage to the
corneocytes is observed (Fig. 33.8). Measuring Skin Surface
Topography New optical methods have been developed to
assess the changes that a lotion can produce on skin
topography more quickly and with less damage than silicone
replicas previously used. One example is the Visioscan that
rapidly measures and quantifies skin dryness, smoothness,
volume, and texture utilizing the “surface evaluation of
living skin” (SLES) parameters (40). It uses UVA light
sources to illuminate a small area (6-8 mm) uniformly and
then the light reflected by the SC is captured by CCD
camera with a high resolution black and white chip. When
skin is hydrated using a moisturizer the flakes at the
skin's surface are no longer observed (Fig. 33.9).
Spectroscopic Methods for Evaluating Skin Microstructure
Different components of the skin such as hemoglobin,
melanin and collagen have the ability to absorb light at
different wavelengths. By capturing and analyzing the
reflected light for the different chromophores at different
points across a large area, it is possible to build a map
of the underlying surface structure down to a depth of
about 2 mm. Using this method, Matts et al. showed that as
the skin ages the distribution of both hemoglobin and
melanin in sun exposed skin becomes more diffuse, less
homogenous. This could be used to measure the effects of
antiaging lotions on the skin (41). Measuring Water Content
of the Skin In recent years, direct measurements of the
skin’s water content have been developed. A leader in such
methods is confocal Raman microscopy. This method is able
to measure the water content at different depths of the
skin. Water being present in such large amounts, is a
dominant contributor to the skin’s absorption spectra.
However, other molecules can be observed, especially if
they have distinct absorption peaks. The use of deuterated
glycerin and lipids is one approach to measuring the
absorption of common skin care ingredients. Egawa and
Tagami used confocal Raman spectroscopy (CRS) to measure the effects of season age and body site on the water profile in the SC (42). They showed that the SC apparent thickness of the forearm was greater in older Japanese volunteers compared with younger ones. This was not observed on the cheek. Although the humid Japanese summer resulted in an increase in skin capacitance, there was no change in the depth profiles for water in the SC. The capacitance change could be due to variations in the concentration of water binding molecules especially urea and lactate near the skin’s surface in the summer. In contrast, applying water soaked cotton wool to the skin for 15 minutes or more resulted in increasing water content especially close to the skin’s surface (the point of application). Crowther et al. examined the effects of lotions on the skin using confocal Raman microscopy together with optical coherence tomography (OCT) and skin capacitance (43). They showed that there was a strong correlation between the width of the SC measured by CRS and OCT: R² > 0.93. However, CRS was better able to measure SC width at body sites where it is naturally thinner, than OCT. When measuring the effects of three lotions on volar forearm skin after two weeks of treatment and one week of regression, Crowther et al. showed that only one effectively raised the water content of the SC, whereas skin capacitance increased for all three. It was hypothesized that the increase in capacitance was due to glycerin from the lotions being absorbed into the skin. Additionally, confocal Raman microscopy can be used to measure the absorption rate and depth of many compounds applied to the skin, especially those that have absorbance peaks that are different from those of the skin’s endogenous absorption spectrum. Figure 33.7 Effect of lotions E and C on (A) observable dry skin in a miniregression test, (B) the skin’s desquamation index in a miniregression study, and (C) the skin’s hydration as measured by conductance.

Figure 33.8 Effect of lotion in preventing the reduction of surface corneocyte integrity. With lotion: (A) stained D-Squame 1 disk and (B) magnification of ×100. Without lotion: (C) stained D-Squame disk and (D) magnification of ×100. Unfortunately, the confocal Raman microscopy instrument is still very expensive. Therefore in routine moisturizer efficacy testing, indirect electrical measurements still have an important role. The four most common instruments for measuring the skin’s electrical properties are the Skicon 1 and Dermalab 1, which measure skin conductance, and the
Corneometer 1 and Nova TM Dermal Phase Meter, which measure skin capacitance. These parameters that are not identical have been shown to strongly correlate to each other in moisturizer studies \([R^2 \approx 0.92 (44)]\). Conductance measures the ability of a very small electrical current to pass through the skin, whereas capacitance measures the ability of the skin to hold a charge. However, in practice the two parameters increase with hydration level produced by increasing the water content of the skin. Conversely, artificially or weather induced dry skin holds less water and also has air pockets between the scales, the latter causing a white appearance. These lower both conductivity and capacitance. Measurements are rapid, in the order of seconds, and reproducible. However, it is important that the subject is in a relaxed state in a climate controlled environment to remove any contributions from sweat or from variable environmental conditions. Another source of error can result from product residue (45). Measurements taken immediately after lotion application will be especially high before the water from the vehicle has completely evaporated. In the opposite scenario, the presence of a hydrophobic product residue, such as petrolatum, will lower the measured value even if the hydration level of the skin is higher.

Skin Elasticity

The elasticity of skin is widely recognized to decrease with chronological and photodamaged induced aging and has been shown experimentally to increase with hydration level (46). Though many devices have been used to measure elasticity in vivo, only a few are commercially available (47,48). The Dermal Torque Meter TM was designed to apply a torsional force (twist) in the plane of the skin and measure the deformation and relaxation of the affected skin. The Cutometer 1 and Dermaflex 1 both apply a vacuum suction perpendicular to the skin surface and measure the resultant displacement and relaxation of the skin, that is, snap back. Regardless of whether the force is applied perpendicular or parallel to the plane of the skin, the data are described by the same standardized parameters (Fig. 33.10). That different instruments deforming the skin in different ways use the same parameters has caused much confusion in the past. There is a rapid initial deformation \((U_e)\) as the force is applied followed by a slow viscous "creep" \((U_v)\) if the applied force remains constant. As the skin is moisturized and becomes more plastic and flexible, both parameters increase. The final (total) deformation is termed \(U_f\).

When the force is released, the skin relaxes rapidly \((U_r)\), though only partially, toward the preforce position. Over a longer period of time the skin relaxes back to its original state by viscous flow \((U)\). All of these parameters are dependent on the thickness of the skin assessed. This
in turn is dependent on the size and geometry of the probes utilized and how well the probe isolates the measurement site. Ideally, for moisturizers the probes should assess the SC only. As this is difficult to accurately assess the elasticity data are frequently presented as ratios. The ratio \(\frac{U_r}{U_f}\) is called the biological elasticity.

Although measurements can be completed within seconds, the techniques are not completely noninvasive. The skin may take up to an hour to completely return to its baseline values and in the case of the Dermal Torque Meter will undergo alterations from a tape-stripping effect of the adhesive used to attach the probe. An alternate approach to skin softness/elasticity is to use the “tactile sensor.” This instrument measures skin softness by a change in frequency of a probe tip that resonates in the kilohertz range. Upon application to a soft, readily deforming surface the probe is travels further and appears to slow (49). This results in a reduction in observed vibrational frequency. Figure 33.9 Effect of lotion on the appearance of the skin’s surface. (A) Before lotion application and (B) eight hours after lotion application.

Consumer Evaluation of Moisturizer Performance

Consumer testing is a vital tool by which industry assesses acceptability. Usage testing provides the most consumer relevant information available. Not only about moisturization performance, but also about the entire product’s esthetics such as fragrance, appearance as well as tactile properties including greasiness and spreadability. These studies utilize large panels, frequently hundreds of consumers who use the test moisturizer(s) for a designated period according to their normal routine. Once consumers have tried the product for themselves, they are debriefed with interviews and written questionnaires or in focus groups.
back on product attributes such as greasiness, stickiness, and afterfeel enables the cosmetic formulator to optimize the products to the needs of the target consumers. Product Evaluation by a Trained Expert Sensory Panel Since large scale consumer testing is time consuming and expensive, the intensity of product attributes including stickiness, greasiness and afterfeel be rapidly evaluated by a trained expert sensory panel. One such method is the skin feel spectrum descriptive analysis (skin feel SDA) used by Meilgaard et al. (50). This method outlines the product attribute descriptors and scoring scales used to evaluate moisturizers. An expert panel of 8 to 15 persons is required to complete many hours of training to ensure they can reproducibly quantify moisturizer and skin attributes such as spreadability, amount of residue and absorbency, which are scored using a 0 to 10 scale (Fig. 33.11). Once the panel is calibrated, they can be used to evaluate competitors’ products and optimize new formulas. It should be noted that

Figure 33.10 Parameters used in assessing the viscoelastic properties of the skin. Abbreviations: U_f, total stretch; U_e, immediate deformation; U_r, immediate relaxation; U_v, viscous stretch; U_r / U_f, skin elasticity ratio; R, residue.

Figure 33.11 Expert panel testing of lotions. (A) Product application. (B) Prototypical results for the sensory profile of two lotions: lotion A and lotion B. These panels measure attribute intensity only, and do not assess the preference of different consumer groups. Advertising Claims Made for Moisturizers Modern day hand and body moisturizers have been developed to meet the varied needs of today’s consumers. These products span the range from lightweight lotions designed to provide a pampering feeling for normal skin to heavy, greasy creams formulated to relieve severely dry skin. The manufacturers of these products make many claims concerning product efficacy. Some of the common descriptors found on hand and body lotion packaging are listed in Table 33.3 below. Any claim that is made on these packages must be supportable by the manufacturer. If the label is found to be false the product is considered to be misbranded under Section 601 of the Federal Food, Drug and Cosmetic Act.
A deceptive act or practice, that is, a false claim, is also illegal under Section 5 of the Federal Trade Commission Act (FTC). The industry is largely self-regulated by the National Advertising Division (NAD) of the Council of Better Business Bureaus through which competitors or outside agencies can challenge claims made in advertising. In deciding whether a claim has been adequately substantiated the NAD assesses three types of support: rationale, subjective data, and objective data (51). The manufacturer will use a combination of test methods reviewed earlier in this section, to provide the necessary support. THE TOXICOLOGY OF HAND AND BODY LOTIONS

Overview

Although cosmetic hand and body lotions are leave-on products, they have a low rate of adverse reactions in normal usage. Adams and Maibach (13) reported that cosmetics caused 5.4% of the contact dermatitis cases studied by the North American Contact Dermatitis Group (NACDG) from 1979 to 1983. Hand and body lotions were probably a small group within this total based on the type of product and body site of reactions. This is supported by more recent data from the U.S. Food and Drug Administration (FDA). They reported that for the years 1991 to 1994, hand and body lotions caused approximately three “possible allergic or other serious irritation” reactions for the first million units distributed. In contrast facial moisturizers caused six reactions for the first million units distributed and bath soaps caused 45–Cosmetic Product Experience Report Summary. This indicates that the hand and body lotions developed and sold by leading U.S. manufacturers deliver their benefits with little risk to consumers. However, even with minimal rates of adverse reactions, some consumers do experience reactions. This section will review the types of adverse reactions experienced by consumers, the materials that may cause the reactions and how industry tests for them. Most adverse reactions to hand and body lotions experienced by consumers are forms of primary dermal or sensory irritation. These are usually dependent on three factors. 1. The lotion’s composition 2. The condition of consumers’ skin 3. How consumers use the product Lotion Composition The first point appears self-evident. If a product does not contain any potential irritants, then it is unlikely to cause irritation. Lotion manufacturers strive to market nonirritating and nonsensitizing products. However, the addition of beneficial ingredients to lotions can cause adverse reactions. Such ingredients include sunscreens and AHAs that may cause sensory irritation such as facial stinging or burning, in about 15% of the population. Preservatives such as quaternium-15 and Kathon CG can potentially cause sensitization but are required to prevent
microbiological contamination of products. Such
contamination, especially by Pseudomonads, could pose a
greater threat to a larger number of consumers. Novel
delivery systems, skin protectants and antiirritants have
been used to reduce adverse reactions by limiting release
of, or penetration into the skin of potential allergens or
irritants. Responsible manufacturers seek to minimize these
risks for lotions, which consumers essentially regard as
being “risk-free,” while maximizing the benefits to their
consumers. Role of Consumers’ Skin Condition Most hand and
body moisturizers are well tolerated by the general
population as evidenced by the low adverse reaction rate
reported by the FDA. However, there are subgroups of
consumers that respond adversely to a product or
ingredient, more readily than the general population. There
are several different reasons for this phenomenon. People
with a damaged SC barrier due from preexisting trauma or
pathology may be more reactive, especially to marginal or
cumulative irritants. This group includes people with
atopic dermatitis, or chronic preexisting irritation. A
subset of the population experiences sensory irritation–
stinging or burning, when they apply lactic acid or
sunscreens to their facial skin. This sensory irritation is
distinct from detergent induced irritation. This conclusion
is based on the observations that sodium lauryl sulfate, an
irritating surfactant does not cause stinging (52) and
stingers to lactic acid, demonstrate a wide range of
irritation responses to lauryl sulfate (53). Finally,
people with a known allergy must avoid exposure to that
allergen. Listing the ingredients in all cosmetic and OTC
drug products sold in the United States facilitates this
process. If there are any questions, especially about a
fragrance component, the lotion manufacturer should be
contacted. The names of the contact persons for each major
U.S. manufacturer, is listed in the “CTFA on Call” book.
This is distributed annually to all members of the American
Academy of Dermatology. How Consumers Use the Product
Usually, consumers do not misuse hand and body lotions in
such a way that they are harmed. Most lotions are
relatively mild to the eyes and are not toxic when
ingested. However, this may not be the case for all
products, and it is advisable to contact the manufacturer
in case of a question. Table 33.3 Common Descriptors of
Moisturizer Efficacy Used in Advertising Action of
moisturizer Description of skin Other claims Controls dry
skin Heals dry skin Protects dry skin Relieves dry skin
Ends dry skin Severe dry skin Extra dry skin Overdry skin
Rough, dry skin Normal to dry skin Long-lasting relief Fast
relief Penetrates skin Soft, smooth, healthy skin Lasts up
to “x” hr

29. Frosch PJ, Kurte A. Efficacy of Barrier Creams (IV):

INTRODUCTION

The term cellulite, first used in the 1920s by Alquier and Paviot, defines a localized lipodystrophic disease, which affects more women than men. Nodular liposclerosis, edematofibrosclerotic panniculopathy, panniculosis, and gynoid lipodis
trophic are some of the other names proposed over the last decades instead of cellulite. The pathophysiological aspects of cellulite are still poorly cleared. Many predisposing factors seem to influence cellulite onset, including gender, heredity, race, body weight, and age. Hormones and impairment of both microvascular and lymphatic circulation are considered the most important etiological factors. Cellulite usually develops in particular anatomic sites such as lateral thighs and buttocks. The histopathological modifications that characterize cellulite involve the different “operational units” of the fatty tissue: the matricial-interstitial unit, the microcirculatory unit, the neurovegetative unit, and the energy-fatty unit. These alterations are accountable for the padded and orange peel appearance of the affected areas and induce irregular body profile. Cellulite represents an heartfelt esthetic problem for millions of women around the world. Various systemic and topical products as well as numerous medical procedures have been developed to resolve cellulite, very often with poor results and little scientific basis.

AETIOPATHOGENESIS

In 1922, two French doctors, Alquier and Paviot, were the
first
to describe cellulite as a nonphlogistic dystrophy of the
mesenchimal tissue, which implied accumulation of interstitial
liquids. They suggested that the disorder was a reaction to
stimuli of different origin: infectious, traumatic, toxic, etc. Since
then, many contrasting theories have been expressed to explain
the aethiopatogenesis of cellulite, which is currently often con
sidered a physiological phenomenon, especially in Anglo
Saxon countries. Among the different hypothesis, the theory proposed by
Curri has gained approvals and remains one of the most
popular ones (1). According to Curri, cellulite begins with
alterations of the precapillary arteriolar sphincter, as described
by Merlen, which induce capillary ectasia, increased capillar
d permeability with accumulation of interstitial liquid and
consequent intercellular edema. Edema provokes fibroblast
activation and proliferation, which cause hyperpolimerization
of glycosaminoglycans in the connective matrix of the subcu
taneous tissue. This phenomenon increases hydrophilicity of
the intercellular matrix as well as the interstitial osmotic pres
sure. These alterations induce tissue hypoxia, which results
Anisopoikilocytic adipocytes are hence surrounded by thickened fibrosclerotic septae; groups of adipocytes gradually form micronodules and subsequently macronodules. Around 85% of postpuberal women suffer from cellulite, independently of their weight. This is due to the anatomy of the subcutaneous fat, which is constituted by two layers divided by a superficial fascia. The areolar layer is located just underneath the dermis; in this layer adipocytes are large and arranged vertically. In the lamellar layer, which is the deeper one, adipocytes are small arranged horizontally. If weight increases, the lamellar layer enlarges. When cellulite occurs it is the superficial part of hypodermis that tends to protrude into the dermis. The areolar layer is thicker in women than in men and is under the control of estrogen. Hormonal factors seem to play a significant role in cellulite onset as well as in its evolution. Cellulite affects prevalently women, appears after puberty and worsens during pregnancy and contraceptive therapy; therefore cellulite is greatly influenced by estrogen. Estrogen acts on adipocyte increasing lipogenesis and hence causing adipocyte hypertrophy and anisopoikilocytosis, it promotes fibroblast proliferation and alterations in glycosaminoglycans and collagen, leading to fibrosclerosis. Insulin, prolactin and thyroid hormones are also involved in the pathophysiology of cellulite. Furthermore, recent investigations on the adipose organ have highlighted that adipocytes release several substances, which act in an endocrine or paracrine way as well as some so-called adipokine (2). On the basis of the new knowledge, it is clear that adipose tissue is not a passive organ but rather a dynamic organ able to interact with and regulate other cells such as endothelial cells. Cellulite development also depends on predisposing factors such as genetic, nutritional, lifestyle, and pharmacological factors. Sex is the most important genetic predisposing factor. On the basis of histological examinations, Nu¨rnberger and Muller have noticed that a female subcutaneous tissue presents some anatomical peculiarities such as fibrous bands whose course is perpendicular to the skin’s surface and which could be responsible of the “hill” profile of the dermohypodermic border whereas in men the fibrous septa present a different disposition, more oblique with reference to the skin (3). Furthermore, a recent study performed by means of magnetic nuclear resonance imaging (MRI) has confirmed that women with cellulite have constitutional characteristics of fibrous interlobular bands, which induce bigger and radial fat chambers (4). Caucasian women are more frequently
affected by cellulite than Asian or Black women. Genetic influences the number and the sensitivity of hormones receptors on adipocytes as well as the tendency to circulatory insufficiency. Nutritional factors are very important. As hyperinsulinemia stimulates lipogenesis, excessive intake of fats and carbohydrates contributes to cellulite onset and worsening. But although adiposity is linked to cellulite, MRI has demonstrated that, among women with body mass index over 30, there are women who do not manifest cellulite at all. Salt favors hydric retention and alcohol stimulates lipogenesis. Sedentary lifestyle contributes to cellulite as it is associated with ponderal increase and decreased activity of the muscular pumping in the lower limbs with consequent venous stasis. The muscular pumping activity is also influenced by the habit to wear tight clothes and high heeled shoes. Among drugs, estrogens, antihistamines, and b-blockers have shown to play a role in cellulite’s development. CLASSIFICATION On the basis of clinical and histological modifications that occur in the subcutaneous tissue, four stages of cellulite are distinguishable (5). Stage I In the first stage, the patient may be asymptomatic or only manifest a pale and pasty skin. Histologically, we can observe a thicker areolar layer, increased capillary permeability, anisopoikilocytic adipocytes, ectasic capillaries, and lipoedema. Stage II Clinical alterations are not clearly evident at rest but only after skin pinching or muscular contraction we can observe an orange peel appearance, with decreased skin temperature and elasticity. Histologically, the fibril network, which surrounds adipocytes, appears hypertrophic; there is an important microvessal dilatation, and there are microhemorrhages. Stage III In this phase, clinical changes are appreciable at rest with the characteristic orange peel aspect. On palpation, we can notice small lumps, hypoelasticity, and decreased skin temperature. This clinical picture histologically corresponds to anisopoikilocytic adipocytes encapsulated in micronodules, neofibrillogenesis, and dilation of small veins. Stage IV The clinical characteristics of the stage III are more evident, in particular there are macronodules due to the agglomeration of many micronodules. In this stage, cellulite may be painful because of the compression of the nerves by the nodules. According to skin consistency, we can distinguish four types of cellulite: hard, flaccid, edematous, and mixed (6). Hard cellulite is characteristic of teenagers and young women who regularly practice sport; at rest skin appears firm and compact and orange peel becomes evident only after pinching. On the contrary, inactive subjects usually show flaccid cellulite, which is associated to muscular hypotonia. In the edematous
form, lower limbs are globally enlarged and patients complaint sense of heaviness, cramps, and swelling.

NONINVASIVE TECHNIQUES TO EVALUATE CELLULITE The variety of anticellulite products and professional (surgical or not) approaches to treat cellulite is quite huge: ranging from topical products to oral regimens, from manual or mechanical massages to garments, we can find out many and many strategies to contrast such a condition, a borderline one with pathology. In general, the efficacy of cellulite treatments is often debated and objective studies are needed to claim support. Furthermore, it is very difficult to investigate cellulite by bioengineering methods. Thigh Circumference Measurements This traditional measure indicates the reduction of thigh circumference, which can be due to both the reduction of edema, and the effect on the fatty layer. It is recorded on hips, ankles and thighs as follows: 1. Hip: The tape measure is positioned around the hips, putting it finally on the superanterior iliac crest. 2. Thigh: The tape measure is placed around the thigh, marking the site of interest. 3. Ankle: The tape measure is placed around the ankle, exactly above the malleolar bone (7). Ultrasonography Ultrasound is used to study the thickness and the quality of the connective tissue and the edematous component of cellulite. Frequencies between 10 and 15 MHz should be chosen for skin examination. With higher frequencies it becomes more difficult to view in depth (8). Laser Doppler Flowmetry Laser Doppler flowmetry (LDF) is an optical technique used to evaluate skin microcirculation, which provides information on blood flow and erythema. The method consists of a Ne-He laser source of 632 nm wavelength applied to the skin via a small probe. The incident radiation enters the skin and is scattered and reflected by nonmoving tissue components and by mobile red blood cells encountered as the radiation penetrates to a depth of 1 to 1.5 mm. A portion of the scattered and reflected incident radiation exits the skin and is collected by a second optical fiber that carries the light back to a photodetector where it is converted to an electrical signal. Stationary skin tissue reflects and backscatters light with the same frequency as the incident source, while moving erythrocytes reflect the frequency-shifted radiation. The shift increases with increasing erythrocytes speed. The LDF extracts the frequency-shifted signal and derives an output proportional to the flux of erythrocytes of the blood flow. LDF is a reliable method to estimate cutaneous microcirculation (9). Thermography Anticellulite products are meant to increase local skin blood flow. By increasing the blood flow, they increase the local skin temperature. Thermography is an electrooptical method for the imaging of temperature. The
current technology used is based on the detection of the infrared radiation emitted by the skin. A conventional color thermogram uses a spectral color range, where blue is cold and red/white is hot. Intermediary temperatures are shown as shades of green, yellow, orange, etc. (10).

Plicometry The technique implies the use of the plicometer, a device that allows to evaluate the thickness of cutaneous plicae or folds, which is possible to calculate the percentage of fat in human body. The measurement is usually performed on the thigh, on a defined point, which can be determined by measuring the half distance between the iliac crest and the center of the knee as reference points. During measurements, the leg is relaxed. All measurements are performed in standard conditions, which guarantee reliability and suitability of collected data.

Magnetic Resonance Imaging (11)

Amongst in vivo skin imaging methods, MRI is the most recent approach, being of high interest not only for its ability to distinguish structures at a submillimetre scale, but also for its ability to describe the physiology of the different skin layers through the measurement of their intrinsic MR parameters. High spatial resolution MRI allows to differentiate the different skin departments, epidermis, dermis, and hypodermis, giving new and interesting opportunities for the evaluation of anti-cellulite treatments. Actually some authors (4) found that changes in skin architecture with cellulite can be well visual
ized by that method, pointing out clearly in the images the skin
fat layers beneath the dermis and down to the level of muscles.

Also, the diffuse pattern of extrusion of underlying adipose
tissue into dermis is clearly imaged, and was found to correlate
with cellulite grading. In turn, other researchers (12) applying
such a technique characterized the topography of the dermo-
hypodermal junction, and the three-dimensional architecture of
the subcutaneous fibrous septae, giving as more clear frame of
skin condition in areas affected by cellulite.

Therapies
Pharmacological Agents

Severals proximate principles have been employed, topically,
systemically, or transdermally, in attempt to contrasting the
different pathophysiological aspects of cellulite. Notwithstand-
ing, only a few scientific studies proving their real efficacy have
been published. Methylxanthines such as theobromine,
theophylline, ami
nonophylline, and caffeine, b-adrenergic agonists such as isopro-
ter enol and adrenaline and a-antagonists such as yohimbine,
piperoxan, and phentolamine, represent drugs with a lipolytic
Among these, topical aminophylline has demonstrated to be the most effective one but the best results are obtained applying aminophylline together with yohimbine and isoproterenol (13). The use of coenzyme A and L-carnitine may contribute to improve the effects of the above mentioned drugs as they induce the discharge of free fatty acids. A 2.8-mm decrease in subcutaneous fat thickness has been observed after a month of application of a product containing caffeine, horsechestnut, ivy, algae, bladderwrack, plankton, butcherbroom, and soy (14). Extracts from Centella asiatica is active either on connective tissue either on microcirculation and they are commonly used orally and topically. In particular 60 mg of Asiatic Centella once a day for 90 days induces reduction of adipocytes’ dimensions (15). Distante et al. have performed a prospective, longitudinal double-blind designed study aimed to test a plant complex on the basis of seed extracts of grape (Vitis vinifera), Ginkgo biloba, Asiatic Centella, Mellilotus (Mellilotus officinalis), fucus vesiculosus, fish oil, and borage oil. Data obtained from these trials have demonstrated that the oral intake of the mixture of plant

INTRODUCTION

One of the most commonly treated cosmetic disorders in der
matology includes telangiectatic webs or spider veins. The methods of treatment most commonly employed by the dermatologic surgeon include sclerotherapy and lasers. For larger varicose veins, dermatologic surgeons employ sclerotherapy with the newest improvement of foamed detergent-sclerosing agents, ambulatory phlebectomy and endovenous occlusion, and ablation by intravascular radiofrequency or laser energy. Sclerotherapy, which consists of the intravascular introduction of a sclerosing substance, is the most frequently utilized process. Sclerotherapy is actually endovenous chemoablation with subsequent fibrosis and concomitant vein wall collagen dissolution. The term “sclerotherapy” gained acceptance during the 19th century and has never changed. In the United States, sclerotherapy gained wide acceptance in the early 1990s and is regarded as a highly effective treatment for telangiectasias as well as veins of all sizes (1,2). It also serves as an effective addition to surgical techniques such as ambulatory phlebectomy for saphenous tributaries (3,4) and endovenous obliteration of refluxing saphenous veins (5,6). Knowledge of venous anatomy and physiology, principles of venous insufficiency, methods of
diagnosing venous malfunction, uses and actions of sclerosing solutions, and proper use of compression are essential elements of successful venous therapy.

EPIDEMIOLOGY

Bulging varicose veins and unsightly “roadmap” telangiectatic webs affect millions of patients, and the number affected is increasing every year as the population ages. Telangiectasias comprise one of the most common of cosmetic complaints, affecting up to 50% of women, while larger varicose veins affect up to 40% of the population (7,8). Varicose veins may cause significant morbidity including chronic stasis dermatitis, ankle edema, spontaneous bleeding, superficial thrombophlebitis, recurrent cellulitis, lipodermatosclerosis, and skin ulceration on the ankle and foot. The incidence of varicose veins increases with each decade of life. Increased incidence has led to increased demand for treatment of varicose and telangiectatic veins as the average age of the U.S. population grows. While 41% of women in the fifth decade have varicose veins, this number rises to 72% in the seventh decade (9). Statistics for men are similar with 24% incidence in the fourth decade, increasing to 43% by the
seventh decade. Six million workdays per year may be lost because of complications of varicose veins including stasis dermatitis, cellulitis, and ulceration (10). HISTORICAL ASPECTS In the second century A.D., Galen proposed tearing out the veins with hooks, a precursor to the modern day technique of ambulatory phlebectomy originated by Swiss dermatologist Robert Muller in the late 1960s. Primitive stripping and cauterization, however, were practiced by Celsus, while ligation was mentioned by Antillus (30 A.D.). In 1851 Pravaz attempted sclerotherapy with ferric chloride using his new invention, the hypodermic syringe. The foundation of modern sclerotherapy can be traced to World War I when both Linser and Sicard noticed the sclerosing effect of intravenous injections used to treat syphilis that often resulted in vein sclerosis. Tournay greatly refined the sclerotherapy technique in Europe and wrote the gold standard of textbooks. French physicians were leaders in the field of vein diagnosis and treatment, which evolved into the subspecialty of phlebology. It was not until 1946, when a safe sclerosant, Sotradecol (sodium tetradecyl sulfate) had been tested and described that sclerotherapy began to be seriously studied in the United States (11). Another key to success and acceptance of the treatment of varicose veins by sclerotherapy was the addition of compression. The most significant contributions were European with Sigg and Orbach in the 1950s and Fegan in the 1960s emphasizing the importance of combining external compression immediately following injections. Starting in the 1980s, Duffy promoted the technique in the United States among dermatologists and advocated the use of polidocanol (POL) and hypertonic saline as safe and effective sclerosing solutions (12). The first endovenous obliteration technique utilizing radiofrequency, designed as a substitute for ligation and stripping of the greater saphenous vein, was researched and pioneered by dermatologic surgeons (6). It has now become accepted as the standard for treatment of saphenous vein reflux (13). Utilization began in Europe in 1998 on saphenous vein incompetence, and the technique was made available in the United States in March 1999. Goldman's first American textbook of sclerotherapy (now in its fourth edition) integrated the world's phlebology literature, introduced new sclerosing solutions, and validated dermatology’s claim to expertise in vein treatment (14). Several additional textbooks by dermatologic surgeons have now firmly established phlebology, which includes the diagnosis and treatment of spider and varicose veins firmly within the
sphere of dermatology (15,16). VENOUS ANATOMY AND PHYSIOLOGY: THE KEY TO CHOOSING THE RIGHT TECHNIQUE The superficial venous system consists of three primary territories: great saphenous vein, small saphenous vein, and subdermic lateral venous system. Because of gravitational
TREATMENT TECHNIQUES

INTRODUCTION

The queen [of Sheba] was brought before him, and when she saw the king [Solomon] sitting in his glass house, she thought within herself that the king sat on water, and so proceeded to draw up the hem of her dress so that she could pass over without getting wet. The king then saw her legs that they were full of hair, and when the queen had sat down beside him, he said unto her, “Thy beauty is the beauty befitting women, but thy hairs are the hairs befitting men. Hair on a man’s body is comely, but uncomely on a woman’s.” Now the king greatly desired her beauty, but was taken aback by the hair on her legs, and so it was that he devised a method by which unwanted hairs may be removed, that is, by taking an admixture of lime and water and orpiment [arsenic trisulfide], which the king himself discovered and made known its usage abroad, calling it neskasir. When the queen had bathed herself that night in its solution, the hair on her legs fell off, and she found favor in the eyes of the king (from the Midrash Book of Proverbs). Throughout the history of civilized mankind, overgrowth...
of hair has been of significant concern, the object of superstition
and mystery, as well as of cosmetic and medical interest.
Excessive hair may cause cosmetic embarrassment, resulting
in a significant emotional burden, particularly if extensive.
Sometimes the complaint of excess hair may pose a vexing
problem for nonspecialized physicians, who tend to trivialize
the complaint, though an individual’s perception of abnormal
ity is important in determining whether or not medical care is
sought. Besides significant racial and ethnic differences in
normal hair growth patterns, the role of society is to set
the threshold level for “normality,” which is much determined by
advertisement for cosmetic treatments. With the advent of the
effective laser epilation devices this increasingly also applies to
the perception of excess hair by men. No single method of
hair removal is appropriate for all
body locations or patients, therefore patients should be ade
quately advised of the available treatment modalities for tem
porary or permanent hair removal. The method adopted for
removal of unwanted hair will depend on the cause, the char
acter, area and amount of excessive hair growth, as well as
on
the age of the patient, and personal preference.
Hirsutism is characterized by androgen-dependent, excessive growth of terminal hairs in women in a pattern more characteristic of adult men. Such androgen-dependent areas include the chin, upper lip, chest, breasts, abdomen, back, and anterior thighs (Fig. 36.1). Objective assessment of hirsutism can be obtained by evaluation and grading of hair growth and distribution according to the Ferriman-Gallwey (F-G) scale (Fig. 36.2). The F-G score quantifies the extent of hair growth in nine key anatomic sites, which is graded using a scale from 0 (no terminal hair) to 4 (complete and heavy cover), for a maximum score of 36 (2). Hirsutism is defined by a score of 8 or more. Approximately 5% to 10% of women of reproductive age in the general population are hirsute, assessed as having a F-G score of 8 or more (3). A 1993 market survey of 25,000 women in the United States concluded that 41% of women remove unwanted hair and 22% remove facial hair on a weekly basis (4). But far from being only a cosmetic problem, hirsutism may be a marker for an underlying hormonal disorder, and identification of the underlying etiology helps to detect patients at risk for infertility, diabetes mellitus, cardiovascular disease, and endometrial carcinoma (4). Hirsutism results from either an exogenous or endogenous increase in circulating androgens or from increased sensitivity (metabolism) of the hair follicle to normal serum androgen levels. Exogenous sources include androgenic medications, such as oral contraceptives with androgenic progestins (norgestrel, levonorgestrel, norethindrone), anabolic steroids (danazol), high-dose glucocorticoids, androgen therapy (testosterone), and valproic acid (raises plasma testosterone). Endogenous androgens in women arise from the ovary or adrenal glands, and peripherally from the skin and fat. There is thought to be considerable heterogeneity of responses among androgen-dependent follicles in different individuals (5). Therefore, the clinical severity of hirsutism does not always correlate well with expected levels of circulating androgens. Seventy to eighty percent of patients with androgen excess demonstrate hirsutism (6), with the most common cause being polycystic ovary syndrome (PCOS). Up to 6% of women overall are affected by PCOS in
whom hirsutism is the most common manifestation. It represents a syndrome of hyperandrogenic anovulation that is due to an intrinsic ovarian dysfunction, which is often aggravated by insulin-resistant hyperinsulinemia with its risks of diabetes mellitus, metabolic syndrome, and their complications (7). Other, less frequent causes of androgen excess are late onset congenital adrenal hyperplasia, Cushing’s syndrome, and the HAIR-AN syndrome (acronym for hyperandrogenism, insulin resistance, and acanthosis nigricans) (Fig. 36.3). Pituitary, ovarian, and adrenal tumors are important but rare causes of hirsutism. Hirsutism is deemed idiopathic where it develops in the absence of detectable androgen excess and in conjunction with regular ovulation. It accounts for less than 20% of hirsute women (3). The definition of idiopathic hirsutism has been an evolving concept, since normal androgen levels have been defined by conventional laboratory tests, while more sophisticated testing methods may uncover occult ovarian or adrenal functional hyperandrogenism in a large number of these patients (8).

Hypertrichosis

Hypertrichosis is the term used for the growth of hair on any part of the body in excess of the amount usually present in persons of the same age, race, and sex, excluding androgen induced hair growth (9). It may involve lanugo (hypertrichosis lanuginosa), vellus, or terminal hairs, and is classified on the basis of the age of onset (congenital or acquired), the extent of distribution (generalized or circumscribed), and the site involved (10). In both its generalized and circumscribed forms, hypertrichosis may be an isolated finding, or be associated with other abnormalities. For
instance, lumbosacral hypertrichosis (Fig. 36.4) frequently indicates occult spinal defects, and it is essential that this possibility is investigated early, if neurologic sequels are to be prevented.

Figure 36.2 Ferriman-Gallwey score: hair growth is rated from 0 (no growth of terminal hair) to 4 (complete and heavy cover) in nine locations, giving a maximum score of 36. Source: Adapted from Refs. 1 and 2.

Figure 36.3 HAIR-AN: woman with hirsutism and acanthosis nigricans of the lateral neck area. Source: From Ref. 1. Figure 36.4 Lumbosacral hypertrichosis should draw the attention to the possibility of underlying spinal dysraphism with potential neurologic sequels. Source: From Ref. 1. Universal congenital hypertrichosis (Fig. 36.5) is a rare and particularly dramatic familial disorder. In former times such individuals were sought after by sovereigns to adorn their courts, or exhibited by showmen to satisfy the curiosity of the public. Since the first well-documented observation concerns a man named Petrus Gonsalvus, born in 1556, and his family, whose portraits are shown in the castle of Ambras near Innsbruck, Austria, the term Ambras syndrome has been coined for this disorder (11). The whole body is covered with a remarkable amount of long, vellus-type hair, sparing only areas in which ordinarily no hair grows, including the palms, soles, and mucosae. The forehead, eyelids, nose, cheeks and preauricular region are uniformly covered with hair, reaching a length of several decimeters. The hair is light colored and silky; only the scalp hair, eyebrows, eyelashes and the axillary hair are darker. No decrease of hairiness during later life occurred in any of the well-documented cases. Prepubertal hypertrichosis (Fig. 36.6) is a generalized terminal hair hypertrichosis affecting healthy children (12). There is hair growth on the temples spreading across the forehead, bushy eyebrows, and marked growth of hair on the upper back and proximal limbs. The condition is usually noted at birth, increases in severity during early childhood, and is not rare. It probably often has been confused with “racial hirsutism,” though it is not limited to a specific race nor androgen mediated. Congenital generalized hypertrichosis has been associated with a number of abnormalities, such as gingival fibromatosis, osteochondrodysplasia, or congenital amaurosis, or may be a symptom of a more complex
syndromic disorder, such as the Cornelia de Lange syndrome, the mucopolysaccharidoses, and porphyries (9). In these cases, excessive body and facial hairs is either present at birth or develops during early infancy or puberty, and frequently involves terminal hairs. A variety of underlying pathologic states may give rise to acquired generalized hypertrichosis. These include: head injuries and other cerebral disturbances, malnutrition and anorexia nervosa, juvenile hypothyroidism, and juvenile dermatomyositis (9). Besides acquired trichomegaly (overgrowth of eyelashes), a more generalized form of hypertrichosis has also been observed in patients with AIDS (13). Acquired hypertrichosis lanuginosa describes the sudden onset and rapid growth of long, fine, lanugo-type, white-yellow downy hairs over a large area of the body in association with an underlying malignancy. While this presentation represents an exceedingly rare event, it is now becoming clear that the less conspicuous growth of lanugo (so-called “malignant down”), particularly on the face of patients with malignant disease, is not so uncommon (14). The lanugo may develop a few weeks or up to two years before an underlying malignancy is diagnosed. Yet another form of paraneoplastic hypertrichosis may be found in the POEMS syndrome (Fig. 36.7), an acronym for the Figure 36.5 Universal congenital hypertrichosis or Ambras syndrome: congenital generalized vellus-type hair hypertrichosis. Figure 36.6 Prepubertal hypertrichosis: congenital generalized terminal hair hypertrichosis. Source: From Ref. 1. Figure 36.7 Acquired generalized terminal hair hypertrichosis in POEMS syndrome. Source: From Ref. 1.

major constellation of signs including peripheral neuropathy,
organomegaly, endocrine dysfunction, monoclonal gammopathy, and skin changes (15). The hypertrichosis is of the terminal hair type and most common on the extensor surfaces, malar areas, and forehead. Finally, several drugs are well known to cause significant generalized hypertrichosis, the most frequent currently being corticosteroids, phenytoin sodium, cyclosporin A, and minocycline.
idil (Fig. 36.8) (9). Discontinuation of the offending drug leads
to resolution of drug-induced hypertrichosis within several
months to one year, depending on the hair cycling character-
istics of the affected site (face, three months; arms, one
year).

MANAGEMENT OF EXCESSIVE HAIR

Accurate classification of excess hair must precede
treatment
and includes: characterization of the type of hair involved
(lanugo, vellus, terminal), characterization of the pattern of
hair growth (generalized or circumscribed hypertrichosis,
hirsutism), age at initial manifestation (congenital,
acquired),
patient history with regard to systemic disorders or drug
intake, physical examination for associated abnormalities,
and
family history, including ethnic and racial background (9).
It
must always be kept in mind that hair overgrowth, either
hirsutism or hypertrichosis, may be a manifestation of a
more
general medical problem that needs to be investigated.
Testing
of androgen levels is recommended in women with moderate
to severe hirsutism (F-G score of 15 or more), and in women
with any degree of hirsutism when it is sudden in onset,
rapidly progressive, or when it is associated with any of
the following: menstrual irregularity, central obesity,
acanthosis nigricans, or clitoromegaly (16). The current
available treatment methods for removal of unwanted hair include: cosmetic procedures, medical treatment, and hair removal using lasers and light sources. These may be combined (9,17). Cosmetic Procedures for Removal of Excessive Hair Unwanted hair may be masked by bleaching or removed by a variety of physical methods such as trimming of the hair, shaving, plucking or tweezing, and waxing, or chemical procedures (depilatories), and electrosurgical epilation (18). Bleaching is a quick, easy, and painless process that can make unwanted hair less apparent through the partial or total removal of natural hair pigment, lightening the hair to a yellowish hue. A home bleach is made by mixing 40 mL hydrogen peroxide with 7 mL 20% ammonia. This is left in contact with the hair until the color is removed, usually 5 to 10 minutes. Bleaching can last up to four weeks. This method is best for uses for treatment of localized excess pigmented hair on the face or arms of fair-skinned patients, because yellow-bleached hair may emphasize the hair when viewed against the skin of more darkly pigmented patients. Occasionally, bleaching results in skin irritation. The addition of a persulfate to boost the peroxide bleach in commercial products may occasionally result in anaphylaxis in the sensitized individual (19). Trimming of the hair is a recommended option for young children with either localized or generalized hypertrichosis,

Figure 36.8 Drug-induced hypertrichosis: (A) cyclosporin A induced in a child and (B) topical minoxidil induced in a woman. Source: From

monohydrate 15% cream (Vaniqa 1 , Bristol-Myers Squibb, New York, New York, U.S.) was superior to placebo in reducing hair growth, as demonstrated by objective and subjective methods, after two to eight-week treatment. After 24-week treatment, 58% of eflornithine and 34% of placebo recipients had at least some improvement, and 32% versus 8% of patients were judged to be successfully treated (at least marked improvement) (32).

Hair growth returned to pretreatment rates within eight weeks
of stopping treatment. Local irritation, characterized by burn

ing, stinging, and/or tingling, occurred more frequently in eflornithine-treated patients. Use of eflornithine cream in com

bination with other therapies, including laser epilation, can be effective and results in a more rapid, visible hair reduction

compared with laser monotherapy (33). The safety and efficacy of topical eflornithine treatment for widespread hypertrichosis and children has not been established.

Hair Removal Using Lasers and Light Sources

The need for a rapid, noninvasive method for hair removal has led to the development of various laser and light sources for this purpose. An array of devices is now available. All are based on the principle of selective photothermolysis: Melanin pigment in the hair follicle provides the chromophore for selective targeting of hair follicles, while the surrounding dermis is spared. Therefore, at deeply penetrating wavelengths in the 600 to 1100-nm range, melanin absorption may be used for selective photothermolysis of hair follicles (34). Several hair removal systems have been shown to be effective in this setting: long-pulsed ruby lasers (wavelength 694 nm; pulse duration 1–3 msec), long-pulsed alexandrite lasers (755 nm; 2–20 msec), diode lasers (800 nm; 5–400 msec), long-pulsed neodymium:yttrium-aluminium-garnet (Nd:YAG) lasers (1064 nm; 5–250 msec), and intense pulsed-light (IPL) sources (590–1400 nm; 2.5–5 msec) (35–38). The physical parameters (wavelength, pulse duration, fluence, spot size, repetition rate) and cooling systems used with each system vary
considerably. Regardless of the type of laser or light source used, all systems have been shown to temporarily reduce hair growth. Long-term, controlled hair counts have shown an average of 20% hair loss with each treatment, indicating the need for multiple treatments to achieve satisfactory results. Research indicates that in 80% of patients significant hair reduction can be achieved (Fig. 36.9), while 20% will fail (35). Effectiveness for long-lasting hair reduction is strongly correlated with hair color. Blond-, red-, or white-haired patients are unlikely to experience a permanent reduction. In contrast, the patient with dark hair and fair skin may experience long-term hair removal after a single treatment (36). Often, regrowing hairs are thinner and

Figure 36.9 Terminal hair growth of the back in a male patient (A) before and (B) six months after fifth in-office intense pulsed-light

INTRODUCTION

Variations of skin pigmentation are mostly due to quantitative or qualitative defects of melanin pigments (eumelanin and pheomelanin). However, dyschromia can also result from an abnormal increase or decrease of other endogenous pigments (hemoglobin, bilirubin, etc.) or from the deposit of exogenous pigments (heavy metals, cosmetic tattoos, etc.). This leads to a heterogeneous group with numerous causes. Although most of the patients will consult for the cosmetic disturbance due to the dyschromia, it is essential to determine the origin of the pigmentary trouble to propose the more adapted treatment and if necessary to ask for complementary investigations.

PATHOPHYSIOLOGY OF DYSCHROMIA

The color of the skin results from the presence
of pigments in the epidermis and dermis. The melanins (eumelanin, dark brown, mostly produced by dark phototypes, and pheomelanin, red-fair brown, mostly observed in fair phototypes) are the most important pigments in human skin. However, other endogenous pigments such as hemoglobin and bilirubin also play a role in the color of the teguments. Dyschromia can result from darkening, lightening, and discoloration of skin (1). Quantitative or qualitative defects in the production or in the deposition of melanin explain most of the pigmentary disorders, but abnormal variations of other endogenous pigments and deposit of exogenous pigments also lead to dyschromic lesions. An increased amount of melanin in the skin is called hypermelanosis or melanoderma. A brown hypermelanosis is caused by excessive amounts of melanin within the epidermis whereas ceruloderma (or blue hypermelanosis) results from large amounts of melanin in the dermis. Mixed hypermelanosis characterized by an excess of melanins in both epidermis and dermis may also occur. Epidermal hypermelanosis may result from increased melanin production by a quantitatively normal melanocyte density in the epidermis (melanotic hypermelanosis) or by an increased number of epidermal melanocytes (melanocytic hypermelanosis). Dermal hypermelanosis can be due to the production of melanin by ectopic dermal melanocytes (dermal melanocytosis) or to an abnormal transfer of melanin from epidermal cells to the dermis (pigmentary incontinence). In this situation, melanin granules accumulate within melanophages or may be free in the extracellular matrix of the dermis. Skin lightening or whitening (leukoderma, hypopigmentation) is most commonly the result of decreased melanin content in the skin (hypomelanosis). Hypomelanosis may be the result of at least two different pathogenic mechanisms: partial or total absence of epidermal melanocytes (melanocytopenic hypomelanosis) or even melanin synthesis, melanosome biogenesis, transport, and transfer, and melanosome transfer despite a normal number of epidermal melanocytes (melanopenic hypomelanosis). Increase of epidermal turnover can also induce hypomelanosis. Hyperpigmentation disorders can be inherited or acquired (2,3). Dyschromia that result from variation of the hemoglobin content within the skin (diffuse such as in anemia or in polycythemia, or localized such as in Bier spots) can be easily distinguished from other pigmentary disorders as the change in color disappears with pressure (Fig. 37.1). Xanthoderma describes a yellow to orange macular discoloration of the skin. Jaundice and carotenoderma are the two main causes of xanthoderma. Although patients may consult for the cosmetic disturbance, drug and excessive dietary intake of carotenoids and search
for underlying disease have to be performed (4). The
treatment is etiological. Heavy metals (e.g., iron, silver,
copper, etc.) and traumatic, medical, or esthetical tattoos
are other sources of skin discoloration. DEPIGMENTING
AGENTS Phenolic Compounds Hydroquinone Hydroquinone (HQ) is
the most popular depigmenting agent (5). Several studies
have established the therapeutic effect of HQ in the
treatment of hypermelanosis (6). HQ is still the “gold
standard” of depigmenting agents. The effectiveness of HQ
is related directly to the concentration of the
preparations, the vehicle used, and the chemical
composition of the final product. 2% HQ was reported to
improve hypermelanosis in 14% to 70% of the patients.
However, HQ is most commonly used at a 4% concentration by
dermatologists. At this concentration, HQ is very
effective, but it can have a significant irritant effect.
Concentrations as high as 6% to 10% are prescribed
extemporaneously for resistant cases, but may have a strong
irritant effect. Because of the hazard of long-term
treatments, the use of HQ in cosmetics has been banned by
the European Committee (24th Dir. 2000/6/EC). Formulations
are available only by prescription of physicians and
dermatologists. A number of different vehicles can be used
for HQ, but the most suitable for the formulation is a
hydroalcoholic solution (equal parts of propylene glycol
and absolute ethanol). A nitro-oxidant such as ascorbic
acid (ASA) or sodium bisulphate is regularly used to
preserve the stability of the formulation. The acute side
effects of HQ include irritant and allergic contact
dermatitis, nail discoloration, and post-inflammatory
hypermelanosis (7). These adverse events are temporary and
resolve after HQ discontinuation. Higher concentrations
(\%5\%) may induce persistent hypoor amelanosis (leukoderma
en confetti). Exogenous ochronosis is a very rare
complication occurring in dark-skinned or black individuals
after chronic use. This irreversible disorder presents in
the form of
reticulated, ripple like, sooty pigmentation affecting
common
sites of HQ applications (cheeks, forehead, periorbital
areas).
The lesions are typically localized on photoexposed areas.
Histological examination of these lesions shows
banana-shaped
yellow-brown pigment granules in and around collagen bun
dles in conjunction with giant cells and melanophage-contain
ing granulomas in the upper dermis. The pathogenesis of
HQ-induced ochronosis is unknown,
and no effective treatment is available. The mode of action
of
HQ is not fully understood. HQ seems to exert its effect
mainly
in melanocyte with active tyrosinase activity. Guidelines
and
radical oxygen species arising from the oxidation of HQ
induce
an oxidative damage of membrane lipids and proteins includ
ing tyrosinase, and depletion of glutathione contributes to
the
lightening action (8). Other depigmenting pathways
attributed
to HQ include inhibition of tyrosinase through the covalent
binding to histidine or interactions with copper at the
active site
of tyrosinase, inhibition of DNA and RNA synthesis and alter
ation of melanosome formation and melanization extent.

Hydroquinone Derivatives

Monobenzylether d’hydroquinone

The clinical use of monobenzylether d’hydroquinone (MBEH)
is restricted for generalized depigmentation in patients
with
extensive vitiligo. MBEH should never be used for the treat
ment of melasma or post-inflammatoriy hypermelanosis.
Indeed MBEH causes permanent depigmentation of the skin
even at sites distant from those of application. MBEH-induced vitiligo depigmentation has been described in dark-skinned individuals. MBEH is metabolized to reactive free radicals inside the cells resulting in melanocyte destruction.

Monomethyl of Hydroquinone

Monomethyl of hydroquinone (MMEH) is also called 4-hydroxyanisole (para-hydroxy-methoxy-benzene). This compound is oxidized by tyrosinase and exhibits strong melanocytotoxicity. MMEH is used in France at 8% or 10% concentration for the treatment of various acquired hypermelanoses including melasma and post-inflammatory hypermelanoses. Side effects include irritant and allergic contact dermatitis, post-inflammatory hypermelanosis, and leukoderma en confetti at treated sites. Hypomelanosis at sites distant from the application areas have been reported. Others 4-n-Butylresorcinol (Rucinol 1)

4-n-Butylresorcinol has an inhibitory effect on tyrosinase and tyrosinase-related protein (TRP-1). A lotion containing 0.3% 4-n-butylresorcinol has been demonstrated to improve melasma. This product also decreases post-inflammatory hyperpigmentation (PIH) following laser therapy (9).

4-Isopropylcatechol (4-4PC) This compound is considered as more potent and more consistent in its depigmenting effect than HQ. A clinical trial involving 68 patients treated with 1% and 3% 4-IPC has demonstrated that this product is a potent depigmenting agent and is of use for the topical therapy of hypermelanosis (10). Phenolic thioether

N-Acetyl-4-S-cystalminylphenol has been evaluated in a small number of patients with melasma (11). Marked improvement or complete clearing with minimal side effects was obtained in 75% of patients. These compounds are not widely used, and large clinical trials to evaluate their safety and efficacy are not available. Azelaic Acid

Azelaic acid (AA) is a naturally occurring nine-carbon dicarboxylic acid isolated from cultures of Pityrosporum ovale. AA is thought to play a key role in the pathogenesis of hypomelanotic tinea versicolor. AA has been used at concentrations of 15% to 20% for the treatment of melasma and post-inflammatory hypomelanoses. The best results demonstrated that AA is more effective than 2% HQ and
equivalent in efficacy with 4% HQ for the treatment of melasma in dark-skinned women (12). Similar good results have never been obtained in European patients. AA is well tolerated. Adverse effects such as pruritus, transient erythema, scaling, and irritation are usually mild and disappear within a few weeks. Phototoxic and allergic reactions are rare. AA may halt the progression of lentigo maligna and even induce its disappearance suggesting that AA exert an antiproliferative and cytotoxic effect mainly on hyperactive and abnormal melanocytes. Soy and Soy-Based Products Soy and soy-based products may affect skin pigmentation. Several studies have demonstrated that soy-derived serine protease-inhibiting PAR-2 mediated phagocytosis of melanosomes by keratinocytes. Thus, soy-based products containing these serine protease inhibitors represent safe and effective products to treat hyperpigmentation (13). Kojic Acid Kojic acid (KA) a fungal metabolic product is used at 1% to 4% concentrations. In monotherapy, KA shows a modest effectiveness. Thus, it is mainly used in combinations. It is a potent tyrosinase inhibitor and functions by chelating copper at the active site of the enzyme. Long-term side effects of KA are not known.

Figure 37.1 Bier spots on the arm of a young adult. A high frequency of contact sensitivity has been reported (14). The use of KA in cosmetics has been banned in Japan. Ascorbic Acid A stable ester of ASA (magnesium L-ascorbyl-2 phosphate) in a 10% cream base produced a significant lightening effect in patients with melasma after three months of twice daily application (15). ASA interferes with the different steps of melanogenesis by interacting with copper ions at the tyrosinase active site and reducing dopaquinone and by blocking 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidation. A randomized double-blind placebo-controlled trial of vitamin C iontophoresis in melasma has demonstrated that this strategy may be an effective treatment for melasma (16). A double-blind left/right randomized comparative study in melasma patients showed that 93% of good and excellent subjective results are observed on the 4% HQ side compared with 62.5% on the 5%ASA side. However, colorimetric measures showed no statistical differences. Side effects were more common with HQ (68.7%) than with ASA (6.2%) (17). Tranexamic Acid Tranexamic acid is known as an oral medicine for treating melasma. The antiplasma activity of tranexamic acid is thought to play a role in its topical effectiveness for treating melasma (18,19). Arbutin Arbutin is a naturally occurring β-D-glucopyranoside derivative of HQ. It inhibits tyrosinase activity. In a clinical trial, an arbutin-containing formulation (3%) was shown to be
Ellagic Acid Ellagic acid inhibits tyrosinase activity by chelating copper atoms in its active site. In a clinical trial, a 0.5% ellagic acid-containing cream was shown to be effective for treating UVB-induced hyperpigmentation of the skin (19,21). Chamomilla Extract Chamomilla extracts have been shown to act as an antagonist for endothelin receptor-binding that mediates cell-to-cell signaling between keratinocytes and melanocytes and leads to the inhibition of melanin synthesis in melanocytes. In a clinical trial, a 0.5% chamomilla extract-containing cream was shown to be effective for treating UVB-induced hyperpigmentation of the skin (19,22,23). Adenoside Monophosphate Disodium Salt Adenosine monophosphate disodium salt accelerates elevated intracellular energy metabolism that leads to the excretion of melanin from the skin, preventing the accumulation of melanin in the skin. In a clinical trial, a 3% adenosine monophosphate disodium salt-containing salt formulation was shown to be effective for treating hyperpigmentary disorders (19). 5,5'-dipropyl-biphenyl-2,2-diol (Magnolignan) Magnolignan inhibits the maturation because of the glycosylation of tyrosinase and thus induce decrease melanin synthesis. 0.5% magnolignan-containing formulation was shown to be effective for treating UVB hyperpigmentation of the skin (24) and is also effective in treating hyperpigmentation disorders such as melasma and while lentigo (19,25).

4-(4-Hydroxyphenyl)-2-butanol 4-(4-Hydroxyphenyl)-2-butanol (4-HPB), a phenol compound, inhibits melanin synthesis due to its competitive inhibition of tyrosinase activity (19). Tranexamic Acid Cetyl Ester Hydrochloride The effect of tranexamic acid cetyl ester hydrochloride to treat hyperpigmentary disorders is due to the inhibition of UVB-induced inflammation that leads to the quiescence of active melanocytes (19). 4-Methoxy Potassium Salicylate 4-Methoxy potassium salicylate (4-MSK) inhibits melanin synthesis through competitive melanin of tyrosinase activity (19). Retinoid Monotherapy Tretinoin. Tretinoin (all trans retinoic acid—ATRA) has been used in concentrations from 0.025% to 0.1% to treat a variety of pigmentary disorders such as pigmented spots of photoaged skin, melasma, and PIH in dark-skinned individuals (26–29). Erythema and peeling in the area of application are adverse events of ATRA 0.05% to 0.1%. PIH may also occur. Topical ATRA appears to exert its action by enhancing keratinocyte proliferation and increasing epidermal cell turnover. However, ATRA, acting on retinoid-activating transcription factors, interferes with melanogenesis. ATRA does not inhibit melanogenesis in skin equivalent or monolayer cultures of melanocytes, whereas it enhances the
pigmentation of low melanized melanoma cells and decreased that of highly pigmented normal melanocytes after UV-irradiation (30). Tazarotene. This acetylenic topical retinoid improves the irregular hyperpigmentation associated with photoaging and lightening the pigmented spots. Tazarotene 0.1% gel is associated with reduced mottling on the dorsal aspects of forearms. The Fontana stain showed a moderate to marked depigmenting effect with decreased pigmentation on the tazarotene treated side. Melanin granules were sparser and less heavily pigmented explaining probably the bleaching of hyperpigmented spots (31). Adapalene. Adapalene gel 0.1% and 0.3%, a synthetic retinoid, improves solar lentigines as well as other features of photodamaged skin and is well tolerated (32). Liquorice Extracts Liquiritin, a flavonoid glycoside of liquorice, has been found to induce a significant improvement of hypermelanosis in patients with bilateral epidermal melasma (33). The mechanism proposed involved melanin dispersion and increased epidermal turnover. Glabridin, the main component of hydrophobic fraction of liquorice extracts, decreases tyrosinase activity in melanoma cells. Furthermore, this compound inhibits UV-induced skin pigmentation (34). Although no clinical trials exist to evaluate its efficacy as depigmenting agent, one available glabridin may be found in some cosmetics. Thiocystic Acid (a-Lipoic Acid) This compound is a disulfide derivative of octanoic acid. It acts as ROS scavenger and Redox regulator but also inhibits tyrosinase activity probably by chelating the cooper ions and prevents UV-induced photoactive damage (35). This product is commercially available.

Unsaturated Fatty Acids

Oleic acid (C18:1), linoleic acid (C18:2), and a-linolenic acid (C18:3) suppress pigmentation in vitro. Some of these compounds have in vivo a lightening effect in UVB-induced pigmentation without toxic effects on melanocytes (36). Fatty acids have been shown recently to regulate pigmentation via proteosomal degradation (37). Linoleic acid accelerates the degradation of tyrosinase, thus inhibiting melanogenesis. In
contrast,
palmitic acid, a saturated fatty acid, retards the proteolysis of
and thus accelerates melanogenesis.

Inhibitory Oligopeptides

A short-sequence oligopeptides (10 amino acids) (Lumixyl) with inhibitory activity against mushroom and human tyrosinase (Elixir Institute of Regenerative Medicine, San Jose, California, U.S.) has been identified in a library. This oligopeptide showed no cytotoxicity to human melanocytes. Only a split face double-blind, randomized and placebo-controlled evaluation including five female participants with moderate melasma has been performed. The results of this clinical trial were positive. However, this oligopeptide warrants further evaluation (38,39).

Combination Therapies

They are widely used for the treatment of hypermelanoses. The purpose of these strategies is to augment the efficacy by associating active ingredients with different mode of action to obtain a synergic effect, to shorten the duration of therapy, and to reduce the risk of adverse effects. Kligman’s formula. The most popular combination treatment for depigmenting skin is the Kligman’s formula. This
polytherapy includes 5% HQ, 0.1% tretinoin, and 0.1% dexamethasone in a hydrophilic ointment. Tretinoin functions as an enhancer of HQ penetration in the epidermis. Furthermore, tretinoin increases epidermal turnover, thus facilitating melanin dispersion within keratinocytes and also melanin removal from corneocyte shedding. Dexamethasone decreases the irritation and inflammation caused by HQ and/or tretinoin and the melanin synthesis by inhibiting metabolic activity. This formula demonstrated an efficacy in the treatment of melasma, ephelides, and post-inflammatory hypermelanosis. Depigmentation occurs rapidly, beginning within three weeks after twice daily application. Unfortunately, the efficacy of this formula depends on its stability. Extemporaneous formulation is useful, but bears a strong risk of instability. Recently, a stabilized formulation containing 4% HQ, 0.05% tretinoin, and 0.01% fluocinolone acetonide has been launched. Two multicenter, randomized double-blind controlled trials demonstrated the safety and efficacy of this combination treatment in patients with moderate to severe melasma (40). After eight weeks of treatment, a 75% reduction of melasma was found in more than 70% of the patients. Furthermore, a superiority of the formula
tion over its three components (HQ, tretinoine, fluocinolone acetonide) was demonstrated. There are already many variants of the extemporaneous Kligman’s formula. The suggestion that topical steroids are not necessary for achieving depigmentation led to a modification of this formula by removing topical steroids. Clinical trials demonstrated that 2% HQ combined to 0.05% to 1% tretinoin cream and lotions are also effective. 4-Hydroxyanisole þ tretinoine (Mequinol 1). A solution containing monomethyl ether of HQ (2%) and tretinoin 0.01% has been launched in North America for the treatment of actinic lentigo. This combination treatment has been shown to improve the appearance of these lesions in several controlled and noncontrolled studies (41,42). Azelaic acid þ Tretinoin. A combination regimen of 20% AA with topical tretinoin 0.05% produces an earlier and more pronounced lightening pigmentation during the early phase of the treatment. However, an equivalent efficacy of the combination 20% AA-topical tretinoin 0.05% versus AA monotherapy was obtained after six months of treatment (43). 20%AA has also been associated with 15% to 20% glycolic acid lotion. This combination regimen was as effective as 4% HQ cream for the treatment of facial hyperpigmentation in dark-skinned individuals (44). HQ þ KA. Kojic acid has also been included in combination regimens. 2% kojic acid in a gel containing 10% glycolic acid and 2% HQ improves epidermal melasma after 12 weeks of treatment, 1% to 4% kojic acid combined with tretinoin, HQ, and/or corticosteroid or glycolic acid appears to act synergistically (45). Westerhof formula. The combination of 4.73N-acetylcystein (NAC), 2% HQ, and 0.1% triamcinolone acetonide has been demonstrated to be effective in the treatment of melasma. The mechanism of action of NAC is not fully characterized. NAC exerts an inhibitory effect on tyrosinase. However, it is likely the NAC stimulates pheomelanogenesis rather than eumelanogenesis, clinically producing lighter color. Cosmetic Use of Bleaching Products It is a common practice in dark-skinned women from
sub-Saharan Africa and a few other parts of the world. The products used include HQ, potent or super-potent topical glucocorticoids, mercury, salts, and caustic agents such as liquid soaps, hydrogen peroxide, and salicylic preparations. Most users (>90%) apply the products once or twice daily to the whole body, during months or years. Side effects, often very severe, include skin atrophy, delayed cicatriziation, infectious dermatoses (bacteriae, mycoses, parasites), acne, dyschromia with a typical pattern, irritant and allergic contact dermatitis, prominent striae, ochronosis, poikiloderma of the neck and periocular hyperchromia (Fig. 37.2). Nephrotic syndrome can Figure 37.2 Exogenous ochronosis due to chronic application of hydroquinone. be observed after the use of mercurial derivatives. Finally, the daily use of potent topical steroids during years can lead to Cushing syndrome. This practice is a real health problem, not only in Africa but also in Northern countries receiving large immigrant communities. A careful dermatological examination of patients is helpful to detect the skin symptoms resulting from this practice (46). Chemical Peels Chemabrasion and peels using various chemicals is another treatment modalities for removal of freckles, actinic lentigines and other pigmented spots, melasma, and post-inflammatory hypermelanosis. Deep peels are avoided in patients with hypermelanosis because of the high risk of post-inflammatory hyper or hypomelanosis, scarring, and keloid formation. Mainly superficial and medium depth chemical peels have been used for the treatment of hypermelanosis, mainly in fair-skinned individuals. Glycolic acid is an a-hydroxy acid that has an epidermal discohesive effect at low concentrations. Removal corneocytes and epidermal upper layers keratinocytes by chemical peeling reduces the epidermal melanin content and improves hypermelanoses. Glycolic acid peels (50% to 70%) are becoming increasingly popular in the treatment of melasma. They can be safely used in dark-skinned patients because of a quite low risk of hyperpigmentation (47). A few studies have demonstrated the efficacy of chemical peels with other depigmenting agents in patients with hypermelanosis. Complete bleaching of diffuse melasma was observed in patients (30%) treated with glycolic acid 50% plus kojic acid 10% and partial blanching in 60% of patients (45). Serial glycolic acid peels (30-40%) combined with a modified Kligman formula (2% HQ + 0.05% tretinoin + 1% hydrocortisone) provided an additional effect to the standard topical treatment in dark-skinned patients with melasma. Another study suggested that daily application of 10% glycolic acid lotion and 2% HQ combined with 70% glycolic acid peels every three weeks showed some
improvement of pigmented spots of photoaging in Asian women (48). In contrast, a splitface prospective study in 21 Hispanic women within melasma showed no differences in the bleaching effect of 4% HQ + glycolic peels 20% to 30% versus HQ 4% alone. Five peelings with salicylic acid 20% to 30% at two weeks intervals in dark-skinned patients (phototypes V to VI), after initial treatment with HQ 5% for two weeks, gave good results for melasma and other types of pigmentation (49). The use of trichloracetic 20% to 35% followed by HQ hydroalcoholic 4% solution or tretinoin 0.05% plus hydrocortisone acetate 1% cream has produced excellent results for hypermelanosis in white patients with higher complexions (47). Resorcinol is used in Jessner’s solution (14 g resorcinol, 14 g salicylic acid, 14 g lactic acid 85%, and enough ethanol to make up 10 mL) or in Unna’s paste (up to 10% resorcinol plus zinc oxide and ceisatile) and has also been demonstrated to be effective in hypermelanosis with an acceptable rate of adverse effects. Peels that combine kojic acid, salicylic acid, a-hydroxy preparations with or without HQ or resorcinol are commercially available (47). Applied every three weeks they do not require neutralization.

Dermabrasion Dermabrasion using rotary diamond fraises has been used for the treatment of melasma. Patients were followed for about five years (50). According to the authors, most patients (97%) obtained a persistent clearance of melasma and only 12 out of 410 have a partial recurrence. Only 2 patients developed hypertrophic scars and one patient had permanent hypomelanosis. Dermabrasion-induced PIH common in Asian and darkskinned individuals limits considerably the use of this strategy in these groups of patients. Even the more superficial microdermabrasion using a device emitting aluminium oxide crystals bears also an important risk of post-inflammatory dyspigmentation. Liquid Nitrogen Cryotherapy Melanocytes are particularly susceptible to freezing, and hence they should be avoided in dark-skinned people because of the risk of permanent depigmentation. The freezing agent must be applied gently to avoid blistering and skin necrosis. Cryotherapy with liquid nitrogen is commonly used successfully to treat individual pigmented lesions. Although satisfactory results are common, cryotherapy for benign epidermal lesion is problematic because of hypopigmentation, hyperpigmentation atrophy, scarring, and/or frequent recurrence. Liquid nitrogen cryotherapy has also been used for the treatment of nevus of Ota, delayed nevus spilus, and blue nevus. The cryotreatment was performed using a liquid nitrogen cryogenic instrument with a removable disk-shaped copper tip called CRYO-MINI. Liquid nitrogen has been proposed for the treatment of
hypermelanoses (actinic lentigo and other pigmented spots of photodamaged skin, Ota's nevus) and hypomelanosis (idiopathic guttate hypomelanosis. LASERS AND PHOTOTHERAPY.

The treatment of pigmentary disorders by lasers is based on the selective photothermolysis (51). To have a selective action, the length of the laser impulsion has to be at least 10 times shorter than the relaxation time of the target. This relaxation time is proportional to the size of the target (but also depends on the shape and the diffusivity of the target). For pigmentary troubles due to melanin defects the target is the melanosome. It is a lysosome-related organelle specific of the melanocytes within the melanin is produced. With their maturation, the melanosomes will be progressively filled with melanin and be transferred to the surrounding keratinocytes (52). The size of amelanosome is about 1 mm. Its relaxation time varies from 1 to 10 ms. Thus, the impulsion time of the laser has to be inferior to 100 ns. The lasers that are used for pigmentary disorders are Q-switched and their impulsion length is from 10 to 100 ns allowing them to target the melanosomes and most of the exogenous pigments. The location of the pigment in the dermis or the epidermis guides in part the choice of the wavelength. Thus, dermal pigmentation will be better treated with 1064 nm Nd:YAG lasers which wavelength could penetrate deeper in the skin tissue. Those lasers are also preferred for dark-skinned people as they less interact with the melanin of the superficial layers of the skin. The type of pigment has also to be taken into consideration. Pheomelanin is a good target for 532 nm Nd:YAG lasers when it is a less interesting chromophore for 694, 755, and 1064 nm lasers (53). The choice of the laser wavelength is even more important for the treatment of tattoos. All lasers can induce side effects and the patients have to be clearly informed about those potential risks. If scars are exceptional and are due to excessive fluencies, PIH is the most common side effect. PIH are mostly observed in dark phototypes. Photoprotection is required after the laser session to decrease this risk.

PIH usually regressed in a couple of weeks or months. Topical steroid eventually combined with HQ could be helpful. Leukoderma are less frequently observed. They are usually transient but permanent leukoderma have been reported mainly with 694
nm ruby lasers. The treatment of tattoos leads to more side effects.

Cicatricial scars and leukoderma are more frequently observed.

Patients and physicians have to be aware of the risk of paradoxical darkening of tattoos after a first session. Finally, allergic or granulomatous reactions, koebner phenomenon, and pseudolymphomas have been also reported. Both ultraviolet (UV) A and B phototherapies are widely used in dermatology. UVA radiation includes electromagnetic waves with wavelengths between 320 and 400 nm. UVB wave lengths are between 290 and 320 nm. It is used with systemic or topical psoralens, which selectively absorbs the radiation (PUVA therapy). The main action of PUVA on biological systems is the inhibition of DNA synthesis due to photoadducts formed between psoralen and pyrimidine bases in the nucleic acid. PUVA was for a long time considered to be the phototherapy of choice, including for hypochromic disorders such as vitiligo. Its potential side-effects, including cutaneous cancers, many authors now recommend the use of UVB therapy instead (54-57). Prospective studies and meta-analysis have now showed that narrowband UVB (NB-UVB) therapy (around 311 nm) is superior to PUVA for treating vitiligo (58,59). The 308 nm excimer lasers are used in dermatology since
The development of 308 nm excimer lamps is more recent. At the difference of the lasers, the wavelength is not strictly monochromatic and the beam of light is not coherent but those systems are much less expensive than lasers. Those devices emit a wavelength in the UVB spectrum. The wavelength at 308 nm provides photobiological effects theoretically superior for those devices as compared to NB-UVB, especially for their immunologic effects. Indeed, 308 nm is the most effective wavelength to induce lesions to the lymphocyte DNA, and the dose required to induce the apoptosis of lymphocytes is clearly lower with 308 nm as compared with NB UVB (61,62). However, in vitiligo and more clearly for the other hypopigmentary disorders, the stimulation of the migration and the proliferation of melanocytes appear to have a key role, but fundamental data to compare the respective photobiologic propigmenting properties of the 308 nm and NB-UVB wavelengths are still not available. The use of the 308 nm excimer laser and lamps is approved by the FDA (Food and Drug Administration) for the treatment of vitiligo. The 632.8 nm helium neon laser is the first device that is not using the UV spectrum to repigment hypochromic lesions and especially vitiligo. Indeed, this laser that emits a wavelength in the red visible light was proven to enhance the
proliferation and the differentiation of melanoblasts to mature melanocytes in vitro (63). It has also been demonstrated that this laser acts on mitochondria to increase the proliferation rate of the cells (64). These photobiological effects could explain, at least in part, the action of the 632.8 nm helium neon laser in repigmenting vitiligo. However, clinical data are still very poor concerning the efficacy of this device in hypochromic disorders.

SURGICAL APPROACHES

Surgical approaches (65) aim to reconstitute the epidermal (and perhaps follicular) compartment of the melanocyte population of the skin by bringing to the hypochromic lesion, after dermabra
sion, a new pigmented skin or a suspension of melanocytes, isolated or associated with other epidermal cells such as keratinocytes. For vitiligo, such methods are usually considered for stable and localized lesions after medical treatment have failed. However, for piebaldism or in a lesser extent for nevus depigmentosus, they are almost the only one treatment available. Several methods are available including punch grafts, blister grafts, split-thickness grafts, and autologous transplantation of melanocyte suspensions, cultured melanocytes or cultured epidermal grafts including melanocytes. Grafting of follicular melanocytes to repigment vitiligo leukotrichia has also been performed successfully (66). Punch grafting (1.2-3 mm punch biopsies) is the simplest technique and grafts are implanted into perforations prepared at the recipient sites by different techniques (punch biopsy, ablative lasers). Minigrafting using small grafts (1.2 mm) is the best technique. The potential side effects include spotted
pigmentation, polka dot appearance, color mismatch, a cobblestone effect, sinking pits, and scarring. Furthermore, this technique is time consuming. Split thickness grafting is obtained by a standard or an electrical dermatome. The main advantage of this treatment is to allow treatment of large areas. Esthetical results are often satisfactory with a homogenous repigmentation. However, this approach may be associated with esthetically unacceptable results at the donor site (dyspigmentation, scarring). Adverse events include milia-like cysts formation at the recipient site, partial loss of the grafts, hematoma formation, and thickening of the graft margins. In the flip-top transplantation, the epidermis at the recipient site is not but rather used to form multiple hinged flaps, each covering an ultra thin 1.2 mm graft harvested from the donor site using a razor blade (67). Autologous blisters can be induced by different ways: vacuum, liquid nitrogen. The mechanical split occurs at the dermoeidermal junction. The recipient site is prepared by dermabrasion, laser ablation (erbium:YAG or carbon dioxide laser), liquid nitrogen, or PUVA-induced blisters, dermatome. The graft (top of the blister) is applied and secured on the recipient site. The only adverse event is transient hyperpigmentation at both the donor and recipient sites. The advantages of this technique are the absence of scarring and the possibility of reusing the donor site. Split-thickness grafting and blister grafts give better success rate than punch grafting (68). Those techniques are not expensive and can be done in private practice. The use of epidermal suspension (melanocytes alone or combined with keratinocytes) is more recent. Noncultured keratinocyte/melanocyte suspensions can be obtained after trypsinization of a shave biopsy of the buttock or full thickness biopsy of the scalp. Melanocytes obtained from the hair follicles and interfollicular epidermis as well as keratinocytes are placed into a suspension with patient's serum for direct application to the recipient site without expansion in culture (69). The recipient site is prepared with a dermabrasion using a dermatome or an ablative CO2 or Erbium laser. This technique allows treating large lesional surfaces with a small piece of skin as a ratio of 1:10 and is commonly used. A prospective randomized doubleblind study has demonstrated that epidermal suspension followed by UV (PUVA or NB-UVB) was more effective than UV only combined with dermabrasion and serum (70). However, this technique requires a specialized laboratory with trained physicians. Recently, ready to use kits have been developed but they remain expensive (71). The number of melanocytes (combined or not with keratinocytes) can be extended in culture before grafting.
Applied on vitiligo lesions, it gives satisfactory results in 30% to 44% of patients. Improvement of melanocyte culture conditions and grafting devices have made possible the transplantation of autologous cultured melanocytes on large areas (up to 500 cm² during one session) of vitiligo involved skin (72,73). A 95% repigmentation is obtained in approximately 40% of the treated areas. However, while the results are usually excellent for stable vitiligos, active forms lead to failure of the procedure and careful selection of the patients remain crucial (74). All the techniques involving melanocytes culture and epidermal reconstruction require specialized laboratory expertise and are very expensive. For these reasons, they are not widely used. CAMOUFLAGING Camouflaging has been shown to increase the quality of life (DLQI) of people using it (75). The use of medical makeup has been progressively become more popular and is now integrated in many dermatological centers. Cosmetic products with high concentration in pigments allow very interesting and esthetical results but require training of the technique (76,77). A siliconated spray could be used to cover the makeup and to increase its waterproofing properties allowing the practice of water activities (78). Dihydroxyacetone (DHA) can also be very useful to decrease the contrast of hypopigmented lesions with the surrounding skin. The brown color is due to the chemical combination of the DHA with the amino acids of the skin leading to the formation of polymeric pigments called melanoidins. Those pigments remain in the stratum corneum until desquamation of the corneocytes. The coloration appears a few hours after the application of the DHA and progressively fade after five to seven days (79–81). The main advantages of such procedure are to resist to water and not to stain the dressings. It is mainly used for the hands and the feet. Concentrations between 2.5% and 10% can be used depending on the intensity of the desired color. As DHA combined with the amino acids of the stratum corneum, the intensity of the reaction depends on the thickness of this skin layer. Thus, patients should be aware of applying less quantity on locations with thick stratum corneum such as palms, soles, knees, or ankles. The patient would also have to be informed that the pigmentation produced is not photoprotective against the UV. Micropigmentation could also be helpful especially for areas such as lips or (mamellons) in dark-skinned phototypes (82,83). TREATMENT OF PIGMENTARY LESIONS Melasma The gold standard treatment for melasma is topical bleaching agents (Fig. 37.3). The Kligman’s formula is the most effective treatment especially in its stabilized form (40,84–87). Peeling and dermabrasion can be also proposed but their efficacy is inconstant and these strategies frequently induce PIH
Ablative and nonablative fractional lasers have been reported to improve melasma (89,90). However, recent reports showed that such approach, although interesting, was not superior to conventional therapies (91). Pigmentary lasers such as Q-switched ruby, alexandrite, or Nd:YAG lasers induce almost constant PIH and frequent relapses. Thus, such lasers are usually not recommended for the treatment of melasma (52). Intense pulsed light (IPL) has shown some efficacy in the treatment of melasma (92–95). The risk of PIH remains important but appears to be lower than the one observed with Q-switched lasers. Topical bleaching preparations, frequently containing HQ, have been used with IPL to prevent PIH (96,97). Although potentially useful, this association approach has never been compared to bleaching cream used in monotherapy. Recent data showed that additionally to the increase in pigmentation, melasma lesions have more elastosis and vascularization, as compared to the perilesional skin (98–100). The association of a fixed triple combination cream and a pulsed dye laser (PDL) with vascular and pigmentary parameters showed significant better decrease of the hyperpigmentation of melasma and reduce the relapses observed after the summer (Passeron T. et al., submitted). Those data need to be confirmed but suggest the interest of using PDL to target all the component of this complex dermatosis. Vitiligo Many medical or surgical treatments are available but only a few have clearly demonstrated their efficacy in treating vitiligo. Phototherapy (PUVA or NB-UVB) is the gold standard for generalized forms (59,101,102). If available, NB-UVB has to be preferred to PUVA as it leads to a greater efficacy with lesser side effects and better tolerance (58). Meta-analysis showed that class 3 topical steroids should be used in first place for localized forms of vitiligo (59,101,102). Tacrolimus 0.1% ointment applied twice daily showed similar efficacy than topical steroid but with fewer side effects such as telangiectasias or skin atrophy (103–107). Best results are obtained on the face and the neck. Similar results have been published with pimecrolimus 1% cream (108,109). Targeted phototherapy with 308 nm excimer lamps and lasers are also effective for localized forms, but they are more expensive (Fig. 37.4) (110–115). However, bony prominences and extremities remains extremely difficult to treat (114). The data concerning the others therapeutic approaches including antioxidants or topical vitamin D are more controversial (116–125). Combination approaches associating tacrolimus ointment or pimecrolimus cream with phototherapy (308 nm excimer light or NB-UVB) have shown their superiority to monotherapy (126–131). More recently, such a synergic effect has been also reported with the association of
topical steroids and UVB (132). Those associations have to be proposed for difficult-to-treat areas such as bony prominences. Surgical treatment is a good option for localized or segmental forms that are stable for at least three years (52,59,102). When treatments have failed corrective cosmetics, use of DHA (dihydroxyacetone 1,3-dihydroxydimethylcetone) or dermopigmentation (especially for nipples and mucosal areas) could be very useful (52,133). Finally, depigmentation that we would like as permanent can be proposed usually for people of more than 40-year-old and after detailed information is given to the patient. Psychological evaluation is also useful. The MBEH causes a permanent depigmentation of the skin that has been used for generalized vitiligo. However, the side effects that include irritant and allergic contact dermatitis, post-inflammatory hypermelanosis, leukoderma en confetti at treated sites and hypomelanosis at sites distant from the application areas.

Figure 37.3 Melasma before treatment in direct light (A) and UV light (B), and after three months of Kligman’s preparation in direct light (C)

and UV light (D). strongly limit the use of this compound and prompted the clinicians for therapeutic alternatives. Q-switched lasers are as effective as MBEH with fewer side effects and should now be preferred (Fig. 37.5) (134-136). They should be reserved for limited surfaces and they should not be proposed if depigmentation involves less than 50% of the affected area. In all the cases, patients have to be clearly informed of the potential risk of later repigmentation and photoprotection of the treated areas should be systematically prescribed. Halo Nevus Halo nevi usually do not require any treatment. However, some patients are seeking for a treatment. Some successes have been reported with the 308 nm excimer laser (137).

Piebaldism Piebaldism is a rare autosomal dominant disorder with congenital hypomelanosis. Most of the patients have a mutation in the KIT gene (138). The pigmentary disorder is limited to hair and skin without neurological, ocular, or hearing defect. The topographical distribution of the lesions, spreading to the anterior part of the trunk, abdomen, extremities, and the frontal part of the scalp, is characteristic of the disease (139,140). Contrarily to vitiligo, these patches are congenital, stable with time, and do not repigment. Nice results can be obtained with surgical grafting procedures (141-143). Nevus Depigmentosus Nevus depigmentosus could be effectively treated with grafting (144,145). Late recurrences are possible and the patient should be informed about this potential risk (146).
More recently, the 308 nm excimer laser has been proposed but data are still limited (147). Solar Lentigines Solar lentigines are effectively treated with topical blanching cream, liquid nitrogen, Q-switched lasers, and IPL (Fig. 37.6). The treatment with Q-switched laser has been proven to be the most effective approach, especially if the lesions are numerous but it remains more expensive (148). One or two laser sessions Figure 37.4 Vitiligo of the face (A). Clinical aspect after 40 sessions of 308 nm excimer laser (B) and 18 months after the end of the treatment (C).

Figure 37.5 Extensive vitiligo of the face that did not respond to repigmenting therapies (A). Depigmentation of the remaining pigmented areas two months after one session of 755 nm alexandrite Q-switched laser (B).

Figure 37.6 Actinic lentigos of the face (A). Clinical aspect one month after one session of 755 nm alexandrite Q-switched laser (B).
Cafe´ Au Lait Macules

Figure 37.13 Blue ritual tattoos of the face (A) almost completely removed after only two sessions of Q-switched 755 nm alexandrite

INTRODUCTION

No one is completely satisfied with the way they look all
the time, but for those who are trying to cope with abrupt changes to their image and are experiencing disturbance issues, appearance dissatisfaction is a whole different matter. Every person who has experienced an altered appearance as a result of a disfiguring circumstance has a compelling story to tell. Disfigured persons are constantly being challenged with the awkwardness associated with public exposure and being asked about the origins of their scarring. In such situations, they are not only forced to repeat their story, but as a result, many find that they emotionally relive all the vivid and excruciating details associated with the ordeal of their physical trauma. The need for social interchange and comingling among humans is basic and strong. But so too is the need for privacy, for preserving one’s territory—both personal and physical—from the intrusion of strangers (1). This chapter explores appearance restoration and social skills training in clinical settings as a form of self-directed rehabilitation that helps counterbalance the affects of physical traumatization. The practical information included in this
is intended as an introduction only to appearance restoration and image communication. It is meant to enrich the knowledge of the reader about the scope of the work, its precision and, its implication as well as; answer questions on the topic in terms of its clinical compatibility to dermatology, oncology and cosmetic/reconstructive surgery. The information that follows should only be considered a learning tool that provides an initial understanding into the work experience.

THE RIGHT TO APPEAR HUMAN

The enormity of living with, and being seen with, a disfigurement day in and day out is beyond the comprehension of those of us who have never experienced similar circumstances. Looking physically different is tough to combat and it is not a challenge that can be solved easily with effortlessness. Simon Weston, the lead Ambassador for the Healing Foundation, a charity in the United Kingdom that raises money for research to help patients deal with the affects of disfigurement, endured years of reconstructive surgery to partially normalize his appearance after a war related injury. It is his contention as a burn injury survivor that the psychological scars related
to his image disturbance were just as challenging and emotionally disruptive to his life as the physical discomfort he had to face as a consequence of his physical healing. Persons who suffer from a marred appearance as a result of disfiguring diseases, indus trial explosions, house fires, car accidents, and physical attacks or more notably, injuries caused by explosions, clearly, require special aesthetic care. Lack of education in practical aesthetic approaches that offer the promise of hope and encouragement to such patients limits the resources available to professionals who are charged with the responsibility of informing their patients that their visible scarring is of a permanent nature. INTERVENING CARE Aesthetic operations offered in clinical environments should be interpreted as an additional medical modality under circumstances when the treatment approaches for such patient populations exceeds the medical resources available. In this vein, image improvement measures should be considered an additional form of clinical intervention for masking many variations of disfigurement. When a patient with image issues related to a disfigurement has undergone aesthetic healing measures feels an enhanced sense of self improvement and self-sufficiency, it is clear to all including health care professionals, that progress has been made. Medical care is not complete until the patient has had an opportunity to learn how to work with, and live with, the disfigurement. A therapeutic appearance restoration program focuses on all aspects of the patient’s appearance. Which may include and may not be limited to: hair removal and replacement solutions, micropigmentation (skin tattooing), cosmetic rehabilitation (camouflage makeup applications) (Fig. 38.1), skin care, and image development through camouflage dressing. PHILOSOPHY OF APPEARANCE RESTORATION Appearance restoration has evolved from another form of aesthetic intervention, camouflage therapy (the Disfigurement Guidance Center, U.K.). Unlike camouflage therapy, appearance restoration is an advanced level of aesthetic specialization that further addresses
the complexities involved in restructuring a gravely disfigured physical identity. Like camouflage therapy, appearance restoration is becoming more widely accepted as a form of aesthetic self-healing and self-directed rehabilitation. It specifically supports the self-sufficiency of disfigured patient populations. It is gradually acquiring its own recognition as a healing modality from: general practitioners, supportive oncologists, cosmetic/reconstructive dermatologists and dermatological surgeons, as well as, an entire spectrum of allied caregivers. In his book, Visibly Different: Coping with Disfigurement (August 1997), Associate Professor Richard Lansdoun describes a range of approaches which can enhance patient care and support that can be offered by multiple health care disciplines: from researchers to reviewers of service provisions highlighting the importance of innovative applications administered by all members of the professional team. Through the practices and procedures of appearance restoration patients are given the capacity to create for themselves, a more secure public persona. They learn how to form an artistic/visual shield that provides them with an aesthetic facade, using a stream of inventive measures that are independent of any realistic view. Patients come to recognize how first exchanges can be strengthened by using a combination of image communication symbols relayed through a series of applied imaginative applications, supported by the use of line, design, texture, shape, form, and color. One or, many of these artistic measures function as distracting elements, serving as visual aids and, acting as strong deterrents to observers by diminishing the initial “shock factor” associated with a disfigurement. Some of the greatest challenges patients find themselves facing when they go out in public are related to unwanted attention: excessive staring, distancing from strangers or inappropriate remarks made by people in passing (2). Facial disfigurement has an effect on the proxemic behavior of the general public as evidenced in a study published in the Journal of Applied Social Psychology (3). The personal space afforded to a disfigured or nondisfigured confederate by 450 pedestrians in a busy street was measured. In condition 1, the confederate had a birthmark under the right eye (permanent disfigurement). In condition 2, this was replaced by trauma scarring and bruising (temporary disfigurement). In the third condition, the confederate was “normal” (i.e., no disfigurement). It was found that subjects stood further away from the confederate in the disfigured conditions than in the no disfigurement condition. More specifically, pedestrians arriving first in each trial stood an average distance of 100 cm from the confederate in the birthmark
condition, 78 cm in the trauma condition, and 56 cm when
the confederate was not disfigured. In addition, subjects
choose significantly more often to stand to the left
(nondisfigured) side of the confederate with the birthmark
and trauma conditions than they did in with the normal
condition. Those subjects who chose to stand on the right
(disfigured) side of the confederate stood further away
from those subjects standing on the nondisfigured side. The
implications of the results are discussed in terms of the
possible psychological problems associated with facial
disfigurement. COUNTER MEASURES INTENDED TO COUNTERACT
Appearance restoration opens a whole new window of
opportunity for those who are disfigured. Patients are
taught to pay close attention to light perspective, color
formats and relationships between shape and proportion,
patterns and textural differences in apparel fabrics and to
always be aware of interesting fashion style combinations
that attract their eye. The concentrated assembly of these
aesthetic variables is twofold. They may be intended to
seize and refocus visual consideration to a specific area,
while in another instance; they might be employed to use
the patient’s entire presentation as a concealment tactic
to draw away attention and help to create multiple
diversions. SYMBOLISM, MIRRORING TACTICS, AND SOCIAL
RECOGNITION In addition, appearance restoration concepts
are to be considered vehicles for the expression of image
communication. Patients with abnormalities explore and grow
to appreciate the vast reaching power of artistic elements
when applied as symbols for their own social rewards. The
symbolism inherent in apparel and accessories creates a
social platform with which a series of nonverbal messages
add to the development of the overall visual composite
helping patients relate easier to others because their
presentation is one that mirrors culture style thinking,
encouraging bonding through familiarity and social
recognition. The theory of art as form has its roots in the
philosophy of Immanuel Kant, and was developed in the early
twentieth century by Roger Fry and Clive Bell. Art as
mimesis or representation has deep roots in the philosophy
of Aristotle. More recently, thinkers influenced by Martin
Heidegger have interpreted art as the means by which a
community develops for itself a medium for self-expression
and interpretation. SOCIAL SUPPORT AND COMPETENCE For
patients with disfigurement, the opportunity to learn
social skills is as much, if not, more important, than the
ability to restore their aesthetic appearance. A person
with image issues Figure 38.1 Cosmetic camouflage setup.
AND

needs to be able to feel confident that they can navigate a
variety of social situations. Patients just naturally grasp the significance of being in control of their environments as much as possible. The “wow factor” refers to one of the charismatic strategies that patients can use to captivate others and gain their instant approval (4). Using various aspects of the wow factor and other measures to influence social situations, patients discover that they can be more appealing thus contributing to their readjustment process immeasurably.

Through both image development orientation and the comprehension of communication skills, patients are able to strike a balance between being in a public environment and actually being “the” environment. Helen Smith, Director of children’s services at Changing Faces, a leading charity in the United Kingdom that supports and represents people who have disfigurements to the face and hand or body from any cause. Ms. Smith is one of a team of twenty-five psychologists, educators, employers, health care and social workers, media and people who campaign for them. Smith acknowledges the need for patients with disfigurements to have a plan for managing the reactions of others. She recommends that the best way for patients to
handle other people’s reactions is to reassure those whom they come in contact with and to try to distract them with their outer confidence. A booklet entitled Handling Other People’s Reactions, authored by clinical psychologist, Alex Clarke is made available to individuals with image issues who must struggle with the everyday process of being exposed to the public and who find this the most disturbing dynamic of looking different (5). The first half of this publication covers communication and how human interaction is affected. The second, portion of the booklet contains practical suggestions for enhancing verbal and nonverbal communication together with some exercises to help put the learned skills into practice.

Appearance restoration helps patients find themselves

Appearance restoration involves a combination of outcome based private sessions, teaching demonstrations, self-directed patient home study activities, and online learning systems (OLS) to introduce confidence skill building ideas targeted at the special needs of individuals living with disfigurements. With the expert guidance provided by the appearance restoration specialist, patients are capable of establishing reasonable, con crete goals for themselves that help them create new mental
pictures, in turn this imaging permits them to think of themselves as vibrant and whole individuals. In certain instances, virtual imagery guided interventions are implemented to digitally help patients envision themselves with a more normalized appearance. Research is currently being conducted at the Virtual Human Interaction Lab at Stanford University, where social scientists are seriously investigating virtual depictions of identity and how they impact human interactions. Positive changes in subject response assessments are indicating a higher incidence of confidence after subjects have participated in the virtual world experiments. More self-assurance is apparent in their social behaviors which are evidenced in the voice inflections, facial expressions, body language and gesturing of test subjects (6).

GOAL DIRECTEDNESS

The opportunity for physical change and the normalization of abnormalities brings with it the hope of influencing patterns of thinking, feeling and behaving which is likely to raise brain chemistry releasing chemicals such as dopamine promoting feelings of pleasure and oxytocin associated with supporting feelings of trust. Setting objectives elevates a person’s mood by increasing the likelihood of their success. A 2006 study conducted by Jennifer S. Cheavens, PhD, an assistant professor at Ohio State, cited that persons who set goals for their attainment felt better about themselves, and found more meaning in their lives than those who free-floated to
accomplish similar targeted outcomes. FOSTERING INDEPENDENCE More than anything patients want help so they can get through the difficulties associated with their altered images on their own. Step-by-step training prepares patients to identify both the challenges and possibilities of restoring their image to near normality. Patients who participate are eager to try out new ideas and perspectives, although, most have no wish to give up their identity; what they are hoping for is to use the knowledge they acquire to give them better social skills and a sense of continuity to their visual presentation (Fig. 38.2). While appearance restoration therapists may be exuberant about the benefits of the work, they quickly learn to defer to their patients when it comes to the recognized value of the sessions. Figure 38.2 Shopping excursion with patient.
STYLE SETS THE STAGE CREATING

Revelli, 1982.

Revelli C. Style & You: Every Woman’s Guide to Total Style. Revelli,

1993.

Richmond J. Reinvent Yourself with Color Me Beautiful: Four Seasons

Cynthia L. Rapid prototyping in the textile & apparel industry: a pilot

Jackson C. Color Me Beautiful: Discover Your Natural Beauty through

the Colors That Make You Look Great and Fabulous. Random

House Publishing Group, 1980. Richard HP, Avrum S.

seen in hypertrophic scars are flatter and less demarcated

than

those in the normal skin. Collagen fibers are seen in a wavy

pattern. These features are more pronounced in keloids. Occlus

sion of microvessels is reported to occur in both hypertrophic
scars and keloids. Differentiation is typically possible via clinical examination.

PATHOGENESIS

The pathogenesis of keloid formation still remains largely unknown. Recent advances have implicated the role of transforming growth factor-b (TGF-b) and platelet-derived growth factor (PDGF). These play a role in modulating contractile forces in skin fibroblasts. A brief overview of wound healing assists in the discussion of pathogenesis. There are three primary phases of normal wound healing: inflammatory, proliferative/fibroblastic, and maturation/remodeling. The inflammatory phase consists of an immediate influx of inflammatory mediators into the site involved. A fibrin clot is initiated during this phase. This occurs by capillary dilation and subsequent delivery of these mediators. The fibroblastic phase consists of fibroblast advancement into the fibrin clot with production of new collagen. The maturation phase occurs as the wound matures via collagen synthesis and Figure 39.1 Keloids on the chest with restriction of movement due to extensive involvement. These are spontaneous keloids and occurred without any known trauma. Figure 39.2 Spontaneous keloids on the chest wall. No known surgical or trauma occurred to form these keloids. Degradation. A variety of signaling molecules [TGF-b, PDGF, matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs)] regulate this process. With this basic template of the wound healing process in place, the faults by which keloids and hypertrophic scars occur can be demonstrated. Early forms of fibroblasts have been shown to persist longer in keloids than in the normal skin. This persistence of early fibroblasts likely results in increased collagen production. This collagen synthesis is 20 times greater in keloids than in the normal skin. While the dominant type of collagen in the normal skin is type I, keloids have both types I and III. Growth factors have showed the most promise in the quest for keloid pathogenesis. TGF-b promotes fibroblasts to localize to sites of inflammation to begin extracellular matrix protein synthesis. While this activity is normally turned off when repair is complete, dysregulation of TGF-b activity is likely a key factor in keloid production. Decreased synthesis of molecules that promote collagen matrix breakdown (MMPs) has also been shown to be a factor in keloid pathogenesis. Other studies
have shown that infrared light can inhibit fibroblast proliferation and activity. How this happens is unknown, but it may be why some success has been reported with carbon dioxide (CO\textsubscript{2}) laser (an infrared laser) excision of keloids. Figure 39.3 Hypertrophic scar (A) following a surgical procedure and keloid (B) resulting from trauma to the left arm. Figure 39.4 Keloid formation secondary to piercing of the ear in an adolescent. Piercing was performed at the age of 13. Figure 39.5 Keloid on the posterior ear secondary to piercing of the ear.

TREATMENT

Treatment of keloids and hypertrophic scars presents a clinical challenge. As the two entities are similar, treatment of such is also similar. The fact that traumatic injury is the typical cause highlights the difficulty of any type of surgical treatment. Treatment options include a multitude of possibilities ranging from noninvasive to invasive. The choice of treatment depends on a variety of factors, including the patient (age, health), location, size, depth, and previous treatments. A number of topical treatment modalities have been successfully used to treat keloids and hypertrophic scars (Table 39.1). A common technique used at the initial time of diagnosis is gentle massage of the site. Instructions to the patient include a gentle rocking massage for several minutes to be performed several times per day. This can be useful for smaller scars and especially in sites where web formation is a possibility. The use of special “keloid medications” has not been shown to be better than just massage alone. The use of mechanical pressure is used as both treatment and prophylaxis. This is commonly seen with pressure earrings used to both treat and prevent keloids secondary to ear piercing. Treatment with mechanical pressure takes time and may require as long as 6 to 12 months or longer for acceptable results. Additionally, use of pressure garments should be 23 to 24 hr/day. Success in treatment thus is largely dependent on patient compliance. Silicone gel sheeting is believed to act by scar hydration, resulting in decreased capillary flow with subsequent reduction in collagen deposition from a decrease in circulating proinflammatory cytokines. Some authors have demonstrated excellent success rates with silicone gel sheeting, while others attribute its success to the occlusive wound effects. Silicone sheeting should be worn for a minimum of 12 hr/day and for a minimum of 2
months. The true “gel” types of sheeting have been shown to give more consistent results than the dry “cardlike” sheeting. The use of cryosurgery in the treatment of keloids and hypertrophic scars is much like that in the treatment of other dermatologic conditions. Cryosurgery utilizes a cryogenic agent (liquid nitrogen) to induce direct cellular and microcirculatory damage. This leads to tissue necrosis and hopeful flattening of the lesion. The primary risk of this method is hypopigmentation of the treatment site. Success rates as high as 74% have been claimed with the use of cryosurgery to treat keloids. It has also been noted that younger keloids tend to respond better to cryosurgery than older keloids. It can also be used as an adjunct to initial corticosteroid intralesional injection. The edema that results from cryosurgery loosens the scar-like fibers and facilitates easier injection. Topical corticosteroids remain a common first-line treat
ment of both keloids and hypertrophic scars. The known side effect of skin atrophy is harnessed and used to the clinician’s advantage. Similar medications such as tacrolimus and pimecrolimus demonstrate some potential; however, these are weaker than most corticosteroids utilized, and thus may be most efficacious in anatomic locales where stronger corticosteroids are not possible. Intralesional injection remains the mainstay of treatment of keloids and hypertrophic scars. The most common and perhaps useful medication used is triamcinolone acetonide, a corticosteroid, available as a suspension and not a solution. Triamcinolone acetonide is injected and is available in multiple concentrations—10 and 40 mg/mL are most often used as alternate dilutions that can be prepared easily from these stock concentrations. The dose and concentration varies based on the size and location of keloid; however, this may range from 5 to 40 mg/mL. Injecting a medication into a keloid represents a physical challenge due to the frequent density and firmness of a keloid. A basic understanding of Poiseuille’s law is important in the efficacious delivery of medication. This law defines the volume flow rate as the pressure difference divided by the viscous resistance. More succinctly, this law determines the resistance to flow. The important point for the clinician is that a smaller diameter syringe allows more mechanical advantage for injection. A 1 cc tuberculin syringe with a lure lock tip and 27 gauge or larger needle is recommended. Lack of a lure lock system frequently results in the propulsion of the needle from the syringe due to even greater pressure within the keloid. The N-Tralig injector utilizes a ratchet-type mechanism to allow injection of medication into keloids and hypertrophic scars (Figs. 39.10 and 39.11). Another useful technique with keloid injection is the Dermajet (Fig. 39.12). This specialized syringe allows one to inject medication without using a needle. In all cases, it is important to keep from injecting into subcutaneous fat as the atrophy that follows is difficult to correct. Injection around or near the eye should also be carried.

Table 39.1 Treatment of Keloids and Hypertrophic Scars

<table>
<thead>
<tr>
<th>Topical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massage</td>
</tr>
<tr>
<td>Pressure</td>
</tr>
<tr>
<td>Silicone gel</td>
</tr>
</tbody>
</table>
Cryotherapy
Tacrolimus
Retinoids
Intralesional injection
Corticosteroid (triamcinolone acetonide)
Interferon-a2b
5-Fluorouracil
Verapamil
Laser
Pulsed dye
Argon laser
Nd:YAG laser
CO2 laser
Oral
Surgical
Radiation therapy

Other Figure 39.10 N-Tralig mechanical injector. Out with caution, as particles from the suspension has been shown to cause amaurosis through embolization. The use of retinoids for the treatment of keloids and hypertrophic scars has been suggested topically; however, they have also been cited as a potential causative agent when taken orally. The risk of scarring is well documented following recent treatment with isotretinoin and acitretin. Decrease in size of keloids treated with tretinoin 0.05% topically for 12 weeks has been described. The use of imiquimod 5% cream has been met with mixed reviews in prevention and treatment of keloids. Imiquimod is a topical immune response modifier that stimulates interferon-a (INF-a). This is a proinflammatory cytokine that increases collagen breakdown. Although there are conflicting Figure 39.11 Intralesional treatment of a hypertrophic scar with the N-Tralig mechanical injector. Figure 39.12 Dermajet injector.
results in the literature, most of these studies consist of small study groups. Given the favorable results in many studies and the overall safety profile of imiquimod, it is a simple and potentially useful adjunctive therapy for treatment of keloids. Reports of using calcium antagonists to retard extracellular matrix production in connective tissue equivalents and intrallesional verapamil to treat keloids have also appeared in the literature. The use of lasers to treat keloids and hypertrophic scars has been met with some success (Figs. 39.13–39.19). A number of different lasers have been tried but the main two that remain in use are the pulsed dye laser and the CO₂ laser. The pulsed dye laser is a 585 or 595 nm system. Frequency-doubled Nd: YAG systems have also demonstrated benefit in the treatment of keloids and hypertrophic scars. Pulsed dye lasers have the capability of reducing the size and redness of keloids and hypertrophic scars. They can also normalize the surface texture of keloids and hypertrophic scars. The CO₂ laser is an ablative laser that vaporizes tissue and can be used to excise keloids (Figs. 39.13–39.19). It, being an infrared light source, may act by having an inhibiting effect on fibroblasts. Surgery is commonly used to treat keloids and hypertrophic scars; however, it must be used with caution as this may result in keloid formation itself, sometimes worse than the initial lesion. The risk of anticipated keloid formation from surgical intervention itself often warrants adjuvant therapy. Figure 39.13 Treatment of keloids (before) with CO₂ laser (left). Multiple treatment sessions were required with resultant improvement and decreased thickness (right). Of note, the resultant scars
represent hypertrophic scars, an improvement over the previous keloids.

Figure 39.14 Use of CO 2 laser to ablate large keloid on the preand postauricular cheek. Figure 39.15 Postoperative result after CO 2 ablation of keloid (from Fig. 39.14) at 2.5 months (A) and 4.5 months (B,C). The resultant surgical scar represents a hypertrophic scar but an improvement over the previous keloid. Figure 39.16 Large keloid on right cheek of a young man. Figure 39.17 Surgical excision of large keloid.

therapy such as postoperative corticosteroid injections. Recur-
rence of keloids following surgical intervention varies from

50% to 80%. Radiation therapy may be utilized for reduction of keloid size on account of its ability to destroy fibroblasts and neo-

Figure 39.18 Use of CO 2 ablation to remove and recontour keloid on right cheek.

INTRODUCTION

Topical keratolytic agents have long been employed for acne treatment. Shalita et al. state that “the first histologically visible change in acne is a disruption in the normal pattern of keratinization, resulting in dense, coherent squamae of keratinous material that accumulate to form a plug in the orifice of the follicle, leading to formation of the microcomedo” (precursor acne lesion). Furthermore, these aberrancies in proliferation, adhesion, and differentiation of the keratinocytes obstruct the infundibulum and the sebaceous duct, paving the way for excessive sebum secretion, bacterial overgrowth, and inflammatory response due to release of bacterial and cellular products. Under light microscopy, microcomedones are visualized as layers of horny cells surrounding a sebum and bacteria core (1). Keratolytic agents are thought to function by relaxing the cohesiveness of the stratum corneum layer, which serves as a...
crucial, life-sustaining barrier, keeping hydration “in” and harmful foreign agents “out.” The mechanism of action does not involve keratin lysis as the name implies, but rather disintegration of desmosomes and hemidesmosomes that link keratinocytes and bind them to the extracellular matrix, respectively (2). In this manner, these agents modulate and correct abnormal follicular keratinization. Currently many classes of keratolytics exist (Table 40.1).

Available in varying concentrations and vehicles, they may be specifically indicated depending on the type, duration, and severity of acne. This chapter covers widely available, topical and oral keratolytics, controlled trials comparing keratolytic agents, and in vivo keratolytic protein assays. Uncontrolled trials and older acne treatments are discussed briefly. This overview was based on PubMed, Embase, and Science Citation Index utilizing the following words: keratolytics, benzoyl peroxide, azelaic acid, retinoids, sulfur, resorcinol, glycolic acid, salicylic acid, acne vulgaris.

BENZOYL PEROXIDE

Benzoyl peroxide (BPO), a mainstay treatment of mild-to-moderate acne for decades, has antimicrobial, anti-inflammatory, and anti-comedogenic effects. Acting through oxidation and formation of free radicals, its bacteriostatic activity is superior
even to that of topical antibiotics (4). It decreases inflammation

by killing polymorphonuclear leukocyte (PMNs), preventing the

release of reactive oxygen species (5), and was shown to be a

keratolytic in vivo (Table 40.4). Unfortunately, oxidative destruc
tion of the stratum corneum may deplete cutaneous vitamin E,
resulting in oxidation of surface lipids and proteins; this may
predispose to skin dryness and desquamation (6). BPO is absorbed effectively into the epidermis, particu
larly by pilosebaceous units, and converted to benzoic acid, with approximately 2% entering the systemic circulation (7-9). Its lipophilicity allows it to enter and accumulate in the lipid rich pilosebaceous units and subcutaneous fat (5). It is an FDA Pregnancy Category C agent, with little known about potential fetal harm or breast milk excretion, and positive in the rodent photocarcinogenicity assay. It is widely available, both over-the-counter and by prescription, and comes in different concentrations ranging from 2.5% to 10%. Adverse effects include dryness, peeling, burning, and redness of skin, with contact allergy in 1% to 2% of patients (4). To that end, patients should avoid excessive UV radiation, which can exacerbate irritation. Additionally, the water-based formulations may exert less drying, scaling, burning, and erythema than the alcohol-based formulations (4,10). Of note, BPO, an oxidizing agent, can bleach hair, clothes, and colored fabrics. It may also inactivate tretinoin if both are applied concurrently (11); in contrast, adapalene and tazarotene remain stable in the presence of BPO (7). The 2.5% formulation may be as effective as the 5% and 10% formulations in reducing inflammatory lesions and producing positive global ratings, while causing fewer adverse reactions than the 10% solution (12). Compared with vehicle, 2.5% BPO significantly decreased inflammatory lesions and improved global ratings; by the end of the eight-week study, the only significant adverse effect was peeling (12). In a splitface, double-blind trial, a combination of BPO 5% and urea 8%
Lotion was not more efficacious in diminishing acne than BPO 5% lotion alone; the combination took longer to dry and was stickier according to subjects (13). Despite disappointing results with urea, combination therapy with topical antibiotics and BPO may be more effective than BPO alone. Both the clindamycin/BPO and the erythromycin/BPO formulations (Table 40.1) have shown superior efficacy when compared with either the antibiotic or BPO alone (14). Three well-designed, randomized, double-blind, vehicle-controlled, multicenter clinical trials comparing the clindamycin/BPO gel with each individual agent and vehicle demonstrated significantly superior efficacy in inflammatory lesion reduction after 10 to 16 weeks (5). In two of the trials, global improvement assessments demonstrated significantly greater improvement in the combination group. Furthermore, the side effect profile (dry skin, peeling, and erythema) of combination therapy is comparable to that of BPO alone (5). Leyden et al. compared clindamycin/BPO and erythromycin/BPO demonstrating statistically equivalent lesion reduction and global improvement, with similar tolerability (15). Additionally, a vehicle-controlled, randomized trial examining a 5% BPO/1% clindamycin combination gel in acne rosacea demonstrated significant improvement in papules/pustules and flushing/blushing after just a few weeks (16). These results suggest a viable alternative to traditional rosacea treatments, which can produce systemic side effects. In vivo data suggest that the increased efficacy of a BPO/antibiotic combination may have an immunological basis as demonstrated by decreased antioxidant enzyme activities in leukocytes after month-long combination treatment (17). Additionally, this combinatory approach may prevent the evolution of resistant Propionibacterium acnes strains (18). RETINOIDS: TRETINOIN, Tazarotene, Adapalene Topical retinoids encompass a group of powerful, comedolytic, anti-comedogenic, and anti-inflammatory agents. They are powerful keratolytics, targeting both primary and secondary prevention of comedones. Additionally, oral isotretinoin also reduces sebaceous gland size and suppresses sebum production (7). Retinoids exert their effects through nuclear receptor families RARs (retinoic acid receptors) and RXRs (retinoic X receptors), subsequently inducing retinoic acid-responsive target gene expression (19–21). Both receptor families are ligand-dependent transcription factors and consist of three receptor subtypes (a, b, and g), encoded by three separate genes (22). Although RAR-a is ubiquitous in embryonic skin, RAR-g is the most abundant RAR in human epidermis, cultured keratinocytes, and dermal fibroblasts (22,23). Retinoids also inhibit expression of certain genes by downregulating other transcription factors.

factors, notably activator protein 1 (AP-1) and nuclear factor-interleukin 6 (NF-IL6) (19). This inhibitory action may be partly responsible for the anti-proliferative and anti-inflammatory actions of retinoids (22). Prior to binding with nuclear RARs, retinoids must first bind to intracellular proteins. Cellular retinoic acid proteins (CRABP I and II) are present in the skin. Intracellular retinoid concentrations are dependent on CRABP, primarily type II (19). However, CRABP II is not essential for biological retinoid activity as adapalene does not bind to it; interestingly, it may play a role in retinoid-induced epidermal irritation (22). Through this genetic regulation, retinoids are thought to affect cellular differentiation and proliferation (20). Experimental studies, some using primary neonatal mouse epidermal keratinocyte cultures, have confirmed this concordant decrease in keratinocyte differentiation and proliferation (24). Retinoids also regulate activity of keratinocyte adhesion and cohesion molecules, resulting in breakdown and obliteration of the horny plug (23). Mechanisms of action are numerous and include normalization of epidermal proliferation and differentiation, inhibition of neutrophil chemotaxis, expression of toll-like receptors (TLRs) involved in immunomodulation, and anti-inflammatory effects via inhibition of prostaglandins, leukotrienes, and interferon (IFN)-γ release. Retinoids may exert an anti-inflammatory response by inhibiting the release of proinflammatory cytokines (interleukins 12 and 8 and tumor necrosis factor) via downregulation of monocyte TLRs (25,26). Interestingly, *P. acnes* acts through TLR-2 to stimulate proinflammatory cytokine production (27). Additionally, retinoids cause the hair follicle to become less anaerobic, creating a more hostile environment for *P. acnes* (22). Combination therapy involving topical retinoids and antimicrobials allows targeting of different pathophysiological factors in acne vulgaris (19). This combination approach is optimal in patients with both inflammatory and comedonal lesions, given the different but complementary mechanisms of action present in both agents (19). Additionally, topical retinoid therapy, by weakening the horny layer barrier, may increase skin permeability, enhancing penetration of antimicrobial agents. Increased cell turnover of follicular epithelium enables greater access of antibiotic into the canal that houses *P. acnes*. A large retrospective, vehicle-controlled study of inflammatory acne (mild/moderate to severe) demonstrated clinically significant improvements with tazarotene 0.1% gel and 0.1% cream, adapalene 0.1% gel, and tretinoin 0.1% microsponge treatment (25). These treatments along with tretinoin 0.025% gel produced significant improvement in global acne response (25). Among these,
tazarotene 0.1% cream and 0.1% gel showed a greater frequency of clinically significant improvement when Table 40.1 keratolytics currently used in the United States Name Class First introduced Concentration(s) (%) Vehicle(s) Salicylic acid b-Hydroxy acid – 2.0 Bar, foam Glycolic acid a-Hydroxy acid – – – Benzoyl peroxide Organic peroxide 1920s 2.5, 3.0, 4.0, 5.0, 6.0, 8.0, 8.5, 9, 10 Gel, liquid, bar Tretinoin Retinoid 1962 0.025, 0.05, 0.1, 0.01, 0.025, 0.05, 0.04 Cream, gel, liquid Isotretinoin Retinoid 1979 10 mg, 20 mg, 30 mg, 40 mg Oral Tazarotene Retinoid 1997 0.1, 0.05, 0.5 Gel, cream Adapalene Retinoid-like 1996 0.1 Gel, cream, pledgets, solution Azelaic acid Dicarboxylic acid – 15.0, 20.0 Cream, gel Sulfur Sulfur – 10.0 Bar Urea Urea – – – Clindamycin/benzoyl peroxide Antibiotic combination – 1.0/5.0 Gel Erythromycin/benzoyl peroxide Antibiotic combination – 3.0/5.0 Gel Sulfur/sodium sulfacetamide Antibiotic combination – 5.0/10.0 Tube, gel, cream, lotion Benzoyl peroxide/urea Keratolytic combination – 4.5/10.0, 8.5/10.0 Liquid, gel Sulfur/benzoyl peroxide Keratolytic combination – 2.0/5.0, 5.0/10.0 Lotion Source: From Ref. 3.

compared with adapalene or tretinoin gel (25). Between-retinoid comparisons demonstrated tazarotene to have the greatest efficacy on the overall inflammatory acne severity and global response scales (25). The major drawback to topical retinoids is local skin irritation and acne exacerbation, also termed “retinoid flare,” which may occur during the first month of treatment and last several weeks (7). This flare-up may be secondary to release of follicular inflammatory factors after topical retinoid treatment (28). Another limiting factor of retinoids, particularly oral agents, is their teratogenicity, resulting in severe fetal malformations if exposure occurs during the first trimester.
Malignations include microtia/anotia, conotruncal heart defects and aortic arch abnormalities, thymic defects, and central nervous system malformations (29). Several case reports suggest these effects may not be limited to oral retinoid therapy, with limb reduction defects and ear malformations reported with maternal use of topical retinoids (30,31). However, Jick et al., in a retrospective study, did not substantiate this suggestion, and the clinical issue remains subjudice (32).

Tretinoin

Tretinoin, the first topical retinoid to be studied, binds with high activity to all three RAR subtypes and to CRABP, and with low activity to RXRs. It is an effective comedolytic agent, which increases epithelial cell turnover and modulates abnormal keratinization (that leads to microcomedone formation). It also acts in an anticomedogenic manner, preventing formation of microcomedones (22). Mills and Kligman, using a cyanoacrylate follicular biopsy technique, demonstrated a profound microcomedone reduction in 8 and 12 weeks (33). From an immunological perspective, in vitro studies have demonstrated
that tretinoin downregulates and decreases surface expression of TLR-2 and CD14 mRNA, preventing secretion of interleukins (perhaps IL-1a, 12, and 8), tumor necrosis factor, and IFN-γ, as well as production of free radicals (23,24). In a large multicenter trial, 0.025% tretinoin cream significantly reduced inflammatory and noninflammatory acne lesions compared with vehicle by week 12; side effects included eruption, dry skin, and exfoliation (34) (Table 40.2). Polyolpre polymer-2 (PP-2), which localizes drug molecules in upper skin layers, preventing deep penetration, may diminish adverse cutaneous reactions (34). A large study demonstrated earlier favorable global assessments with 0.025% tretinoin with PP-2 cream versus a 0.025% tretinoin cream, but no significant difference in side effects (34). PP-2 forms a liquid reservoir of polymer and solubilized drug on the skin surface, slowing percutaneous absorption and transcellular cutaneous diffusion, potentially targeting folliculo-infundibular delivery in the process (35). Some clinical trials have demonstrated reduced irritation as less drug penetrates the skin (35). The Microsponge Delivery System found in 0.1% microsphere gel also helps reduce drug release rate and increase drug retention in the stratum corneum (SC), inhibiting deeper
penetration (7). Tretinoin is trapped within porous copolymer microspheres, which selectively localize to the follicle, releasing tretinoin over time and producing less irritation (than the standard 0.025% cream) due to reduced concentration on the skin (23). A study examining tretinoin gel microsphere 0.04% compared with vehicle demonstrated significant reduction in total, inflammatory, and noninflammatory acne by week 12 (26). About 90% of subjects reported none or only mild adverse events; there were no significant differences in tolerability between the treatment and control groups at week 12 (26). Moreover, tretinoin 0.1% microsphere gel significantly reduces facial shine at three and six hours posttreatment when compared with tretinoin 0.025% cream (36). Numerous trials have demonstrated the efficacy of tretinoin in various forms of acne. Patience is advised as full effect may take two to four months; adherence is essential as tretinoin serves to control rather than cure acne. A hydrogel containing 1% clindamycin and 0.025% tretinoin was found to be more efficacious in treating inflammatory and noninflammatory acne lesions than either agent alone or vehicle (37). These results were confirmed by two large studies; adverse effects were similar in frequency and severity to tretinoin alone (37). Furthermore, a BPO 6% cleanser-tretinoin 0.1% microsphere gel demonstrated significantly greater inflammatory lesion reduction than tretinoin alone (38). In a split-face ultrastructural study comparing 0.1% tretinoin to emollient cream, an 80% decrease in microcomedones was demonstrated on the tretinoin side at 12 weeks (1). Employing the technique of skin surface biopsy, microscopic examination of comedones showed progressive loss of the cohesiveness and significant alterations in epithelial structure; thick keratinous plugs infested with bacteria were transformed into a few wispy layers of keratin with few bacteria (1). Using transmission electron microscopy, it was possible to track microcomedones with compact, adherent stratum corneum morphing into spongy, loosely adherent layers of corneocytes (1). From a combination therapeutic standpoint,
the alteration in SC integrity incurred during tretinoin
treatment may enhance penetration of other agents such as
BPO and topical antibiotics (see paragraph above) (1).
Surprisingly, topical tretinoin has poor percutaneous
absorption and does not alter systemic retinoid levels,
which stay constant despite application (7). Side effects
include peeling, erythema, dryness, burning, and itching
(7,23). Pustular eruptions may occur initially, but are
alleviated with concomitant erythromycin (23).
Additionally, tretinoin may bring out the postinflammatory
darkening that occurs in healing acne of darker-skinned
patients (28). Tretinoin-induced skin irritation may be
explained by a flexible chemical structure, resulting in
nonselective action, and the ability to activate numerous
pathways, resulting in various biological effects (22).
Applying a moisturizing cream along with topical tretinoin
or oral tretinoin significantly improves skin dryness,
roughness, and desquamation, increasing subjective skin
comfort (39). Adverse effects are exacerbated by sunlight,
extremes in weather, oxygen, and “comedogenic” skincare
products. They can be reduced by spacing out applications
and/or diminishing frequency and concentration of the
product (23). Additionally, tretinoin should not be used
with BPO (an oxidizing agent), which can result in
degradation and deactivation. Despite some evidence to the
contrary, topical tretinoin is not advised during pregnancy
and lactation. Potential for systemic exposure and
excretion in breast milk have not been adequately studied.
Isotretinoin Introduced in the late 1970s, isotretinoin
(Iso) remains a mainstay for severe, recalcitrant
nodulocystic acne unresponsive to topical therapy and
systemic antibiotics. Dramatic clearing and prolonged
remissions of lesions make Iso an attractive Table 40.2
Controlled Clinical Trials Comparing Keratolytic Agents in
Acne Vulgaris Treatment Authors Comparison Lesions Placebo
Results, brief Lucky et al. 1998 (34) 0.025% Tretinoin gel
vs. 0.025% tretinoin gel containing polyolprepolymer-2 vs.
vehicle over 12 wk All types Vehicle Both treatments
significantly more effective than vehicle.
Polyolprepolymer-2 treatment has significantly less peeling
and drying. Cunliffe et al. 1998 (58) Meta-analysis of five
12-wk long randomized trials comparing 0.1% adapalene gel
vs. 0.025% tretinoin gel All types Vehicle only in 1 study
Both treatments had equivalent efficacy in reducing lesion
count; adapalene works more rapidly with greater
tolerability. Bershad et al. 2002 (55) 12-wk trial
comparing 0.1% tazarotene gel once daily vs. 0.1%
tazarotene gel twice daily in short-contact (<5 min)
application vs. vehicle twice daily All types Vehicle Both
groups were comparable and significantly more efficacious
than vehicle Lookingbill et al. 1997 (14) Combined results of two doubleblind, 11-wk long, randomized trials comparing 1% clindamycin/5%BPO gel, 1% clindamycin gel, 5% BPO gel, and vehicle All types Vehicle All 3 treatments were significantly better than vehicle. Combination gel was significantly superior to 2 individual agents in global improvement and reduction of inflammatory lesions; it was also better than clindamycin in treating noninflammatory lesions. Shalita et al. 1999 (20) Multicenter, controlled, 12-wk long trial comparing 0.05% tazarotene gel vs. 0.1% tazarotene gel vs. vehicle All types Vehicle At 12 wk, both tazarotene gels produced significant success rates and decreased total and noninflammatory lesions. Only 0.1% gel significantly reduced inflammatory lesions; it was also significantly more efficacious than 0.05% gel, with decrease in total and noninflammatory lesions and success rates Leyden et al. 2005 (25) Retrospective, vehicle-controlled, photographic assessment comparing tazarotene 0.1% gel, adapalene 0.1% gel, tretinoin 0.1% microsponge, tretinoin 0.025% gel, and tazarotene 0.1% cream Inflammatory Vehicle All treatments had significant improvement in global response compared with vehicle. All except tretinoin gel had clinically significant improvement in inflammatory acne. Between-retinoid comparisons demonstrated tazarotene to have significantly greater incidences of clinically significant improvement compared with adapalene or tretinoin gel. Leyden et al. 2005 (25) Combined results of two doubleblind, randomized, 12or 15-wk long trials comparing 0.025% tretinoin/1% clindamycin hydrogel with each agent alone and vehicle All types Vehicle All treatments were more efficacious than vehicle. Combination treatment was more efficacious in treating inflammatory and noninflammatory lesions compared with either agent alone, and its side effect profile was similar to tretinoin. Galvin et al. 1998 (60) Two controlled, randomized studies comparing 0.1% adapalene gel with a total of 6 different tretinoin formulations and petrolatum in terms of tolerability after 3 wk – Petrolatum Adapalene had a better tolerability profile than tretinoin 0.1% cream, tretinoin 0.05% cream, tretinoin 0.025% cream, tretinoin 0.01% gel, tretinoin 0.025% gel, and tretinoin 0.1% gel microsphere, and an equivalent tolerability to petrolatum. Chalker et al. 1987 (43) Multicenter, controlled study comparing Iso 0.05% gel twice daily for up to 14 wk with its vehicle Mild-to-moderate acne Vehicle Iso gel was significantly more effective in reducing inflammatory lesions after 5 wk, and noninflammatory lesions and acne severity grade after 8 wk. 2 Iso patients dropped out due to skin irritation. Mills et al. 1986 (12) 3 Double-blind, 8-wk long studies comparing 2.5% BPO, 5%
BPO, 10% BPO, and vehicle Mild to moderately severe inflammatory acne. Vehicle 2.5% BPO formulation was more effective than vehicle and equivalent to 5% and 10% concentrations in reducing the number of inflammatory lesions; 2.5% formulation had less desquamation, erythema, and burning than the 10% preparation, but tolerability was equivalent to the 5% gel. (Continued)

Treatment modality (19). Its efficacy extends beyond correction of hyperkeratinization to include actions on the sebaceous gland (decreases size and secretion), anticomedogenic properties, and reduction of P. acnes via creation of an unfavorable follicular environment (40). Its cellular actions are not completely known, and it does not display strong binding activity to RAR or RXR nuclear receptors (23). A cumulative dose of 100 to 150 mg/kg is recommended during treatment course, with daily dosage ranging from 0.5 to 1 mg/kg/day (23). Lower daily doses may be associated with higher rates of relapse (23). In fact, Cunliffe and Norris cite several studies including their own that demonstrate a significantly higher relapse rate in subjects receiving 0.5 mg/kg/day compared with that receiving 1.0 mg/kg/day (41). Nonetheless, to assuage possible retinoid flare, doses of 0.5 mg/day for the first month may be prudent (40). At doses of 1 mg/kg/day for four months, Iso treatment produces significant decreases in sebum excretion rate in
comedo formation (41). Risk factors for suboptimal response to Iso include younger age (14–19 years), acne duration of less than six years, increased truncal acne, and a return of reduced sebum excretion rate to within 10% of the pretreatment level (41). Lesions on the face, upper arms, and legs respond more favorably than those on the trunk (40). No other local or generalized acne treatment is to be taken simultaneously with Iso. Intervals between treatments can be spaced out, thus improving side effect profile and minimizing drug exposure. In a large trial, micronized Iso demonstrated fewer adverse mucocutaneous events and a lower likelihood of triglyceride elevation than standard Iso (42). In the United States, Iso is prescribed solely as an oral agent, although several other countries have a topical option. A large, multicenter, double-blind, controlled study demonstrated Iso 0.5% gel to be significantly more effective than vehicle in reducing inflammatory lesions, noninflammatory lesions, and acne severity grade by eight weeks (43). Despite significantly greater likelihood of erythema and peeling in the Iso group compared with vehicle, most of the patients had little or no local irritation; additionally, retinoid flare, seen with tretinoin, was not observed with the Iso formulation (43). A 2007 trial indicated a place for intermittent Iso treatment for those with moderate acne, resulting in significantly fewer side effects (mucosal dryness, dry/chapped lips, and rash/facial redness) (44). The intermittent schedules included

Table 40.2 Controlled Clinical Trials Comparing Keratolytic Agents in Acne Vulgaris Treatment (Continued)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Comparison</th>
<th>Lesions</th>
<th>Placebo Results, brief</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katsambas et al.</td>
<td>1989 (69) 3-mo double-blind study comparing 20% azelaic acid cream to its vehicle Moderate inflammatory acne Vehicle At 2 and 3 mo, azelaic acid showed significant improvement in reducing inflammatory lesions compared with its vehicle. Azelaic acid showed significant comedone reduction compared with its vehicle in all visits. There was also a significant difference in overall evaluation. The only significant side effect difference was burning</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
sensation.

Shalita 1981 (74) 12-wk trial comparing 0.5% salicylic acid in an alcoholic detergent solution (Stri-Dex medicated pads) vs. placebo (pads soaked in buffered water) Mild-to-moderate acne Vehicle The treatment group experienced significant reductions in inflammatory lesions and open comedones compared with the placebo group. The treatment group also had significantly more “good” or “excellent” responses than the placebo group.

Spellman and Pincus, 1998 (28) 12-wk double-blind, randomized trial comparing azelaic acid 20% cream–glycolic acid solution with tretinoin 0.025% cream and vehicle lotion Mild-to-moderate acne Vehicle Both groups experienced significant lesion reduction and global improvement compared with vehicle. The combination treatment was significantly better in decreasing inflammatory lesions than tretinoin, while producing significantly fewer adverse effects. Both treatments had equivalent noninflammatory lesion reduction.

Thiboutot et al. 2007 (27) 12-wk randomized, double-blind trial comparing combination adapalene 0.1% gel–BPO 2.5% gel vs. adapalene 0.1% gel vs. BPO 2.5% gel vs. vehicle Inflammatory and noninflammatory Vehicle The combination was significantly more effective than the monotherapies in investigator’s global assessment and reduction of inflammatory, noninflammatory, and total lesions. Tolerability of combination treatment was similar to adapalene monotherapy.

Thiboutot et al. 2006 (57) 12-wk randomized vehiclecontrolled study comparing 0.3% adapalene gel to 0.1% adapalene gel Inflammatory and noninflammatory Vehicle Adapalene 0.3% gel was significantly superior to 0.1% gel in various efficacy assessments, total lesion reduction, and inflammatory lesion reduction. Tolerability profile was similar in both concentrations.

Abbreviations: BPO, benzoyl peroxide; Iso, isotretinoin. in the trial were Iso 0.5 mg/kg/day for the first 10 days each month for 6 months, or each day in the first month and the first 10 days of each month for the next 5 months (Table
Nevertheless, in severe acne, consistent daily usage (Iso 0.5 mg/kg/day for 6 months) displayed greater efficacy than intermittent usage patterns (44). From an epidemiological standpoint, between 1993 and 2000 in the United States, the proportion of Iso treatment for severe acne dropped from 63% to 46%, while the proportion of treatment for mild and moderate acne increased from 31% to 49% (23). Orally, Iso is a potent teratogen. To date, several reports of congenital abnormalities have been reported. One large investigation involving 154 pregnancies with fetal exposure to oral Iso resulted in 12 spontaneous abortions and 21 major malformations involving craniofacial, cardiac, thymic, and neural structures (7). Even short-term treatment can lead to congenital defects, resulting in an FDA Category X classification. Furthermore, women of childbearing age must use two forms of contraception concurrently, demonstrate two negative pregnancy tests prior to treatment, undergo monthly urinary pregnancy tests, and understand potential hazards of treatment (culminating in an informed consent). A large Canadian study determined the annual rate of pregnancy during Iso treatment to be 32.7/1000 person-years of treatment, four times greater than what had been previously published (45). Furthermore, predictors of becoming pregnant on Iso therapy were low socioeconomic status (SES) and high health care services usage (45). Congenital malformations occurred in only 11% of completed pregnancies, which Berard et al. comment is two-third smaller than what other studies have demonstrated (45). Eruptive inflammatory attacks are common during the first month of therapy, typically resolving without further sequelae. The most commonly reported adverse effects are muccutaneous and cutaneous changes/dryness involving the lips, eyes, mouth, and other mucosal surfaces (40,42). Cheilitis, dry skin, and localized exfoliation were the most commonly reported adverse events in a large study (42). Secondary skin infection with Staphylococcus aureus can occur, and must be treated with antibiotics (40). Far more serious side effects include hyperlipidemias, pseudotumor cerebri, hyperostosis, hepatotoxicity, premature epiphyseal closure, and inflammatory bowel disease (IBD) (7). Routine monitoring of serum lipids and LFTs is an important corollary of Iso treatment (40). A number of ophthalmological effects, including poor night vision, reversible corneal opacities, and excessive glare, have been associated with Iso. As Iso is a vitamin A analogue, interference with the retinol pathway (namely, retinal retinol dehydrogenase), paramount in photoreceptor function, may be to blame (9,46).
Vulgaris Treatment Authors Comparison Lesions Placebo

Results Akman et al. 2007 (44) Isotretinoin for first 10
days of each month for 6 mo vs. each day in first month and
first 10 days of each month for 5 mo vs. daily for 6 mo
Moderate and severe None Acne scores were significantly
lower for all groups posttreatment. No difference in groups
for total lesions, but daily was more effective than
intermittent for severe acne. Daily treatment also
demonstrated significantly greater SE profile. Leyden et
al. 2001 (15) 10-wk trial comparing 5% BPO/1% clindamycin,
5% BPO, and 5% BPO/3% erythromycin Moderate to moderately
severe None All treatments had significantly reduced
noninflammatory acne reduction. BPO/ clindamycin had
significantly greater reduction in inflammatory lesions and
greater overall improvement rated by physicians and
patients compared with BPO. Efficacy was statistically
similar to BPO/erythromycin. SE of BPO/clindamycin similar
to BPO alone. Katsambas et al. 1989 (69) 6-mo trial
comparing 20% AA cream and 0.05% tretinoin cream Comedonal
but patients had both None Similar decreases in comedone
and total lesion count as well as overall response rate. AA
had significantly fewer side effects. Cavicchini and
Caputo, 1989 (70) 6-mo single-blind trial comparing 20% AA
cream vs. 5% BPO gel Papulopustular acne None BPO more
rapid initially, but by 4 mo equal inflammatory lesion
reduction and overall response; additionally, BPO had more
intense and longer-lasting side effects Korkut and Piskin,
2005 (61) Open-labeled, prospective study comparing 0.1%
adapalene gel, 5% BPO lotion, or combination of 0.1%
adapalene gel þ 5% BPO treatment Noninflammatory and
inflammatory None All three treatments were effective in
treating noninflammatory and inflammatory lesions but there
was no significant difference between them in efficacy or
side effects. Tanghetti et al. 2006 (56) Multicenter,
randomized, 12-wk long trial comparing tazarotene 0.1%
cream once daily vs. tazarotene 0.1% cream once daily þ 1%
clindamycin/5% BPO gel once daily Moderate-to-severe
inflammatory acne None Combination therapy resulted in
significantly greater comedone reduction than tazarotene
alone. In patients with >25 inflammatory lesions,
combination therapy also resulted in a significant
inflammatory lesion reduction. Both were equally well
tolerated. Abbreviations: BPO, benzoyl peroxide; AA,
aazelai acid; SE, side effect. There is evidence, though
inconclusive, of an association

between depression and suicide in some patients (47). Most
of

this evidence is from case reports and small studies, and
suggests resolution of depression shortly after treatment is discontinued (48). Pooling of this data suggests a mean treatment duration of 14 weeks prior to onset of depression (48).

Additionally, RARs are located in the CNS and may respond to retinoid treatment for acne. Iso ranked within the top 10 for number of depression reports and suicide attempts in the FDA’s Adverse Event Reporting System database to June 2000; in the 18-year period since its introduction, 431 reports of depression, suicidal ideation, suicide attempts, and completed suicide have been reported (47). However, several studies have failed to demonstrate a correlation between Iso use and depression (42,49). A large population-based cohort study examined the Iso-depression/suicide association in the Canadian Saskatchewan Health Database and the United Kingdom General Practice Research Database (50). The study involved data from over 20,000 subjects, resulting in no evidence of an association between Iso use and increased risk for depression, suicide, or other psychiatric disorders (neurotic and psychotic disorders) (50). In fact, small studies have demonstrated improvement of psychiatric symptoms (depression and anxiety) with Iso use, especially in those with marked
clinical improvement in their facial acne (48,51). Despite the controversy,

physicians should inform patients to be cognizant of signs of
depression, irritability, and suicidal ideation. Furthermore, increased serum levels of 8-OHdG (a serum
marker for DNA oxidative damage) were present in 18 subjects administered Iso (52). This may be due to indirect action
through free radical production and/or direct action of Iso on
liver, muscle, or skin epidermal cells (52).

Tazarotene

Tazarotene, a topical acetylenic retinoid indicated in both psoriasis and acne vulgaris, is hydrolyzed by keratinocyte ester
ases to tazarotenic acid, its active metabolite (19). It binds all
three RARs, but activates gene expression only in RAR-b and -g;
downregulation of AP-1 and lack of RXR binding are observed
(19,22,53). In doing so, it normalizes the keratinization pattern
and decreases coherence of follicular keratinocytes, manifesting
both comedolytic and anticomedogenic properties (20). Tazarotene also has anti-inflammatory properties (20). In the systemic
circulation, tazarotenic acid is rapidly converted to inactive sul
fur-oxidized forms, resulting in limited exposure (53). A randomized, double-blind, vehicle-controlled study demonstrated that 0.05% and 0.1% tazarotene gels significantly decrease total lesions, decrease noninflammatory lesions, and produce a higher success rate than vehicle at 12 weeks (20). Moreover, 0.1% gel was significantly more efficacious than 0.05% gel, and demonstrated a significant decrease in inflammatory acne at 12 weeks (20). A more recent randomized trial comparing tazarotene 0.1% cream to adapalene 0.1% cream demonstrated tazarotene to be significantly and rapidly more effective in reducing comedone count and producing global improvement, with no significant difference in side effects at 12 weeks (20). Although, only noninflammatory lesions could be compared in this study, other studies have demonstrated efficacy in inflammatory lesions as well (54). Furthermore, a large clinical trial suggests that even short-contact application (<5 minutes), once daily for 12 weeks, produces significant reduction in both inflammatory and noninflammatory acne lesions (55). With our armament of acne medications, standard acne treatment now involves using multiple agents, each with its own mechanism of action. To that end, a multicenter, doubleblind, randomized trial found a daily 5% BPO/1% clindamycin gel-tazarotene 0.1% cream regimen to be more effective than daily tazarotene monotherapy in reducing comedo count and inflammatory lesion count (in those with 25 baseline inflammatory lesions), with a similar, if not
slightly improved, tolerability profile (56). Currently, only the 0.1% formulation of tazarotene is approved by the FDA for acne; it is primarily used in cases of acne refractory to tretinoin and adapalene treatment (7). Nonetheless, animal studies have demonstrated that tazarotene has low systemic absorption with no toxic effects even at high topical doses (53). Additionally, after 12 weeks of normal tazarotene application, serum samples from 22 subjects demonstrated limited systemic exposure with most below the quantifiable limit (<0.05 ng/mL) (20). Local side effects typically occur; these include itching, burning, irritation, and erythema (7,20). In fact, tazarotene is thought to be the most irritating of the topical retinoids. In the Bershad study cited above, half of the patients applying tazarotene for only 2 to 10 minutes daily reported local skin irritation. These side effects are most common during the first two weeks of therapy; cream formulations, alternate-day application, and short-contact therapy can curtail side effects (23). Despite little evidence of fetal malformations or spontaneous abortions, topical tazarotene is an FDA Pregnancy Category X drug; little is known about its excretion in breast milk. Of all topical retinoids in acne treatment, it is the only one requiring sufficient contraception in women of childbearing age (23). Adapalene, a derivative of retinoic acid, binds selectively to RAR-β and -γ in vitro but can activate gene expression through all three RARs; it does not bind CRABP II but increases CRABP II mRNA (19,22). It has comedolytic, antiproliferative, and antiinflammatory properties (22). Its anti-inflammatory action stems from inhibitory effects on PMN chemotactic response, free radical production, and toll-like R2 receptors expressed by perifollicular monocytes (23). It also inhibits production of leukotrienes by 5and 15-lipoxygenase pathways (22,23). Furthermore, adapalene may have a dose-dependent response, with 0.3% statistically superior to 0.1% in several different measures, while demonstrating equivalent tolerability (57). A meta-analysis of five large randomized trials (composed of 900 patients) demonstrated equivalent acne reduction, quicker onset of action (significant at 1 week), and fewer side effects in 0.1% adapalene gel compared with that in 0.025% tretinoin gel (58). Side effect profile was significantly better in regards to scaling, erythema, dryness, immediate and persistent burning, and immediate pruritus (58). With its three aromatic rings, Adapalene demonstrates higher stability than tretinoin in the presence of light, in the dark, and with BPO (11). In a study comparing the chemical stability of 0.1% adapalene gel/10% BPO and 0.025% tretinoin gel/10% BPO after 24 hours
of inactinic light exposure, approximately 100% of adapalene remained intact versus only 20% of tretinoin (59). In a study examining two 21-day long trials, adapalene 0.1% gel demonstrated greater tolerability and significantly less irritation than tretinoin 0.1% cream, tretinoin 0.05% cream, tretinoin 0.025% cream, tretinoin 0.01% gel, tretinoin 0.025% gel, and tretinoin 0.1% gel microsphere (60). Furthermore, in both studies, adapalene 0.1% gel was no more irritating than the petrolatum control (60). Favorable tolerability to adapalene may be explained by its receptor specificity, neutral molecular structure, and lack of breakdown products. A study comparing 0.1% adapalene gel, 5% BPO, and a 0.1% adapalene/5% BPO combination demonstrated no significant difference between the groups in efficacy or side effects (erythema, dryness, or burning) (61). Additionally, all three treatments were significantly effective in reducing inflammatory and noninflammatory acne lesions (61). Adapalene reduced noninflammatory lesion counts by 68.75%, inflammatory lesion counts by 55.45% and total lesion counts by 65.48% (61). A more recent study testing a 0.1% adapalene/2.5% BPO combination gel against vehicle and individual monotherapies demonstrated combination therapy to have faster onset of action, significantly greater reductions in all lesion types, and no increase in adverse effects, compared with monotherapy (27). Adapalene’s particle size (diameter between 3 and 10 mm) and its lipophilic properties result in optimal follicular duct penetration (22); furthermore, after five minutes of exposure, 14-C labeled adapalene applied to human skin in vitro demonstrates radiosensitivity in the pilosebaceous units, with sparse activity in the SC and epidermis (11). Adverse effects, including erythema, scaling, dryness, pruritis, and burning, occur mainly during the first month and decrease thereafter (11). Nevertheless, in comparative trials, adapalene demonstrates a more favorable side effect profile than its relative, tretinoin. Cyanoacrylate strip data suggests that application of adapalene 0.1% gel every other day may be effective maintenance therapy in microcomedone reduction, resulting in decreased exposure (62). AZELAIC ACID Azelaic acid, a naturally occurring, saturated C9-dicarboxylic acid, modifies epidermal keratinization (cytostatic), combats both aerobic and anaerobic bacteria (reducing P. acnes proliferation), and exhibits anti-inflammatory activity (19,63). This antiinflammatory activity may potentially be mediated through inhibition of hydroxyl and superoxide radical production by neutrophils (64). Contributing to its anti-inflammatory properties, in vitro, azelaic acid is an oxygen free radical scavenger, inhibiting hydroxylation of
aromatic compounds and arachidonic acid peroxidation (63,65). To date, no published reports of azelaic acid bacterial resistance have surfaced. In their review article, Fitton and Goa describe that azelaic acid, in vivo, affects differentiation of human keratinocytes by decreasing synthesis of filaggrin (keratin filament aggregating protein) (65). This results in alterations of epidermal keratinization, including reductions in the number and size of keratohyaline granules and tonofilament bundles in the SC, abnormal tonofilament arrangements, intercellular edema, swollen mitochondria, enlargement of rough endoplasmic reticulum (RER), and reductions in the thickness of the horny layer in infundibular areas (65,66). Azelaic acid functions in a cytostatic, antiproliferative manner on keratinocytes, affecting both early and terminal phases of keratinocyte differentiation, with primary effects on mitochondria and RER (66). In only two weeks of topical treatment, 200 mL of 20% azelaic acid attenuated tetradecane-induced comedo formation in the rabbit ear, a model of follicular epithelial hyperplasia (65,67). These microscopic and experimental findings indicate keratolytic and antimicosidogenic properties for azelaic acid via normalization of disordered keratinization of the follicular infundibulum. This is further evidenced by reduction in noninflammatory acne lesions after topical treatment (see studies in the following text).

Cyanoacrylate skin surface biopsies have demonstrated significant reductions (>50%) in comedo count after four months of twice-daily 20% azelaic acid treatment when compared with vehicle (68). Additionally, comedone reduction was similar in magnitude to that of 0.05% retinoic acid cream (68). Azelaic acid has demonstrated significant inflammatory and noninflammatory acne reduction in numerous studies, even when compared with tretinoin, BPO, erythromycin, and tetracycline (63,64). Comparing 20% azelaic acid to 0.05% tretinoin over six months, one group found statistically equivalent comedone and total lesion reduction and similar overall improvement (69). However, tretinoin use led to increased erythema, scaling, and irritation-induced discontinuation than did azelaic acid (69). Another trial comparing 20% azelaic acid with 5.0% BPO demonstrated a more rapid initial effect with BPO but similar results for global response and inflammatory lesion reduction by four months (70). Keeping with the theme, azelaic acid demonstrated milder, more transient adverse events than BPO (70). Pooling together results of four trials, Mackrides et al. determined that after six months of treatment, 65% to 85% of patients experienced a ≥50% decrease in number of lesions (good-to-excellent clinical response). A 12-week controlled study of azelaic acid 20%
demonstrated significant improvement in mild-to-moderate acne, compared with its vehicle (69). During the three months, inflammatory lesions decreased by 72%, comedones by 55.6%, and 64% of treated patients had good-to-excellent improvement (69). Symptomatic improvement is typically observed within four weeks of commencing therapy (7). Transient side effects lasting two to four weeks have been described (63). These include burning, erythema, dryness, scaling, pruritis, and hypopigmentation. Nonetheless, there is some evidence that azelaic acid may improve the overall wearability (feel, smoothness, evenness, and ease of application) of a facial foundation (64). After application of azelaic acid, 3% to 5% remains on the SC, up to 10% penetrates into the epidermis and dermis, and 4% is absorbed systemically (although, this can double with gel formulations) (7). Nevertheless, baseline serum and urine levels are not altered by topical usage and are primarily dependent on dietary intake of whole grain cereals and animal products (7). It is an FDA Pregnancy Category B drug as animal studies have shown favorable results; meaningful human studies are lacking. Despite efficacy as a monotherapy, a large randomized trial demonstrated that azelaic acid functions better in combination (64). Subjects were randomized to a 12-week regimen of azelaic acid 20% cream twice daily, either as monotherapy or in combination with one of the following: 4% BPO gel twice daily, 1% clindamycin gel twice daily, 0.025% tretinoin cream once daily, or 3% erythromycin/5% BPO gel twice daily (64). All four regimens improved acne, achieving greater efficacy and patient satisfaction than azelaic acid monotherapy (64). In combination with 3% erythromycin/5% BPO, 20% azelaic acid produced a marked and relatively expedient decrease in inflammatory lesions (64). At the end of 12 weeks, reduction in this group was similar to 20% azelaic acid/1% clindamycin, which was the most tolerable of all regimens (64). In noninflammatory lesion treatment, however, azelaic acid with 4% BPO and azelaic acid with 0.025% tretinoin were most effective (64). The azelaic acid plus BPO regimen also achieved the highest patient ratings in overall therapeutic result (64).

SALICYLIC ACID

A core component in many over-the-counter (OTC) acne treat
ments, salicylic acid (SA) is a widely available topical keratolytic agent. It may have a profound structural effect on the SC, resulting in disruption of intercorneocyte cohesion and subsequent desquamation (71). Dissolution of intercellular cement is further supported by scanning electron microscopy, which has demonstrated marked squamous cell separation in SA-treated human skin (72). Bashir et al. demonstrated the keratolytic properties of SA using a novel tape stripping/protein assay method described later (Table 40.4). Mills and Kligman using cyanoacrylate follicular biopsy demonstrated significant decreases in microcomedone count. Although various concentrations exist (0.5–10%), 2% is the maximum strength allowed by the FDA in OTC products. In five human subjects, microcomedo formation was induced via 10% coal tar distillate ointment at four sites on the back; formation was confirmed by cyanoacrylate biopsy (73). At each site, subjects were treated with one of three different concentrations of SA (0.5%, 1%, and 2%), twice daily for two weeks, and one site was left untreated (73). Ultimately, lesions were rebiopsied and examined microscopically; all three concentrations displayed tremendous comedolytic activity, with the 2% preparation superior to the lower concentra
Microcomedo quantitative reduction reached nearly 50% in the 2% SA group (73). Two 12-week studies comparing 0.5% and 2% SA pads to placebo pads demonstrated significant efficacy in reducing inflammatory acne, noninflammatory acne, and total lesions, while producing significantly higher proportions of good-to-excellent overall treatment assessments (73). In one study, 60% of patients using 2% and 0.5% SA pads experienced a 75% to 100% decrease in total lesion count, compared with 2% of patients receiving placebo (73). In both studies, side effects were minimal and well tolerated (73). In a study comparing medicated pads with 0.5% SA in an alcoholic detergent (Stri-Dex) to placebo (pads soaked in buffered water), the treatment group experienced a 54% reduction in inflammatory acne compared with 29% in the placebo group (74). Reductions of open comedones and total lesions were also significant compared with placebo (74). A 12-week study found 2% SA cream superior to 5% BPO cream in reducing closed comedones, open comedones, inflammatory lesions, and total lesions (73). A four-week crossover study comparing a 2% SA acne cleanser to a 10% BPO wash demonstrated that only patients treated with the SA cleanser had a significant decrease in comedonal lesions (75). Stated differently, both groups demonstrated significant improvement in comedonal count when treated with SA, whereas BPO treatment either worsened or insignificantly improved comedonal quantity (75). A small study comparing a 2% SA/1% clindamycin combination with placebo demonstrated a significant reduction in inflammatory and noninflammatory lesions, with 71% of
subjects reporting improvement after eight weeks (compared with 11% of placebo group) (76). Salicylic acid is well absorbed as evidenced by numerous studies; its bioavailability in topical application varies according to duration of contact (8,77). One study estimated bioavailabilities for topically applied SA at 57.6% and 44.0% for hydroalcoholic and cream delivery vehicles, respectively (78). The same study also demonstrated the hydroalcohol vehicle to have superior peak plasma SA concentrations and earlier time to peak when compared with a cream vehicle (78). In a related study, absorption was enhanced significantly in a mineral oil/petrolatum ointment compared with an ointment containing polyethylene glycol, glycerol, petrolatum, 10% urea (Kerasal) (79). New chemical peels using 30% SA in polyethylene glycol vehicle have demonstrated efficacy and safety, with marked reductions in comedones and papules (80). Polyethylene glycol may be a more tolerable vehicle than the commonly used ethyl alcohol in SA chemical peels (80). Although local skin irritation (e.g., peeling) at concentrations greater than 2% is common, systemic toxicity is rare (7). However, if applied to large areas of the body for prolonged periods of time, salicylate toxicity, toxic inner ear damage, and hypersensitivity reactions are plausible (7). To that end, these manifestations are uncommon in appropriate acne therapy. Like several other keratolytic agents, SA is an FDA Pregnancy Category C agent, with unknown effects on breast-feeding. SULFUR Sulfur, a yellow nonmetallic element, has many dermatological indications, including but not limited to acne vulgaris, rosacea, seborrheic dermatitis, and dandruff (81). Once a very common ingredient in acne treatments, sulfur has fallen out of favor, partly due to its pungent odor (82). In the acne arena, sulfur is thought to be keratolytic and bacteriostatic. After application to skin, sulfur reacts with cysteine in the SC, resulting in reduction to hydrogen sulfide (81). Hydrogen sulfide is thought to break down keratin and inhibit growth of P. acnes (81).

Table 40.4 Studies Using Colorimetric Protein Assay to Measure Keratolytic Potential

<table>
<thead>
<tr>
<th>Authors</th>
<th>Drug</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bashir et al. 2005 (71)</td>
<td>Aqueous solution 2% SA-3 formulations</td>
<td>Statistically significant mass of SC removed after 6 hr and 20 tape strips in all three experimental groups (SA pH 3.3, SA pH 3.3 w/menthol, SA pH 6.95) compared with vehicle, untreated, and untreated but occluded groups.</td>
</tr>
</tbody>
</table>
Waller et al. 2006 (93) Aqueous solutions of 0.05% all-trans RA, 2% BPO, and 2% SA Statistically significant mass of SC removed after 6 hr and 25 tape strips in all three experimental groups compared with vehicle, untreated, and occluded groups. The first 10 tape strips from SA group removed more protein than the other groups; at 10 to 15 strips, treatments were comparable; at 16 to 25 strips, protein removed from BP sites was greatest.

Abbreviations: SA, salicylic acid; BPO, benzoyl peroxide; RA, retinoic acid. Appearing in a variety of vehicles (lotions, creams, soaps, ointments), it appears to be more efficacious when used in combination with other drugs, namely BPO and sodium sulfacetamide (7). Clinical trials have demonstrated that lotions containing sulfur 5% with sodium sulfacetamide 10% have resulted in reduction of inflammatory lesions, comedones, and seborrhea (81). Interestingly, this combination is also effective in acne rosacea, an inflammatory skin disorder involving the cheeks, nose, and forehead (81). In clinical trials, sulfur and sulfur/sodium sulfacetamide have demonstrated superiority in reducing overall severity and inflammatory lesion count when compared with metronidazole gel and oral tetracycline (81). Sulfur penetrates skin: it is detectable in the epidermis at 2 hours, throughout the skin in 8 hours, and completely undetectable by 24 hours (81). Additionally, there is no evidence of systemic absorption in intact skin (81). Early studies, using human and animal subjects, demonstrated that elemental sulfur, while having a positive role in diminishing papules and pustules, may possibly induce comedone formation (81,83). Later studies did not confirm these results despite identical treatment conditions (81,84). Rare, transient side effects include dryness, itching, and malodorous skin. Nonetheless, given a lack of knowledge, it is an FDA Pregnancy Class C drug with nothing known regarding breast milk excretion.

GLYCOLIC ACID Glycolic acid, a naturally occurring organic acid (a-hydroxy acid), is a component in many cosmetic formulations. In the context of acne, research has been conducted examining glycolic acid chemical peels. Superficial chemical peels may serve as valuable adjuvant therapy in acne. Various chemical preparations have been employed, all of which result in a partial-thickness skin injury, or peel (85). Comedones are removed after only two or three peels, and the procedure may be repeated every two or three weeks (86). Between peels, low concentrations of glycolic acid may be used as a daily cleanser to prevent reocclusion of follicles (86). Glycolic acid, a hydrophilic compound with keratolytic properties, is present in many
peel formulations due to its desquamating efficacy. According to Kessler et al., “this desquamation reduces corneocyte cohesion, keratinocyte plugging, and enables the extrusion of inflammatory contents.” Glycolic acid mainly effects deeper, newly forming levels of SC, leading to a sheet-like separation (87). The exact mechanism of action may be due to inhibition of ionic bond forming enzymes involved in creating sulfated and phosphorylated mucopolysaccharides, glycoproteins, sterols, and lipid phosphatides (87). This results in fewer electronegative groups on the outer walls of keratinocytes and corneocytes, effectively diminishing cohesion forces (87). This diminished cohesion loosens keratinocytes in the follicular epithelium, resulting in breakdown of comedones, inhibition of comedone formation, and unroofing of pustules (86). A randomized split-face prospective clinical trial comparing glycolic acid to Jessner’s solution (salicylic acid, lactic acid, and resorcinol) demonstrated significant acne improvement in both after three treatment sessions. Furthermore, glycolic acid was associated with significantly less exfoliation than Jessner’s solution, resulting in more facile makeup application, and suggesting a more favorable side effect profile (88). In a similar study comparing glycolic acid and SA peels, both were equally effective by the second treatment; however, SA demonstrated greater sustained effectiveness and a more favorable side effect profile (85). A study examining 35% and 50% glycolic acid peels on Asian patients found significant resolution of comedones, papules, and pustules; decrease in follicular pore size; improvement in acne scarring; and few side effects (89). A combination of azelaic acid 20% cream and glycolic acid lotion was compared with tretinoin 0.025% in a 12-week, vehiclecontrolled study (28). The azelaic acid-glycolic acid treatment produced significantly greater inflammatory lesion reduction and equivalent noninflammatory lesion reduction, while causing less dryness, scaling, and erythema than tretinoin (28). RESORCINOL Because of limited information about resorcinol, all of the following information was extracted from a review article by Karam in 1993 (90). No longer significantly used in the United States, resorcinol, an isomer of hydroquinone and a relative of phenol, is soluble in water, ether, and alcohol. It is a reducing agent with antibacterial and keratolytic properties. Even at low concentrations, it can disrupt hydrogen bonds of keratin. A 50% resorcinol paste, consisting of a benzoinated axungia vehicle and two drying agents, zinc oxide and ceyssatite, is used in other countries for chemical peels. It is used to treat the postinflammatory hyperpigmentation, erythema, and shallow
scars resulting from facial, chest, upper back, and buttocks acne. One facial peel, typically 30 minutes in duration, may be sufficient for treatment. Additional peels can be done a few hours to two days later. Patients typically receive pretreatment with 0.05% retinoic acid cream for a period of two weeks to three months before the facial peel. This pretreatment may help assist in resorcinol absorption, resulting in a deeper peel. In addition to acne, resorcinol peels can be used to treat melasma, sun-damaged skin, and freckling. Contraindications include pregnancy and skin type VI, due to inadequate data regarding complications. Acne surgery prior to the peel is recommended to prevent aggravation of deep comedones and subsequent pustular development. Side effects include burning sensation and paresthesia, which can be felt anywhere from 2 to 30 minutes after application. Burning intensity increases initially, stopping after one hour; despite discomfort, pain is usually tolerable. Additionally, subsequent resorcinol applications cause more intense burning sensation, prompting shorter exposure. Corticoid creams and cold compresses may provide some relief. Dizziness immediately after the peel may last 10 to 15 minutes and is probably secondary to flushing related to resorcinol application. Histologically, shortly after resorcinol application, splitting occurs at the granular cell layer along with vasodilatation. One week later, prominent basal cell layer mitosis, fibroblast proliferation, vasodilatation, and formation of a thickened dermal band are visible. Although the vasodilation resolves, the other changes are present even four months later. IN VIVO KERATOLYTIC POTENTIAL OF BENZOYL PEROXIDE, RETINOIC ACID, AND SALICYLIC ACID The SC desquamating effect of three keratolytics is presented in table format (Table 40.4) using data obtained from colorimetric protein assays described by Dreher et al. in 1998 (71,91–93). These in vivo human results indicate that all three treatments tested are effective keratolytics, which may account, to some degree, for their effectiveness against acne vulgaris. Furthermore, on the basis of the stratified analysis of tape stripping, it appears that SA may be more optimal in treating mild, superficial acne, while BPO may be better suited for deeper, inflammatory acne conditions. BPO’s ability to loosen SC at deeper levels complements its antimicrobial
properties,
resulting in an effective anti-inflammatory agent for papulo
pustular acne. Additionally, it appears that BPO appears to be
effective even with short-term administration. RA had
inferior
SC disruption at three hours but significant disruption at six
hours, indicating time-dependent keratolytic effects, consistent
with its well-studied interaction with nuclear receptors and
alteration of gene transcription.

CONCLUSION

Taken together, a century of clinical trials and clinical use
support the efficacy of keratolytics in acne. We suspect that
the near future will provide more rapid advances, based on the
power and ease of interpretation of the newly devised in vivo
human keratolytic assay.

attribute that change to the combined influences of advertising, the introduction of new ranges of cosmetic products for men, and the influence of women. Men are taking more care of their appearance. They have been conditioned to do so gradually by the availability of a range of products directed toward men only and presented with a masculine orientation. The correct terminology would now appear to be care rather than beauty as the male market gradually enters the female domain, and male consumers, rather than their wives, become the target of these products. The potential market comprises virtually all males over the age of 14. Shaving products and hair lotions usually represent a consumer’s first contact with men’s toiletries. Aftershave balms, emulsions and gels, eau de toilette and eau de cologne are likely to be the products most often sold in specialized departments. Deodorants, bath preparations and shower gels are also popular. On the basis of a survey by Frost and Sullivan (1), nearly half of the masculine grooming business consists of toilet soap (63% of sales are deodorant soaps, 25% are purifying soaps, and the rest are specific products). Fitness, freshness, naturalness and, in particular, care are today’s key terms for conveying the product message. Cosmetics for men and women have traditionally been formulated differently. Products for men are usually characterized by the presence of alcohol, which has rarely been used in cosmetics for women. The appeal to the two groups is also distinct, with men seeking well-being and health and women pursuing health and beauty. Men treat their skin in response to a need, such as shaving, cleansing, and treating cuts and nicks. They are less prone to viewing skin care as an aging prevention or appearance-enhancing practice. Analysts report, however, that this attitude is changing. Some men, they say, are already dipping into their partners’ skin care products. Some men do worry about aging (e.g., aging spots) probably to present an image compatible with their profession. That view is supported by the increasing number of men who seek cosmetic plastic surgery. Moreover, men ask for discreet products labeled “For Men,” which appeal to their virility. Skin physiology shows differences between women and men (see chap. 2) (2). The influence of age and sex on skin thickness, skin collagen and density has been studied by Shuster et al. (3). SKIN THICKNESS The thickness of the skin varies depending on site, age and sex. Androgen stimulation causes increase in the thickness of the skin and this is generally more important in the man than in the woman (4–6). Male skin is approximately 25% thicker than that of women. It increases the resistance of the male skin. There is a gradual, but highly significant, thinning of male skin with increasing age. In female skin, however,
thickness remains surprisingly constant until the fifth decade, after which there is also a significant thinning with increasing age. At the same age and following the same weathering conditions, wrinkles are more pronounced in male than in female skin. Concerning dermal-epidermal junction, the lamina densa is thinner in the female (7). But there appears to be no difference in the lamina lucida. In adult skin, the clinical features of aging are closely related to the total collagen content. The relationship of skin collagen to sex is obvious. There is a linear decrease in skin collagen with increasing age, and male forearm skin contains more collagen than female skin at the same site at all ages, but the rate of decrease is the same in both sexes, at 1% per year throughout adult life. Collagen density calculated as the ratio of skin collagen to thickness, is very significantly related to age in both males and females, but the density is consistently lower in females at all ages. Lower initial skin collagen content is therefore the reason women appear to age earlier than men. The packing of fibrils in the dermis is also influenced by age and sex. With increasing age, skin collagen decreases more rapidly than skin thickness, resulting in reduced collagen density. Skin collagen is packed less densely in females than males possibly because of the influence of androgen, since collagen density is increased in patients with primary cutaneous virilism. As far as their skin is concerned, women are about 15 years older than men of the same age throughout their adult life. Recently, Humbert (8) using echographic B scans obtained similar results in noninvasive investigation of the facial skin. AGEING OF THE SKIN The cutaneous ageing is slower in the man but it is often more evident because of deep wrinkles and greater degree of exposure. Ageing interferes with the hair cycle that varies with age and sex. Concerning the nails, the metabolism of the nail plate lipids varies with age and sex, demonstrating the effects of the sexual hormones (9). The age-dependant decrease in cholesterol sulfate lends might explain the previously observed higher incidence of brittle nails in women (10). Men have a
CONCLUSION

54. Orentreich D. Liquid injectable silicone: techniques for soft tissue augmentation. Clin Plast Surg 2000; 27:595-612. 55. Chui E, Sheel Sharl SH, Siebert J. Salvage of silicone-treated Facial deformities using autogenous free tissue transfer. Plast Reconstr Surg 2005; 116:1195-2005. 56. Narins RS, Bowman PH. Injectable skin fillers. Clin Plast Surg 2005; 32:151. 57. Murray CA, Zloty D, Marshauski L. The evolution of soft-tissue fillers in clinical practice. Dermatol Clin 2005; 23:343. 58. Lemperle G, Morhenn VB, Charrier U. Human histology and persistence of various injectable fillers substances for soft tissue augmentation. Esthetic Plast Surg 2003; 27:354-360. 59. Lemperle G, Rullan P, Gauthier-Hazan N. Avoiding and treating dermal complications. Plast Reconstr Surg 2006; 118:925-1075. 42 Ethnic cosmetics Enzo Berardesca, Grazia Primavera, Manuela Carrera, and Howard I. Maibach INTRODUCTION Nowadays, the vast majority of the world’s population is constituted by persons with skin of color, including a heterogeneous group of people with skin phototypes that fall within III to VI. Racial differences in skin physiology and reaction to environmental stimuli are more and more described (1), but notwithstanding the increasing number of studies, data are often conflicting. In fact, it is difficult to define and interpret the cutaneous pathophysiologic phenomena that are not only anatomical and functional characteristics of ethnic groups but also the result of socioeconomic, hygienic, and nutritional factors. Furthermore, skin status may be influenced by climate, circadian rhythms, and changes in circulating sex hormones or stress hormones. Indeed, even though it is well established that all humans belong to the
same species, many physical differences exist among human population. This chapter reviews the more consistent differences reported between racial groups and their implications in determining different responses after use of topical products and in treating skin aging. SKIN COLOR

According to the classification of Fitzpatrick, Caucasians are generally included in phototypes I to III, having fair complexion, red to light brown hair, tendency to sunburn, and tanning difficulty whereas colored skin belongs to skin type IV, V, or VI, rarely burning, tanning easily. Phenotypically ethnic skin ranges from brown to black-brown. Clearly, differences in skin color are the most striking characteristic in ethnic skin. The color of the skin is due to the combination of four cromophores such as hemoglobin, oxygenated hemoglobin, exogenously produced carotenoids, and melanin. Melanin is the most important pigment for the determination of skin color. It is synthesized by melanocytes, stored into specialized organelles called melanosomes that are then transferred to the neighboring keratinocytes of the malpighian layer through dendrites. Melanin represents an innate sun protection due to its ability to absorb UV light as well as light from the visible and near-infrared spectrum. During evolution, the development of adaptive mechanisms has lead to differences in the size, number, and distribution of melanosomes between races and therefore differences in skin pigmentation (2). Compared to other ethnic groups, the number and the size of melanosomes are higher in blacks and Australian aborigines; furthermore melanosomes are singly scattered and not distributed in clusters as highlighted in Caucasians and in orientals such as Japanese, Chinese, and Mongoloids. In all races, melanin is distributed along the basal layer of the dermoepidermal junction (DEJ) but in dark skin types the number of pigmented cell layers is higher than in white skin as well as melanin concentration as confirmed by in vivo laser scanning confocal microscopy (3). The increased quantity of melanin correlates with the activity of tyrosinase and probably with the level of protease-activated receptor-2 (PAR-2) that is involved in melanosome transfer from melanocyte to keratinocyte (4). No interracial variation concerning the number of melanocytes has been reported. STRATUM CORNEUM STRUCTURE

Stratum corneum is equally thick in black and white skin (5,6). However, Weigand et al. demonstrated that the stratum corneum in blacks contains more cell layers and requires more cellophane tape strips to remove than the stratum corneum of Caucasians (7). They found great variance in values obtained from black subjects, whereas data from white subjects were more homogeneous. No correlation existed between the degree of pigmentation and the number of cell
layers. These data could be explained by greater intercellular cohesion in blacks resulting in an increased number of cell layers and an increased resistance to stripping. This mechanism may involve lipids, because the lipid content of the stratum corneum ranges from 8.5% to 14%, with higher values in blacks (8). This result was confirmed by Weigand et al. who showed that delipidized specimens of stratum corneum were equal in weight in the two races (7). Johnson and Corah found the mean electrical resistance of adult black skin to be twice that of adult white skin, suggesting an increased cohesion or thickness of the stratum corneum (9). Corcuff et al. (10) investigated the corneocyte surface area and spontaneous desquamation and found no evidence of differences concerning corneocyte size between black, white, and oriental skin. However, an increased desquamation (up to 2.5 times) was found (p < 0.01) in blacks. They concluded that the differences may be related to a different composition of the intercellular cement of the stratum corneum. These data are contradicted by Warrier et al. (11) who reported higher desquamation index in whites compared with blacks. The recent investigations of Fotoh et al. (12) did not report any difference in the desquamation index between blacks and Caucasians. Sugino et al. (13) found significant differences in the amount of ceramides in the stratum corneum, with the lowest levels in blacks (50% lower) followed by Caucasian and Hispanics (total ceramides: 10.7 ± 4.7 mg/mg, 20.4 ± 8.1 mg/mg, 20.0 ± 4.3 mg/mg, respectively; p < 0.05). Though they note that water content levels were highest in Asians, they do not document the ceramide levels of Asians. In this experiment, ceramide levels were inversely correlated with transepidermal water loss (TEWL) and directly correlated with water content. These data may partially explain the controversial findings in the literature on the mechanisms of skin sensitivity. Kompaore et al. (14) evaluated TEWL and lag time after application of a vasoactive compound (methyl nicotinate) before and after removal of the stratum corneum by tape stripping. Before tape stripping, TEWL was 1.3 times greater in blacks and Asians compared to Caucasians (p < 0.01); no difference was found between blacks and Asians, whereas after stripping they
found a significantly higher TEWL in blacks and Asians than in Whites. In particular, after stripping Asians showed the highest TEWL (Asians 1.7 times greater than Caucasians). They conclude that, similar to previous studies (15,16), skin permeability measured by TEWL is higher in blacks than in Caucasians. They also conclude that Asian skin has the highest permeability among the groups studied. However, these findings have not yet been duplicated. In fact, Sugino et al. (13) also included Asians in their study but found that baseline TEWL was, in decreasing order, blacks > Caucasians > Hispanics > Asians. Another study referenced in a review article (17) about Asian skin has compared TEWL in Asians and Caucasians and found no statistically significant differences at baseline or after stripping; however, no vasoactive substance was applied. Reed et al. (18) found differences in the recovery of the barrier between subjects with skin type II/III compared to skin type IV, but no differences between Caucasians in general and Asians. Darker skin recovered faster after barrier damage induced by tape stripping.

STRATUM CORNEUM WATER CONTENT
TEWL, skin conductance, and skin mechanical properties have been measured under basal conditions in whites, Hispanics, and blacks to assess whether skin color (melanin content) could induce changes in skin biophysical properties (19). Differences appear in skin conductance are more marked in biomechanical features such as skin extensibility, skin elastic modulus, and skin recovery. They differ in dorsal and ventral sites according to races and highlight the influence of solar irradiation on skin and the role of melanin in maintaining it unaltered. Wilson et al. (15) demonstrated higher in vitro TEWL values in black compared to white skin taken from cadavers. They also found differences in black and white skin physiology; in fact, the TEWL of both races increased with skin temperature. In their own study, they concluded that black skin would have a greater rise to achieve the same temperature and therefore a higher TEWL. Since TEWL depends on passive water loss that is theoretically directly related to the ambient relative humidity and temperature (20), then, the increased TEWL in black skin could be associated with an increase in temperature because it is well established that a difference in black and Caucasian temperature exists. Most studies using the forearm, back,
and inner thigh

(13,16,21,22) show a greater TEWL in blacks compared to whites; however, Warrier et al. (11) have demonstrated, study

ing a larger sample size, that TEWL is less in blacks than whites

when measuring on the cheeks and legs. On the other side, in a

recent study Fotoh et al. (12) did not found any difference between black and Caucasian women in TEWL evaluation,

neither on the forehead nor on the volar forearm. As well, they reported that the mean hydration index, determined by the measurement of the electric capacitance using a corneometer, was similar in all groups. Racial differences in TEWL exist neither on the volar nor on the dorsal forearms. However, water content is increased in Hispanics on the volar forearm and decreased in whites (compared only to blacks) on the dorsal forearm. These findings partially confirm previous observations (16,23). Skin lipids may play a role in modulating the relation between stratum corneum water content and TEWL resulting in higher conductance values in blacks and Hispanics. Racial differences in skin conductance are difficult to interpret in terms of stratum corneum water content, because other physical factors, such as the skin surface or the presence of hair, can modify the quality of the skin-electrode contact. In all races, significant differences exist between the volar and dorsal forearms (19). These results are in apparent contrast with TEWL recordings. Indeed, increased stratum corneum water content correlates with a higher TEWL (24). The data may be explained on the basis of the different intercellular cohesion or lipid composition. A greater cell cohesion with a normal TEWL could result in increased skin water content. However, TEWL studies are characterized by a large interindividual variability and biased by environmental effects and eccrine sweating. To bypass these influences, an in vitro technique for measuring TEWL was used to compare TEWL in two racial groups (blacks and whites) (15). Black skin had a
significantly higher mean TEWL than white skin. In both groups, a significant correlation between skin temperature and increased TEWL was found ($p < 0.01$). The data confirm differences between races found in in vivo studies (16,23).

STRATUM CORNEUM pH The acidity of the skin mostly derives from the fatty free acid content of the skin surface and the buffer capacity of the skin is due to several mechanisms, one of the most important is the lactic-acid-lactate system. According to Berardesca et al. (22), pH values in skin surface, measured on the volar forearm, are similar in black and in Caucasian women, but it decreases after tape stripping only in black subjects. Whereas Warrier et al. (11) who measured the pH on the cheek reported a significantly lower pH in black women than in the Caucasian ones. The results of Fotoh et al. (12) are quite the reverse: a significantly higher cutaneous pH in black women compared to the other groups.

APPENDAGES Although the amount of sweat is variable between racial groups, with more sweat secretion found in black subjects, the phenomenon does not derive from differences in gland number but more likely from differences in density of actively sweating glands (25). Concerning apocrine glands, studies highlight that, compared to Caucasians and Chinese, blacks present apocrine glands greater in number and size (25). Evaluating the sebum quantity present on skin surface, measured on the forehead using Sebumeter 1, Fotoh et al. (12) showed similar results in all groups. In contrast with previous studies that reported significantly higher level of sebum secretion in black people in comparison with white subjects.

SKIN DISEASE AND COSMETIC PROBLEMS Irritant and Allergic Contact Dermatitis In 1919, Marshall et al. investigated cutaneous reactions to 1% dichloroethyl sulfide in whites and blacks (26). A drop on the forearm elicited erythema in 58% of white but only 15% of black subjects, suggesting a decreased susceptibility to cutaneous irritants in blacks. Weigand and Mershon studied patch test reactions to ortho-chlorobenzylidene malononitrile (27). The results indicated that blacks were more resistant and required a significantly longer exposure to develop an irritant reaction. Subsequently, Weigand and Gaylor measured minimal perceptible erythema in blacks and whites after applying dinitrochlorobenzene to intact skin and to skin after the stratum corneum was largely removed by tape stripping (28). The results confirmed that blacks were generally less susceptible to cutaneous irritants. However, this difference was not detectable when the stratum corneum was removed. They also observed that the range of reactions in normal skin in both races was wider than in stripped skin, suggesting that the stratum corneum may modulate the different racial responses to skin
Irritants. Irritation, as measured by TEWL (16,23), revealed a different pattern of reaction in whites after chemical exposure to sodium lauryl sulfate. Blacks and Hispanics developed stronger irritant reactions after exposure. Stinging may occur in the nasolabial folds and on cheeks after an irritant is applied. Frosch and Kligman reported that the most “stingers” were light-complexioned persons of Celtic ancestry who sunburned easily and tanned poorly (29). Later, however, Grove et al. found no skin-type propensity to stinging; they applied 10% lactic acid to the nasolabial folds and cheek of volunteers and noted that increased stinging was related mainly to the person’s history of sensitivity to soaps, cosmetics, and drugs (30). Jourdain et al. (31) have performed an epidemiological survey aimed to assess ethnic variations in self-perceived sensitive skin. They included four ethnic groups: Afro-Americans, Euro-Americans, Hispanics, and Asians. Fifty-two percent of the women declared to have sensitive facial skin but the prevalence of self-reported sensitive skin was alike in all ethnicities. Among the sensitive skin subpopulation, some slight differences between ethnic groups have been noted concerning the cause of irritation or sensitization. Euro-Americans showed higher reactivity to environmental stimuli such as cold and wind and less reactivity to cosmetics, whereas Afro-Americans reacted less to environmental factors and Asians tended to react to wind, spices, and alcohol. Kaidbey and Kligman studied race-dependent cutaneous reactivity to topical coal (32). There was a strikingly different response in the two groups: in whites, the response was primarily inflammatory, with development of papules and papulopustules in about 2 or 3 weeks, whereas in blacks the inflammatory response was largely absent and, after about 14 days, an eruption of small open comedones appeared. The follicles of white subjects responded early, with rupture of the wall and outpouring of follicular contents in the dermis, whereas in blacks, the first response was proliferative with production and retention of horny cells. That is, in blacks, the skin reacts to a comedogenic compound with hyperkeratoses rather than with disintegration of follicles, suggesting a greater resistance to irritants. Conflicting findings have been reported on the incidence of allergic contact dermatitis in blacks. Kenney reported a decreased rate (5% in black patients) (33). Marshall and Heyl reported that the incidence of industrial contact dermatitis in South Africa is less in darkly pigmented blacks (34). Dogliotti showed a 7.4% prevalence among Bantus (35). Scott noted that contact dermatitis was less frequent in Bantus handling detergents, waxes, and fuels (36). Despite a previous report describing
an increased sensitization rate in whites, Kligman and Epstein found no significant difference in the two races after testing many topical materials (37). Fisher reported an approximately equal incidence of contact dermatitis in blacks and whites (38). Paraphenylenediamine, nickel, and potassium dichromate appeared to be the most common allergens. In Nigeria, nickel was the most frequent sensitiser, with an incidence of 12.3% (39) compared with 11% in North America. In Lagos, the female-male ratio is 1:1, whereas Fregert et al. recorded a ratio of 6:1 (40). In North America, the ratio is 3:1 and in Stockholm, it is 7:3. Clinically, acute contact dermatitis with exudation, vesiculation, or bullae is more common in whites, whereas blacks more commonly develop disorders of pigmentation and lichenification. Hypopigmentation has been described from contact with phenolic detergents (41), alkyl phenols, and monobenzylether of hydroquinone (42). Acne Acne vulgaris is believed to be one of the most frequent dermatologic disorders in ethnic patients. Although the acne pathophysiology is the same in all ethnicities, the most dramatic difference between black and white skin is the higher incidence of post-inflammatory hyperpigmentation (PIH) and keloidal scarring as a result of inflammatory reaction. Hyperpigmentation occurs as darkly pigmented spots or macules that may persist for months or years after the resolution of acne lesions (43). Therefore, on account of the elevated risk of important acne sequelae that influence quality of life, clinicians may have recourse to more aggressive therapies to treat acne in ethnic skin and thereby limit its negative consequences. The high rate of PIH has been confirmed in a recent study including black, Hispanic, and Asian patients (44). PIH can derive from both acne lesions such as inflammatory papule or pustules or comedones and skin irritation due to topical or systemic therapy. Keloidal scarring is also considered more frequent in ethnic skin than in white patients, with an incidence that can be between 5 and 16 times higher (45). Furthermore, in treating acne in ethnic skin, dermatologists must always assess the cosmetic habits and the use of some over-the-counter (OTC) products. In particular, almost half of acne African American patients regularly apply greasy hair moisturizers. This custom leads to a special form of acne, the so-called “pomade-acne” (46). This eruption, consisting mainly of comedones on the forehead and temporal area, seems to be a peculiar response of black skin to topical agents, because this reaction can be detected in black children from 1 to 12 years of age (47). Plewig et al. examined 735 blacks and found that 70% of long-term users of pomades had a form of acne (48). The more elaborate formulations induced pomade acne more frequently
and more intensively than simpler preparations such as mineral oil and petroleum jelly. The distribution of the lesions corresponded to the area of contact. Comparable data for whites are lacking. According to the previously outlined problems, acne treatment in dark skin requires a delicate balance between aggressive and nonirritating therapy. Topical retinoids are considered the first choice therapy as they act either on the acne itself or on PIH (49,50). To reduce their irritating side effect, it is advisable to start with a low concentration or with alternate-day dosing and choose a cream rather than a gel formulation. Among retinoids, adapalene 1% cream or gel has been reported to be effective and well tolerated even in patients with dry or sensitive skin (51). Once-daily tazarotene 0.1% cream has also shown to improve acne and PIH in blacks (52). Concerning nonretinoid acne topical, azelaic acid is often prescribed because of its low potential of irritation and bleaching effect (53,54). Severe forms of acne require early employ of systemic isotretinoin (55). Skin dryness is the most common side effect of the treatment and may itself result in PIH but can easily be corrected by regular application of emollients.

Post-inflammatory Hyperpigmentation

After acne is under control, therapy can be focused on PIH. Hydroquinone remains the gold standard for PIH treatment. Its effectiveness is related to its concentration and the stability of the preparation (56). The OTC products available, usually already used by ethnic patients at time of presentation,
contain 1% to 2% hydroquinone but are often inefficacious. In clinicians’ prescriptions, the concentration varies from 3% to 5%, compounded in cold cream or hydroalcoholic base. It is normally applied once daily and results are appreciable after 4 to 8 weeks of therapy, and optimal effects are observed after 6 to 10 weeks of therapy. Hydroquinone is usually combined with other proximate principles, exploiting the synergistic action of each compound. Hydroquinone 5% with tretinoin 0.1% and dexamethasone 0.1%, known as the Kligman formulation, represents the most famous association. As long-term use of this preparation may determine skin atrophy, telangiectasia, erythema, rosacea-like acneiform eruptions, increased growth of vellus hair, and perioral dermatitis; FDA has approved a modified combination of the Kligman formulation, containing hydroquinone 4%, tretinoin 0.05%, and fluocinolone acetonide 0.01%. This association has proved its efficacy without significant side effects in multicentric safety study (57). Irritation is the most common acute complication, but hydroquinone may also induce infrequent allergic reactions, PIHs, and transient hypochromia. Chronic adverse events consist of leukomelanoderma en confetti, exogenous ochronosis, and nail
discoloration; they are usually related to prolonged use of formulations containing high concentrations of hydroquinone (56). Beside OTC bleaching products, ethnic people still employ traditional drugs, transferred from generation to generation. An interesting recent screening of some of these compounds, used by Nepalese people to treat acquired pigmentation disorders, has been performed by Adhikari et al. (58). They have found 53 crude drugs, 52 were plant extracts, 1 derived from a shell called Cypraea moneta. All the products tested for the tyrosinase inhibitory activity showed some efficacy. Extracts of roots of Glycyrrhiza glabra, leaves of Morus alba, flowering bud of Syzygium aromaticum, fresh peel of Citrus aurantiifolia, shell of C. moneta, seed of Punica granatum, and fresh peel of Citrus aurantium demonstrated the higher activity, some with more than 50% inhibition.

Exogenous Ochronosis

Exogenous ochronosis is a bluish-black pigmentation of connective tissue in the area treated with hydroquinone. The pathogenesis is unknown, but it has been supposed that it derives from the accumulation and polymerization of homogentisic acid (HGA) resulting from the inhibition of its oxidase by
hydroquinone. In particular, pigmentation may be induced by the binding of HGA to fibrillar collagen. Exogenous ochronosis can occur in pigmented skin as a consequence of the use of some topical compounds such as pycric acid, phenol, resorcinol, and hydroquinone. Usually, when induced by hydroquinone (which is a phenolic compound similar to HGA), the discoloration appears within few months of application (59). In the U.S. population, the condition has been described to appear in pigmented skin (blacks and Hispanics) after use of topical hydroquinone at concentrations of 2% or higher for months or years and who have failed to observe sun protection. In these subjects, hydroquinone was applied continuously as a bleaching agent to treat dark pigmentation or dark skin discoloration such as melasma or post-inflammatory pigmentation (60). Nevertheless, exogenous ochronosis is not so frequent in the United States such as in some African populations and countries. This appears to be due to the high concentrations of hydroquinone available in skin-lightening products prior to 1984 in South Africa (average 6-8%) (61). Other compounds capable to induce irreversible depigmentation such as tert-butyl alcohol and mercury were included in skin care products in South Africa up to 1986. Resorcinol, used in some African countries in cosmetic products for acne, has been also related to the onset of exogenous ochronosis. Hydroquinone and resorcinol are also used simultaneously to achieve a faster depigmentation (61). Furthermore, alcoholic lotions and vehicle used in lightening and acne products can increase the percutaneous absorption of hydroquinone (62). From a clinical point of view exogenous ochronosis can classified in three stages (63): I Stage I involves erythema and mild pigmentation of the face and the neck. I Stage II is characterized by appearance of papules and mottled pigmentation. I Stage III includes papulonodules and inflammation. While low concentrations of hydroquinone inhibit tyrosinase, higher ones can increase melanin synthesis apparently as consequence of tyrosinase stimulation (64). Melanocytes can be involved in the process of ochronosis since it does not appear in areas affected by vitiligo. The role of sun-exposure is still debated as well (65). Indeed, the condition is often limited to sun-exposed areas. The treatment of exogenous ochronosis is difficult. Generally, it tends to resolve slowly after stopping the drug. Avoidance of exposure to the causative agent may improve the condition; chemical peels, cryotherapy, and retinoic acid have been used with poor results. SUN PROTECTION As mentioned previously, different skin colors are due to the adaptation to different intensity of sun irradiation that changes with latitude. In the late 1970s, Kaidbey et al.
(66) have already demonstrated that 5.7% of UVB are transmitted into the dermis in blacks as opposed to the 29.4% in whites. 17.5% of UVA reaches the upper dermis in blacks whereas in whites 55.5% penetrates. Antoniou et al. (67) have investigated the optical transmission properties of different skin types, demonstrating that, as expected, skin of color is naturally better protected against damage caused by UVA and also against visible and red range of the spectra. They conclude that, because of the different relation between UVA and UVB protection among skin types, specific sunscreens should be developed.
CHEMICAL PEELING

Grimes PE. The safety and efficacy of salicylic acid
chemical peels in darker racial-ethnic groups. Dermatol
et al. Safety and efficacy of glycolic acid facial peel in
Indian women with melasma. Int J Dermatol 2001;
40(5):354-357. 73. Querleux B, Baldeweck T, Diridollou S,
et al. Skin from various ethnic origins and aging: an in
vivo cross-sectional multimodality imaging study. Skin Res
Halder RM. Photaging and nonablative photorejuvenation in
discussion 1261. 75. Cho SI, Kim YC. Treatment of atrophic
facial scars with combined use of high-energy pulsed CO 2
laser and Er:YAG laser: a practical guide of the laser
25(12):959-964. 76. Lee MW. Combination 532-nm and 1064-nm
lasers for noninvasive skin rejuvenation and toning. Arch
dermatol 2003; 139(10): 1265-1276. Erratum in: Arch
Dermatol 2004; 140(5):625. 77. Rashid T, Hussain I, Haider
M, et al. Laser therapy of freckles and lentigines with
quasi-continuous, frequency-doubled, Nd:YAG (532 nm) laser in
Fitzpatrick skin type IV: a 24-month follow-up. J Cosmet
Laser Ther 2002; 4(3-4):81-85. 78. Trelles MA, Allones I,
Levy JL, et al. Combined nonablative skin rejuvenation with
the 595 and 1450-nm lasers. Dermatol Surg 2004;
al. Photorejuvenation for Asian skin by intense pulsed
photorejuvenation of photodamaged skin by intense pulsed
light with integrated contact cooling: initial experiences
remodeling: a 14-month clinical ultrasound imaging and
profilometric evaluation of a 1540 nm Er:Glass laser.
Dermatol Surg 2002; 28(10):926-931. 82. Weiss RA, Weiss MA,
Geronemus RG, et al. A novel non-thermal non-ablative full
panel LED photomodulation device for reversal of
photaging: digital microscopic and clinical results in
83. Weiss RA, McDaniel DH, Geronemus RG, et al. Clinical
trial of a novel non-thermal LED array for reversal of
photaging: clinical, histologic, and surface profilometric
Herron GS, Sink RK, et al. Fractional photothermolysis: a
new concept for cutaneous remodeling using microscopic
resurfacing for the treatment of atrophic facial acne scars
INTRODUCTION

The diversity of human skin types and its appendages is a result of various stages of evolution, climate changes, and migration. Studying the complexity of ethnic variations in human hair and skin is not only interesting from an anthropological point of view but certainly of interest for the dermatologist as well as for the cosmetic and pharmaceutical industry. Classifying different ethnic groups is particularly difficult because ancient or more recent migration processes and mixes between ethnic groups or subgroups are usually not taken into account. Many studies have broadly distinguished three ethnic human subgroups: African, Asian, and Caucasian. Such a broad classification cannot account for the great complexity of human biological diversity, resulting from multiple, past, or recent mixed origins. The term African refers to people who live in Africa or people who trace their ancestry to indigenous inhabitants of Africa. This includes people who were displaced in the African diaspora resulting from the Atlantic slave trade such as African Americans, African Canadians, Afro-Latin Americans, Afro
Caribbeans, and Black British. The term black people is often used as a synonym for people of African ancestry (in particular Sub-Saharan Africa). The term Asian refers most commonly to people of predominantly East Asian and Southeast Asian ancestry. The term Caucasian has been used to characterize the general physical type of some or all of the indigenous populations of Europe; North Africa; and western, south, and middle Asia (1).

The concept of a Caucasian, Asian, or African race is highly controversial today. It is rejected by many academics and political activists who view any system of categorizing humanity on the basis of physical type as obsolete (1,2). Responses to drugs and cosmetics can vary dramatically on the basis of ethnicity.

There is a great debate as to whether ethnic categorizations as broad Caucasian, Asian, and African are medically valid (3,4). Nevertheless, since most studies on ethnic hair diversity use this broad and unsatisfactory characterization, this chapter will retain the terms Caucasian, Asian, and African.

SCALP HAIR

Scalp hair is probably one of our most distinctive features. It
represents health, beauty, sexual attraction, and moreover it reflects our personality and individuality. Depending on its structure and physical properties, scalp hair is subject to limitations that will only permit certain styles without major damage to the hair shaft. Several features of the scalp hair, such as form, color, thickness, density, maximal length, and tensile strength are genetically determined and show great variation between different ethnic groups and subgroups. The understanding of the diversity of scalp hair and its different response to physical and chemical treatments is the prerequisite for a proper development and application of hair care and is likewise important for the dermatologist, cosmetic scientist, product formulator, and the hair stylist.

ETHNIC DIVERSITY OF HUMAN SCALP HAIR

Hair Shape and Thickness

The term Caucasian or Indo-European comprised a vast diversity of different ethnic subgroups originating from Europe, North Africa, and western (as well as south and middle) Asia. Therefore, this group shows a tremendous variability in hair shaft shape and caliber. In general, Caucasian hair has a slightly flattened or oval cross section with a diameter ranging from 50 to 90 mm (5,6). In Europeans, hair shaft diameters can range from approximately 50 to 120 mm (Otberg, unpublished data). Very fine hair with diameters less than 50 mm is most frequently seen in the Scandinavian population and northwestern Europe (5). Straight Caucasian hair is relatively untwisted along the shaft, whereas wavy or curly hair shows a higher degree of twisting proportional to the degree of curling (5,7-10). Hair of people originating from East Asia (China, Korea, and Japan) is usually referred to as Oriental or Asian hair. It generally shows the greatest diameter, ranging from 100 to 130 mm (5) (Otberg, unpublished data). Asian hair shafts are straight with no or very few twists along the shaft and with a round cross section (7-9). Hair of people of Sub-Saharan Africa is highly characteristic in shape. African hair is considerably flattened, grooved, and frequently vary in diameter along one single shaft. It tends to be highly twisted, with random reversal in twist direction. Lindelo¨f et al. showed that the hair follicle
in African hair is spiral in shape. They found that the shape of the hair shaft conformed to the shape of the follicle in all three major ethnic hair types (Caucasian, Asian, and African) (11). African hair can be quite sharply kinked at the edges and is especially vulnerable to damage at such points. The hair of people from different African countries shows great variability in the degree of curling, with eastern African hair showing the least degree of curling (5,12,13). African hair tends to be more easily harmed by cosmetic procedures than cylindrical hair and grooming usually requires more force especially when the hair is dry (5,12,14). Since the conventional classification of three ethnic subgroups hardly accounts for the great diversity of human hair characteristics, De la Mettrie et al. developed a new approach to classify hair based on physical features. Hair types were defined according to three different hair shape criteria (curve diameter, curl index, and number of waves) without referring to human ethnicity. This method leads to a classification of hair in eight well-defined categories and may be more appropriate and more reliable than conventional standards in both cosmetic sciences and anthropology (15).

Hair Density

The appearance of thick full hair depends not only on the number of hairs but certainly on the thickness of the hair shaft, its shape and color, and its contrast to the skin. In general, there is a relationship between the number of hairs (density) and size of the hair shafts (thickness), so that ethnic groups with the thickest caliber hair have the lowest density (i.e., Asians) and those with fine hair have the highest density (i.e., Scandinavians) (16). An average Caucasian brown-haired men is believed to have approximately 100,000 hair follicle on the scalp, while blondes tend to have 20% more, and red heads around 20% less hair (17,18). Surprisingly, few studies are published on normal scalp hair density. Whiting, Aslani et al., Sperling, Templeton et al., and Lee et al. utilized horizontal sections of scalp biopsies to determine terminal and vellus hair density as well as anagen/telogen ratio in Caucasian, African-American, and Asian patients. Lee et al. showed the lowest hair counts in Asian patients (35 Korean patients) with 1.2 terminal hairs/mm² (120/cm²) on average (19). Higher counts showing 1.5 terminal hairs/mm² (150/cm²) were found in 22 African American patients (20). Highest hair counts of 3.1 hairs/mm² (310/cm²) were found in scalp biopsies of 22 Caucasian men by Whiting (21), Aslani et al. counted 2.8 hairs/mm² (280/cm², n=21) in scalp biopsies of male volunteers and slightly lower numbers in women (2.5 hairs/mm² 250/cm², n=9) (22); Templeton et al. found 2.7 terminal hairs/mm² (270/cm²) (23), and Sperling
found 2.5 terminal hairs/mm\(^2\) (250/cm\(^2\)) (20) on average in Caucasian patients. Whiting and Aslani et al. obtained specimens from control subjects with no evidence of alopecia (21, 22), whereas Sperling, Templeton et al., and Lee et al. evaluated hair density in specimens from clinically normal occipital scalp of patients with androgenetic alopecia (19, 20, 23). Surprisingly, great variation were found in the terminalvellus hair ratio (T-V ratio) among the different studies. Whiting found a T-V ratio of 1.7:1 (21), whereas Sperling, Lee et al., and Aslani et al. found much higher values [Caucasian: 6.0:1 (20), 17.6:1 (22), Asian 13.5:1 (19), African: 6.1:1 (20)]. Different levels of the horizontal section of the punch biopsy may explain these differences. Vellus hair follicles on the scalp seem to be much smaller compared to vellus hair follicles on the rest of the body. Their infundibulum is located in the very upper part of the dermis; therefore vellus hairs can easily be missed if the horizontal section is evaluated at a deeper level (Otberg, unpublished data).

Noninvasive techniques have also been utilized to determine scalp hair density. One of the earliest methods of measuring hair density was devised by Bouhanna, who used camera attachments to create a “phototrichogram,” an ultra close-up photograph of hair exiting the scalp (24). Van Neste combined the phototrichogram with computer-assisted image analysis (25). A further development is the TrichoScan 1 technique introduced by Hoffmann, which combines epiluminescence microscopy with digital image analysis for the measurement of hair density and hair growth parameters (26). Loussouarn et al. confirmed the results for African and Caucasian hair density by using the phototrichogram technique. They found 162 terminal hairs/cm\(^2\) in the occipital area of 106 male volunteers of African descent. Hair density was highly variable from 90 to 396 hairs/cm\(^2\) and significantly higher on the vertex than on occipital and temporal areas. Women showed a slightly higher hair density in the occipital region than men (167/cm\(^2\) on average, n = 110). Vertex and temporal area showed no statistically significant difference between male and female volunteers; the vertex area showed the highest count (M: 188/cm\(^2\), F: 199/cm\(^2\)); the temporal area showed the lowest values (M: 128/cm\(^2\), F: 121/cm\(^2\)). Male Caucasian volunteers (n = 56) showed an average terminal hair density of 217 hairs/cm\(^2\) in the occipital area, 264/cm\(^2\) in the vertex area, and 151/cm\(^2\) in the temporal area; female Caucasian volunteers showed significantly higher values (occipital: 250/cm\(^2\), vertex: 300/cm\(^2\), and temporal: 169/cm\(^2\)) (27). Much higher values compared to Lee et al. were found in the Asian group. Loussouarn et al. measured hair densities in 180 Chinese volunteers. Male
Chinese volunteers (n = 92) showed 179/cm² in the occipital area, 217/cm² in the vertex area, and 122/cm² in the temporal area; female Chinese volunteers (n = 96) showed significantly higher values in the occipital and vertex area (occipital: 185/cm², vertex: 231/cm²) and lower values in the temporal area (169/cm²) (27). The finding of Loussouarn et al. and Lee et al. indicate the diversity of hair characteristics among different Asian subgroups. Furthermore, the results indicate that sexual difference might have different patterns according to the ethnic background (27). Jimeńez and Poblet used phototrichograms to measure follicular unit (FU) density in the occipital area in patients undergoing hair transplantation. Follicular unit density ranged from 60 to 100 FU/cm² with an average hair density of 260 terminal hairs/cm². The authors note that FU density is significantly lower in Asian and African patients.

Follicular units tend to maintain a certain distance between each other. This distance correlates with the FU density according to a formula described by Jimeńez and Ruíferandez: \(L = \frac{10}{Hn} \), where \(L \) represents the average distance between FUs expressed in millimeters and \(n \) the number of FUs/cm² (28,29). Rassman et al. used a small hand-held magnifier called densitometer to determine hair density and follicular groupings in patients seeking hair restoration surgery. They found that the average hair density and the average follicular unit density vary significantly among different ethnic groups. African American patients showed an average hair density of 1.6 terminal hairs/mm² (160/cm²) in contrast to Caucasian patients, showing 2.0 hairs/mm² (200/cm²). In patients of African descent, follicular unit groupings were predominantly found to be in 3s, in Caucasian in 2s and 3s opposed to Asian patients showing follicular units with only 1 to 2 hairs (16). A more modern noninvasive technique to measure scalp hair density is videodermoscopy (30–32).

Videodermoscopy allows evaluating the scalp in 20 to 100-fold magnification; hair and scalp disorders can be easily diagnosed, and when combined with digital image analysis it allows to measure hair density and thickness of the hair shaft without shaving, clipping, or dyeing. Hair Growth Whiting, Aslani et al., Sperling, and Lee et al. found a very similar percentage of terminal anagen and telogen hairs of approximately 94:6 in all three major ethnic groups (Caucasian, Asian, African) (19–22). Lee et al. state that this ratio could be uniformly applied as a normal value in interpreting scalp biopsy specimens regardless of the ethnic background of the patients (19–22). Loussouarn used the phototrichogram tech
nique to measure hair growth parameters in Caucasian and African men and women (27). Increased telogen counts compared to the data obtained from scalp biopsies were found in both, the African and Caucasian group. The percentage of telogen hair in the vertex area was found to be 17% in African volunteers and 16% in Caucasian group; the occipital area showed 19% of telogen hairs (African) versus 11% (Caucasian).

Growth rates were highly variable in both groups with a higher variability and over all lower growth rates in the African group.

On average, growth rates of 260 mm/day (African) versus 397 mm/day (Caucasian) were found for the vertex area and 252 mm/day (African) versus 402 mm/day (Caucasian) for the occipital area (27).

Hair Color

Hair color is determined mainly by melanin pigmentation within keratinocytes of the hair fiber. Melanin is a complex quinone/indolequinone-derived mixture of biopolymers produced in melanocytes from tyrosine (33). Melanocytes are dendritic neural crest-derived cells that migrate into the epi
dermis in the first trimester. Hair and epidermal pigmentation are, in so far as melanocytes are concerned, similar processes: in
interfollicular skin, melanin, packed in melanosomes, is passed from the melanocytes to the adjacent keratinocytes; in hair, a similar process exists, with pigment being added to the growing keratinocytes (34). Hair melanin is formed by melanocytes situated in the hair bulb epithelium around the upper half of the dermal papilla among cells destined to form the hair cortex. The pigment is donated to cells undergoing early differentiation to form the hair cortex. Melanosomes are also found in the hair medulla, whereas it is unusual to find melanin in the cuticle of human hair shafts (34). Two different types of melanin can be distinguished: eumelanin, which is brown or black, and pheomelanin, which results from the incorporation of cysteine and is yellow or red (35-38). Eumelaninogenic and pheomelanogenic melanosomes can coexist in the same melanocyte but are produced in different pathways (39-41). The absence or relative absence of both melanin types is associated with white hair, a preponderance of eumelanin, with brown or black hair, and a preponderance of pheomelanin, with red or blond hair. Since the term Caucasian comprises such a large number of ethnic subgroups, the entire range of hair colors can be found
within this group. People of Celtic decent seem to have predominantly phaeomelanin and therefore reddish brown or blond hair (5), whereas in people originating from southern Europe, North Africa or western, south, or middle Asia, eumelanin is the predominant chromophore and therefore leads to all shades of brown to deep black hair. Asian and African hair is usually densely pigmented with eumelanin and is therefore black or dark brown. Differences in pigmentation between people are not a result of the number of melanocytes but are largely the result of differences in the amount and types of melanin produced and the macromolecular structure and packaging of melanin. Blond hair appears light because melanosomes are poorly melanized (39). Melanosomes are secreted in different shapes and sizes; such differences change the way of light scattering and thereby the hair color (35). Furthermore, hair color may vary both in time and site.

For example, scalp hair may be blonde in childhood and become brown or black in adolescence, before becoming white again in middle or old age; beard or pubic hair may be red and the scalp hair black or dark brown in the same individual (35,39,42). Hair Biochemistry Despite the obvious differences in phenotype, hair of different ethnic origin shows relatively little biochemical difference (43). Keratin fiber analysis showed no significant differences in the amino acid composition in Caucasian, Asian, and African hair (9,44). The distribution of cysteine-rich proteins in the hair of volunteers of African decent, Caucasians, and
Asian volunteers was found to be similar (45). No ethnic difference was found in the composition of low-sulfur S-carboxymethylated fibrous proteins (9,46,47). However, a difference in the ratio of fibrous protein and matrix protein, with African hair showing a lower ratio of low-sulfur fibrous proteins to high-sulfur matrix proteins compared to Asian and Caucasian hair, was found (47).

Hair Characteristics A cross section of fully mature and keratinized human terminal hair reveals three major structures. The central layer is the medulla, the intermediate layer is the cortex, and outermost layer is the cuticle. The medulla consists of a vacuolated, trabecular mass formed from aggregated trichohyalin granules. It contains melanosomes and citrulline-red granules (48). The cortex gives the hair shaft its elasticity and tensile strength. It consists of elongated cells containing tonofilaments and interfilamentous matrix material, which is rich in cysteine. Cortex keratin is different from epithelial keratin, primarily in the increased number of disulfide bonds in the hair shaft. The cuticle forms the protective shield of the hair shaft. It consists of flattened highly keratinized cells arranged like shingles. The scale-like cells overlap tightly in a proximal-to-distal direction along the hair shaft. The cuticle mainly protects the hair shaft from an excessive penetration of water and swelling of the cortex. When the cuticle is intact, the scales are flat and smooth, reflect light, and provide a shiny healthy look to the hair (5,48).

Function and appearance of scalp hair depends on three major characteristics: porosity, elasticity, and texture. Porosity of the hair measures the ability to allow moisture to pass through the cuticle into the cortex. In a healthy undamaged hair, only minimal amounts of water or other substances can penetrate the cuticle. To allow chemicals to penetrate the hair for permanent waving or hair coloring, which takes place in the hair cortex, the cuticle has to be altered. A higher permeability is achieved by increased temperature or/and by changing the pH of the environment along the shaft. When the processing of the hair is finished, the cuticular scales gradually close again. If processing is too harsh or applied too many times, the cuticle cells cannot return to their original tightness, which results in an imperfect barrier and increased porosity. Increased porosity can also be a result of UV radiation, overheating from flat or curling irons and close, hot blow-drying as well as from excessive combing and teasing (5,48). Highly porous hair tends to be dry and fragile, appears dull, and often contains split ends. Asian hair is more resistant to chemicals that open the cuticle. Therefore, stronger chemicals are needed if cosmetic
alterations are desired such as coloring and permanent waving. African hair, in general, is more fragile and sensitive to chemical alterations. It tends to be drier and since grooming requires more force, especially in longer African hair, the cuticle is more likely to be damaged (5). Elasticity is a measure of how far the hair can be stretched without losing the ability to spring back to its original length. Healthy hair can approximately stretch 11/3 of its original length when wet and return to its regular length when dry (48). The tensile strength of the hair shaft is related to its elasticity and is assessing the weight it can support. One healthy hair shaft can support approximately 100 g weight without breaking. Elasticity and tensile strength depend on the hair cortex. Thick, curly hair shows the highest elasticity and tensile strength, whereas thin, straight Caucasian hair shows the least resistance to stretching and the lowest tensile strength.

The third major characteristic is the hair texture. It depends on the diameter and shape of the hair shaft. As discussed earlier, Asian hair shows the thickest diameter and a round, cylindrical shape. Healthy Asian hair is very well suited for long hairstyles; it may become spiky if worn short (Fig. 43.1). African hair is highly twisted with high variability in diameter along the shaft and a flat oval cross section. Therefore, light reflects in different direction, which may result in a dull appearance. African hair is particularly difficult to manage and to remain healthy when worn in longer hairstyles. A tremendous variety in hair texture can be found in Caucasian hair, ranging from very thin cylindrical hair to thick curly hair shafts. Hair Care and Styling Hair care and styling depends on the cultural background and current trends. As discussed earlier, African hair is very different from Asian and Caucasian hair. African hair tends to be very dry, considerable force is needed to comb the hair, and although the hair is susceptible to mechanical damage, African hair can be more easily combed when its wet. Too frequent shampooing will result in excessive dryness and brittleness. It was found that 50% of African American women shampoo once weekly and another third only once every other week (9,49). This is considerably less compared to people of Caucasian or Asian descent. African hair is usually easy to care for when worn short. Oils and pomades are often used to assist in grooming or to treat dry, scaly scalp skin. Braiding is a popular way to manage longer African hair. Artificial braids are often attached to natural braids; classical “cornrow” braids are more frequently seen in children. Tight braids or ponytails may result in prolonged tension on the hair follicle; this may result in traction alopecia and ultimately in permanent
hair loss. Today only very few African American women are wearing a natural hairstyle. Many women have their hair regularly straightened. African hair with its tight curls can only be straightened properly by using hot comb procedures or chemical relaxers. Hot combing involves the application of oil to the hair shaft, combing the hair straight with a hot comb (150–250°C) until there are no more curls and then optionally reshaping the hair with large rollers. Chemical relaxers contain either sodium hydroxide or guanidine hydroxide and lithium hydroxide (lye-free straighteners). Chemically relaxed hair can also be gently reperm to induce light curls (5,9,48). The use of hot combs and straighteners has been associated with central centrifugal cicatricial alopecia (CCCA), an inflammatory hair loss condition that leads to permanent progressive hair loss, especially on the central parietal scalp (50–52). Very fine straight Caucasian hair is difficult to style, especially if left to grow much beyond shoulder length. A layered haircut as well as styling products such as volumizing shampoo, mousse, and hair spray can help to create the impression of more volume. Setting straight hair can give waves or curls by temporarily changing the position of the weak hydrogen bonds in the hair shaft by wetting, rearranging, and holding with hair spray. Fine Caucasian hair is especially vulnerable to mechanical damage when it is wet and therefore excessive combing of wet hair should be avoided; less damage is done to the cuticle when the hair is dry. Teasing or backcombing involves combing or brushing the hair toward the root to create small tangles that will hold the hair in place. This procedure was very popular in the 1950s and 1960s to create voluminous hairstyles and the popular beehive style. However, backcombing leads to severe damage of the cuticle and will result in increased porosity and hair breakage. A permanent wave chemically alters the strong disulfide bonds in the hair cortex. Since the hair cortex holds the perm, very fine Caucasian hair may be difficult to perm, because the hair cortex forms a lower proportion of the hair fiber. Thick straight Asian hair is generally difficult to set or perm because it does not flex readily in any preferred direction. Higher concentrations of perming solutions are usually required for Asian hair (5). The cold wave or base permanent was invented in the 1930s. It involves the application of a solution of ammonium thioglycolate to break the disulfide bonds, after that the hair is neutralized and hardens into a new shape by applying hydrogen peroxide, perborate, or sodium or potassium bromate (48). In the 1970s a more gentle acid-based glycerol monothioglycolate (GMTG) permanent wave was introduced. Glycerol Figure 43.1 Spiky appearance of hair
in a Chinese man with short haircut. Source: Photo courtesy of Dr Jerry Shapiro.

monothioglycolate separates the cuticular scales to a lesser degree with a lower pH and therefore the cuticle is more likely to return to the original stage after treatment. The acid-based permanent requires heat to be activated. This kind of wave is usually not strong enough to perm very coarse Asian or African hair. A high incidence of contact dermatitis caused by GMTG has been described (48,53). Changing the color of hair that is heavily pigmented with eumelanin, such as Asian, African, or East-Indian hair is particularly difficult, especially if a much lighter hair color is desired. Bleaching destroys eumelanin and tends to produce red-tinged hair as well as leading to increased weathering and porosity.

Ethnic Difference in Hair and Scalp Disorders

Ethnic variations in the incidence of androgenetic alopecia have been reported. In 1951, Hamilton found that most Chinese retained the frontal hairline after puberty and that baldness was less common, less extensive, and started later in life compared to Caucasians (54). In 1981, Takashima et al. found that
Japanese men develop male pattern hair loss approximately 10 years later in life and have a 1.4 times lower incidence in each decade compared to Caucasians (55). Tang et al. investigated the scalp hair of 254 men in Singapore. They found a prevalence of 87% in the East Indian population and 61% in the Chinese population (56). Paik et al. investigated 5531 Korean men. An increase of prevalence with age occurs with an overall prevalence of 14.1% (57). A study carried out on 1124 Chinese and Thai men aged between 18 and 90 years in Bangkok showed a prevalence of 38.5% of male pattern hair loss type III or higher (58). Setty reported that androgenetic alopecia is four times less frequent in men of African origin (59) (Fig. 43.2). Certain inflammatory hair disorders are more frequently seen in people of African ancestry. Pseudofolliculitis barbae is found in 45% to 83% of African American men who regularly shave (9). P. barbae is characterized by perifollicular and follicular papules and pustules as well as scarring in the shaved area. Very kinky hair tends to grow back into the skin surface or pierces the follicular epithelium followed by inflammation when the hair is cut extremely short. Dissecting folliculitis (DF) is also known as perifolliculitis capitis abscedens et suffodiens (of Hoffman), dissecting cellulitis, dissecting perifolliculitis, and perifolliculitis capitis. DF is a primary neutrophilic cicatricial alopecia. It manifests with perifollicular pustules, nodules, abscesses and sinuses leading to scarring alopecia. The etiology of dissecting cellulitis is unclear. There are three implicated factors: infection, follicular occlusion, and immune-cell mediated chronic inflammation (60). DF occurs predominantly in black men aged 18 to 40 years (51). It can
also occur in men of other ethnicities while women and children are rarely affected (61,62). Chronic and relapsing courses result in cicatricial alopecia that can present as hypertrophic or keloidal scars (63,64). Acne keloidalis, also named acne keloidalis nuchae, dermatitis papillaris capillitii, or folliculitis keloidalis, is a chronic idiopathic, inflammatory process leading to hair loss and hypertrophic scarring in papules and plaques (64). The exact etiology of acne keloidalis is unknown. Probable participating factors include constant irritation from shirt collars, excoriation, and seborrhea, localized infection, shaving of the neck, coarse hair, and autoimmunity (51,65). Acne keloidalis occurs predominantly in black men between 14 and 25 years of age (20). The initial lesions are dome-shaped, firm, skin-colored follicular papules and pustules, which are mostly located on the occipital scalp and the nape of the neck, although they may also be found on the vertex and parietal area (20,66). As the disease progresses, papules and pustules may enlarge and coalesce into keloid-like plaques, associated with variable hair loss (Fig. 43.3).

Folliculitis decalvans (FD) is a common form of primary cicatricial alopecia comprising 10.7% to 11.2% of all cases with cicatricial alopecia (67,68). The etiology of folliculitis decalvans remains unclear. It may be a complex combination of a bacterial infection, particularly Staphylococcus aureus (S. aureus), a hypersensitivity reaction to “superantigens,” and a defect in host cell-mediated immunity regulation (67,69,70). FD predominantly occurs in young and middle-aged adults with a slight preference of the male gender. FD seems to occur more frequently in African Americans compared to Caucasians (67,68). The primary lesions are painful or pruritic follicular pustules or papules (69). With progression, more pustules and papules, as well as crusting and nodules, can be seen. Associated with the inflammatory activity, one or more round to irregular patches of scarring alopecia develop. The patches look like ivory pseudopelade skin centrally with surrounding follicular pustules and crusts at the margins of active lesions (50,71) (Fig. 43.4). CCCA is a lymphocytic primary cicatricial alopecia that primarily affects African American women. It can rarely be seen in Caucasians (sometimes called “central elliptical pseudopelade”) and African American men: CCCA presents with a patch of scarring alopecia similar to Pseudopelade of Brocq on the central scalp, which slowly progresses
centrifugally. It remains unclear if chemical processing, heat, traction, or other traumas contribute to the development of this condition (20,50,52) (Fig. 43.5). The etiology of cicatricial alopecias is poorly understood. Inflammatory cicatricial alopecias seem to be less frequent in people of Asian ancestry, suggesting that the shape of the follicle and hair shaft plays a role in the pathogenesis. Figure 43.3 African American men with acne keloidalis nuchae displaying keloid-like plaques and pustules. Source: Photo courtesy of Dr Jerry Shapiro. Figure 43.4 Caucasian female patient with extensive folliculitis decalvans. Source: Photo courtesy of Dr Jerry Shapiro.
Eye Lashes

INTRODUCTION The United States has a rapidly expanding ethnic population. The U.S. census bureau projects that by the year 2056, greater than 50% of the U.S. population will be of non-Caucasian descent. Skin of color presents unique differences in skin pathophysiology, anatomic structure, and mechanisms of aging. The terms ethnic skin, dark skin, and brown skin have been used to describe skin of color, traditionally of Fitzpatrick skin types III to VI (Table 44.1). These terms do not define any particular race, ethnicity or culture, and it certainly does not describe all skin types and pigmentations. Among all ethnicities, there is wide range of skin pigmentation. For the purposes of this chapter we will use the term “ethnic skin” to refer to patients with darker pigmentation other than that of Caucasians. Distinctive differences in ethnic skin types not only contribute to different dermatologic disorders but also require unique approaches to skin care. Basic anatomic differences and their clinical implications are summarized in Table 44.2. While anatomic differences have been found, the basic science and clinical literature does not adequately elucidate physiologic differences of ethnic skin types, and the data is often subjective and contradictory. As more patients, however, present with concerns attributed to their unique skin physiology, clinicians are beginning to investigate the underlying skin properties that are fundamental to understanding disease processes. Objective differences that have been found among ethnic skin types include melanosome distribution, stratum corneum thickness, transepidermal water loss (TEWL), pH, sebum content, elasticity, irritability, and response to photodamage (3–5). In this chapter we will highlight the literature with respect to these well-defined differences, as well as briefly highlight the data in which differences are not as well defined including skin topography, water content (WC), blood vessel reactivity, vellus hair follicle concentration, epidermal innervation, and cornocyte
variability. As the population continues to become multicultural, the need for unique expertise in ethnic skin care will progressively be elucidated in the scientific and clinical literature. MELANOSOMES The biosynthesis of melanin, a cutaneous pigment, occurs in a melanosome, a metabolic unit within the melanocyte; melanosomes are then transported via melanocyte dendrites to adjacent keratinocytes (2). Melanosome content, distribution, and reactivity is the most widely studied area of ethnic skin physiology. Differences in the number of melanocytes, number of melanosomes, and morphology of melanosomes has contributed to the development of objective definitions of skin color. These unique well studied features help prevent photoaging and skin cancer in chronically sun-exposed skin as well as contribute to dyschromia prevalent to many ethnic skin types. Postinflammatory hyperpigmentation or hypopigmentation is a common consequence of many inflammatory skin conditions and treatment modalities in dark-skinned patients. Hyperpigmentation is caused by an increase in melanin production or an abnormal distribution of melanin pigment whereas in hypopigmentation there is a decrease in melanin production (6). The etiology of this phenomenon in dark-skinned patients is still unknown, however literature supports the hypothesis that it is secondary to cytokines and inflammatory mediators such as leukotriene (LT), prostaglandins (PG), and thromboxane (TXB) released during the inflammatory process (7). Tomita et al. have shown in in vitro studies that LTC4, LTD4, PGE2, and TXB2 stimulate melanocyte enlargement and LTC4 not only increases tyrosinase activity in melanocytes but also increases mitogenic activity of melanocytes (8). In 1969, Szabo et al. (9) examined five Caucasoids, six American Indians, three Mongoloids (from Japan and China), and seven Negroids to observe melanosome groupings using electron micrographs. The melanosomes in keratinocytes of Caucasoids and Mongoloids were found to be grouped together with a surrounding membrane. In contrast, the Negroid keratinocytes showed numerous melanosomes, longer and wider than in other racial groups, and mostly individually dispersed. Additionally, they observed an increase in melanosomes of keratinocytes of all races after irradiation, with grouping of melanosomes maintained in Caucasoids and Mongoloids. The authors concluded that individually dispersed melanosomes give a more uniform and dense color than the grouping found in fair skin. In 1973, Konrad et al. (10) studied melanosome distribution patterns in hyperpigmented white skin alone and found that when comparing hyperpigmented lesions with control areas, there were no uniform differences in the distribution patterns of...
melanosomes. In addition, the degree of clinical hyperpigmentation was not associated with specific distribution patterns. However, they did note an important relationship between melanosome size and distribution: the percentage of melanosomes dispersed singly increased with increasing melanosome size. The authors also reported findings with experimental pigment donation showing that large melanosomes are taken up individually by keratinocytes and dispersed singly within their cytoplasm while small melanosomes are incorporated and maintained as aggregates. This data suggested melanosome size differences as the basis for skin color differences between black skin and white skin. More recently, Thong et al. (11) quantified variation in melanosome size and distribution pattern in Asian, Caucasian, and African American skin. The volar forearms of 15 Chinese (phototypes IV–V; ages 10–73 years), 3 Caucasians (phototype II; ages 22–49 years), and 3 African Americans (phototype VI, ages 18–52) were examined by electron microscopy of 4-mm punch biopsies. The proportions of individual and clustered melanosomes were compared for each ethnic group and showed statistically significant differences (p < 0.05). Melanosomes in Caucasian skin were distributed as 15.5% individual versus 84.5% clustered. Meanwhile, in African Americans, the melanosomes were distributed as 88.9% individual versus 11.1% clustered. The Asian melanosome distribution was intermediate between the latter two groups, as 62.6% individual versus 37.4% clustered. The investigators also determined the mean standard deviation (SD) size of melanosomes distributed individually to be larger in comparison with those distributed in clusters for each ethnic group. The mean SD of random melanosomes in each group differed as African American skin showed significantly larger melanosome size than
Caucasian skin, and Asian skin showed melanosome size as intermediate between the two other two groups. Thus, there was a trend of progressive increase in melanosome size when moving from Caucasian to African American skin that corresponded with the progression from predominantly clustered to predominantly individual melanosome distribution. In addition, degradation patterns of melanosomes in the upper levels of epidermis varied by ethnic group. As keratinocytes became terminally differentiated and migrated to the stratum corneum, melanosomes were completely degraded and absent in the stratum corneum of light skin, while intact melanosomes could be seen in the stratum corneum of dark skin. Asian skin showed an intermediate pattern where few melanosomes remained in the corneocytes; interestingly, the remaining melanosomes were predominantly individual, indicating that clustered melanosomes may be degraded more efficiently during this process. Alaluf et al. (12) examined the morphology, size, and melanin content of melanosomes on the volar upper arms and dorsal forearms of 10 European, 8 Chinese, 10 Mexican, 10 Indian, and 10 African subjects living in South Africa. Four-millimeter punch biopsies were analyzed on the basis of electron micrographs of melanosomes and on alkali solubility of extracted melanin. The melanosome size of dorsal forearm (photoexposed) skin was observed as approximately 1.1 times larger than melanosome size of volar upper arm (photoprotected) skin (p < 0.001) when data was pooled from all ethnic groups; each ethnic group separately showed a similar trend, but lacked statistical significance. In addition, a progressive and statistically significant increase in average melanosome size was observed when moving from European (light) to African (dark) skin types. The melanosome size was directly correlated with total melanin content in the epidermis of
all subjects (p < 0.0001). When comparing the epidermal melanin content among ethnic groups, the investigators found a downward trend in the amount of alkali soluble melanin (lightcolored pheomelanin and DHICA-enriched eumelanin) in epidermis as the skin type became progressively darker; African skin contained the lowest amount (p < 0.02). Indian skin presented an exception to this trend with higher concentrations of light melanin fractions than both Mexican and Chinese skin (p < 0.05). However, both African and Indian skin showed about two times more of the alkali insoluble melanin (darkcolored DHI-enriched eumelanins) than the Mexican, Chinese, and European skin types (p < 0.001). Overall, the melanin

Table 44.1 Fitzpatrick Skin Phototype System

<table>
<thead>
<tr>
<th>Skin phototype</th>
<th>Reaction to moderate sun exposure</th>
<th>Skin color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanocompromized</td>
<td>Burn and no tan</td>
<td>White</td>
</tr>
<tr>
<td>II</td>
<td>Burn and minimal tan</td>
<td>White</td>
</tr>
<tr>
<td>III</td>
<td>Burn then tan well</td>
<td>White to light olive</td>
</tr>
<tr>
<td>Melanocompetent</td>
<td>IV</td>
<td>Tan, minimal to no burn</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>Tan, no burn</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>Tan, no burn</td>
</tr>
</tbody>
</table>

a Thirty minutes of unprotected sun exposure in peak season (spring or summer) depending on the latitude.

Source: From Ref. 1.

Table 44.2 Therapeutic Implications of Key Biologic Differences Between Races

<table>
<thead>
<tr>
<th>Biologic factor</th>
<th>Therapeutic implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidermis</td>
<td>Increased melanin content, melanosomal dispersion in people</td>
</tr>
</tbody>
</table>

with skin of color 1 Lower rates of skin cancer in people of color 1 Less pronounced photoaging 1 Pigmentation
disorders

Dermis

1. Multinucleated and larger fibroblasts in black persons compared with white persons
 - Greater incidence of keloid formation in black persons compared with white persons

Hair

1. Curved hair follicle/spiral hair type in black persons
 - Fewer elastic fibers anchoring hair follicles to dermis in black persons compared with white persons
 - Pseudofolliculitis in black persons who shave compared with white persons
 - Use of hair products (e.g., relaxers) that may lead to hair and scalp disorders in black persons
 - Alopecia

Source: Adapted from Ref. 2.

Composition showed a trend toward higher fractions of alkali soluble melamins while moving from darker (African) skin to lighter (European) skin. In addition, African and Indian skin revealed the highest total amount of melanin ($p < 0.001$) and did not differ significantly from each other. There was no significant difference in total epidermal melanin between the remaining groups. Despite the data showing differences in number and distribution of melanosomes, recent studies find no evidence of differences in numbers of melanocytes among ethnic groups (2). For example, Alaluf et al. (13) found no significant difference in melanocyte number between African ($n = 10$), Indian ($n = 10$), Mexican ($n = 10$), or Chinese ($n = 8$) skin types using immunohistochemical methods. They did consistently find 60% to 80% more melanocytes in European ($n = 10$) skin than all other skin types ($p < 0.01$), but the authors felt a larger sample size would be necessary to confirm this observation. Tadokoro et al. (14) also found approximately equal densities of melanocytes in unirradiated skin of Asian, black, and white subjects ranging from 12.2 to 12.8 melanocytes/mm. It is generally accepted that differences in skin color are supported more by differences in melanosomal distribution, size, and content rather than melanocyte number. The basic understanding of these differences is necessary to understand not only the range of pigmentation of the various ethnic groups but also the difference in particular skin diseases in these
populations. TRANSEPIDERMAL WATER LOSS One of the integral roles of the skin is to maintain a barrier between the body and the external environment (15). The stratum corneum is the permeability barrier of the skin. An objective measure of stratum corneum and barrier integrity is the calculation of TEWL. TEWL measures water loss from the skin in g/m²/hr, excluding losses due to sweating (16). Normal daily TEWL in adults ranges between 3.9 and 7.6 g/m²/hr. The repair mechanism of the stratum corneum in response to detergents, solvents, and trauma is to minimize TEWL by increasing the machinery needed for lipid synthesis and secretion. To date, TEWL is the most studied objective measure in defining differences between the skin of different ethnicities. The stratum corneum is made of keratinocytes embedded in a matrix of parallel lamellar membranes made of cholesterol, free fatty acids and glucosylceramides. The barrier repair mechanism relies on the synthesis and regulation of these three components, in equimolar concentrations as well as the natural moisturizing factor (NMF) made from the hydrolysis of the protein filagrin. The cohesion of corneocytes form the cornified envelope, while the lipid matrix provides the stratum corneum’s barrier function. A 1% increase in TEWL triggers multiple enzymatic functions to repair the barrier. Furthermore, stratum corneum homeostasis is also highly regulated by factors such as pH and calcium levels. Wilson et al. (17) demonstrated higher in vitro TEWL values in black compared with white skin using skin taken from 10 African American and 12 Caucasian cadavers matched for age and gender. A subsequent in vivo study by Berardesca and Maibach (18) supported the findings of the in vitro study by evaluating the difference in irritation between young black and white skin after the application of 0.5% and 2.0% sodium laurel sulfate, a water soluble irritant (surfactant), to untreated, preoccluded, and predelipidized skin. The data was quantified on the basis of WC, TEWL, and laser Doppler velocimetry (LDV) of the stratum corneum. No statistical difference was found in irritation between the two groups on the basis of WC and LDV. However blacks had 2.7 times higher TEWL levels than whites (p < 0.04), suggesting that blacks in the preoccluded state are more susceptible to irritation than whites. This theory opposes the traditional clinical view, based on observing erythema (19), that blacks are less reactive to irritants than whites. Additional studies such as those by Kompaore et al. (20), and Sugino et al. (21) also found significantly higher TEWL values in blacks and Asians compared with whites. Berardesca and Maibach (22) used the same model to compare differences in irritation between Hispanic and white skin. Although there were no significant differences
in TEWL, Wc or LDV between the groups at baseline, the data showed higher values of TEWL, though not statistically significant, for Hispanics compared with whites after sodium laurel sulfate-induced irritation. The investigators noted that the reaction of Hispanic skin to sodium laurel sulfate resembled that of black skin when irritated with the same substance (18). Since skin pigmentation varies greatly within the Hispanic and black communities, the degree of skin pigmentation, according to Fitzpatrick’s model (23), could represent an important variable. This data, however, could not be reproduced in later studies by Berardesca et al. (24) who found no significant difference in vivo in TEWL between race or anatomic site in blacks, whites, and Hispanics, matched for age and gender. Skin sites that vary in sun exposure, dorsal and volar forearm, were used to highlight the protective effects of melanin from ultraviolet-induced damage. Ethnic differences in skin conductance (blacks > whites) and skin elasticity were found. However, even though the investigators expected a higher TEWL in blacks, on the basis of previous studies (17,18) and on the basis of a higher Wc (skin conductance) in blacks found in their current study, no significant difference in TEWL was found between races or anatomic sites. They accounted for the higher Wc in black skin with no ethnic differences in TEWL on the basis that black skin might have increased intercellular cohesion (5) and increased lipid content (25), which retains the water in the stratum corneum. The effect of skin pigmentation on TEWL, as opposed to race, was evaluated by Reed et al. (26) in skin types II to VI. Subjects with skin type V/VI required more tape strippings (66.7 ± 6.9) compared with skin type II/III (29.6 ± 2.4) to achieve the same TEWL, that is, skin type V/VI had increased barrier strength (integrity). These findings correlate with those of Weigand et al. (5) that black skin has more cell layers and increased intercellular adhesion. Furthermore, it was also found that water barrier function (measured by TEWL) in skin type V/VI recovered more quickly. This study demonstrates differences in stratum corneum barrier function between different skin types independent of race. Further studies by Berardesca et al. (27), Tagami et al. (28), Aramaki et al. (29), Astner et al. (30), and Pershing et al. (31), all highlight differences in TEWL and skin irritancy between Caucasian and non-Caucasian skin. While the data regarding TEWL are somewhat conflicting (17,20–22,26,27), there is increased evidence of reproducible differences among ethnic skin in TEWL, Wc, and skin irritancy. This data however does not fully validate the hypothesis that water barrier function depends on degree of pigmentation, as there has been no studies on barrier integrity in cases of acquired hyperpigmentation.
hypopigmentation. Furthermore, TEWL may vary under different pathologic and physiologic conditions such as disease, overall lifetime UV exposure, medication use, or filagrin mutation.

WATER CONTENT

WC is a measure of the hydration of the skin. WC can be measured by several methods including skin capacitance, conductance, impedance, and resistance. Using capacitance to measure WC is based on the high dielectric constant of water compared with other substances (32). Conductance is also based on the changes in the electrical properties of the stratum corneum when the skin is hydrated (33). Dry stratum corneum provides weak electrical conduction, while hydrated stratum corneum has a greater electrical field (32). Resistance is the reciprocal of conductance. In general, skin capacitance and conductance show similar behavior with regards to measuring WC of the skin, while resistance and impedance are opposite.

Possible sources of error or variation in measurement include sweat production, filling of the sweat gland ducts, the number of hair follicles, the electrolyte content of the stratum corneum, and artifacts from topically applied agents (33). Berardesca and Maibach compared WC by capacitance before and after topical administration of sodium laurel sulfate
in blacks and whites, and in another study, in Hispanics and whites (18,22). There were no significant differences in WC between blacks and whites at baseline or after sodium laurel sulfate-induced stress (18). In comparing Hispanics and whites, there was an increase in WC in Hispanics at baseline, but the difference was not significant; however, after sodium laurel sulfate application, they found a significant increase in WC in Hispanics compared with whites when a negative visual score (i.e., no erythema) was given for irritation (p < 0.01) (22). In reviewing the data, however, we found that although the mean values for WC in Hispanics were greater than in whites, the SD were also large. When an irritant reaction was visually detectable, the WC was proportionally increased in both races, eradicating a difference between them. Sugino et al. (21) measured WC with an impedance meter in blacks, whites, Hispanics, and Asians. They found that WC was highest in Asians compared with Caucasians, blacks, and Hispanics. The investigators correlated high WC with high ceramide and low TEWL values also measured in their study. Similar studies by Warrier et al. (34) examined WC by capacitance at baseline in 30 black and 30 white women aged 18 to 45 years. Black women had a significantly higher WC on
cheeks ($p < 0.05$), but there were no significant differences at baseline between blacks and whites on the forearms and the legs. They proposed that the difference found on the cheeks might be related to evidence of more elaborate superficial vasculature and more apocrine and mixed eccrine-apocrine glands in facial skin of blacks (35), as well as on differences in melanin content, the packaging of melanocytes, and their ability to prevent epidermal photodamage (36,37).

Manuskiatti et al. (38) found no differences in WC between black and white women, but did find that younger women had higher WC than older women. Similarly, Sivamani et al. (39) compared differences in friction coefficient, impedance, and amplitude/mean calculation of friction coefficient curves between Caucasian, African American, Hispanic, and Asian subjects. The authors concluded that there is little variation in volar forearm skin across gender, age, and ethnicity, providing an adequate site for testing of skin and cosmetic products. Finally, Grimes et al. (40) measured baseline moisture content on the inner forearms of 18 African American and 19 white women aged 35 to 65 years on the basis of capacitance. The study found no significant variation in baseline moisture content between African American and white subjects. The overall evidence points to similar WC in different ethnicities. However, these findings, by measuring skin capacitance, conductance, impedance and resistance, are difficult to interpret in terms of stratum corneum WC because other physical factors, such as skin microrelief, sweat production, topical agent
application, and the presence of hair on the measuring site, all of which can modify the quality of skin electrode contact (32). These confounding factors can play a role in the degree of WC and thus should be taken into consideration in future studies. CORNEOCYTE VARIABILITY Corneocytes differ in shape, thickness and spatial arrangement (41). In Caucasians, the surface area of corneocytes differs by body site (41,42) and age (41,43). It has also been demonstrated in Caucasians that corneocyte surface area is an important factor in the permeability of the skin to water loss and to percutaneous absorption of topically applied substances (41). Corcuff et al. (44) compared corneocyte surface area and spontaneous desquamation on the arms of white, black, and Asian age-matched subjects. No difference in corneocyte surface area was found between the groups. However, spontaneous desquamation (corneocyte count) was increased in blacks by factor of 2.5 compared with white and Asian skin (p < 0.001). The investigators felt that their findings were not consistent with earlier studies that showed increased intercellular adhesion (5) or increased TEWL (17,18) in black skin. This enhanced desquamation may partially account for “ashing” frequently seen clinically in black skin. In contrast, Warrier et al. (34) found the lower corneocyte desquamation on the cheeks and foreheads of blacks compared with whites and attributed this to possible differences in moisturizing properties of sebum. Since it is believed that corneocyte surface area varies by anatomic site in Caucasians (41), perhaps corneocyte desquamation also varies by site. Corcuff et al. (44) studied the upper outer arm, whereas Warrier et al. (34) examined the cheeks, forearms, and lower legs. Confounding factors in these studies not only include anatomic site but also relative outdoor humidity, topical agents applied to the skin, and climate. Similar studies by Manuskiatti et al. (38) revealed no differences in desquamation index between blacks and whites at all areas measured, except at the preauricular cheek (p < 0.02). Overall, they concluded that age and anatomic site, but not race, demonstrate a significant influence on skin roughness and scaliness. The studies by Corcuff et al. (44), Warrier et al. (34), and Manuskiatti et al. (38) provide contradictory conclusions. We believe future studies need to be done using similar sites and controlling for different climate, outdoor humidity, and skin care applied to the skin. BLOOD VESSEL REACTIVITY The cutaneous microcirculation plays a large role in skin physiology, irritation, delivery of drugs, and wound healing (45). Two techniques used to measure this are LDV and photoplethysmography (PPG). LDV is a noninvasive method that tracks the flow of red blood cells. It is based
on measurement of the Doppler frequency shift in monochromatic laser light backscattered from moving red blood cells. It detects the frequency-shifted signal and derives an output proportional to the number of erythrocytes multiplied by their velocity in the cutaneous microcirculation (45,46). LDV has been used in many fields including those of understanding skin disease such as Raynaud’s and scleroderma, the testing of irritancy of topical drugs, cosmetics, detergents, cleansing agents, and industrial products as well as understanding the effects of drugs such as vasodilators, sunscreens and topical corticosteroids (45). PPG can be defined as the continuous recording of the light intensity scattered from a given source by the tissues and collected by a suitable photodetector (47). Specific to the skin, it allows the registration of changes in the dermal vasculature and is synchronized with heartbeat. Infrared light from a transducer is absorbed by hemoglobin, and the backscattered radiation is detected and recorded. The backscattered light depends on the amount of hemoglobin in the skin, and the result obtained will therefore reflect the cutaneous blood flow (45). Guy et al. (48) evaluated blood vessel reactivity in agematched black and white subjects using LDV and PPG. They found no significant difference between the ethnic groups. Similarly Berardesca and Maibach (18) performed a study to determine the difference in irritation between young black and Caucasian skin after the application of 0.5% and 2.0% sodium laurel sulfate to untreated, preoccluded, and predelipidized skin and then quantified the resulting level of irritation using LDV, TEWL and WC of the stratum corneum. There were no significant differences between black and white skin for LDV at baseline or after application of sodium laurel sulfate. The authors did note, however, that in blacks, application of the 0.5% sodium laurel sulfate to untreated skin revealed minimal changes in cutaneous blood flow (as measured by LDV) compared with baseline. They used this finding to explain the decreased irritant-induced perceptible erythema in blacks (49). Berardesca and Maibach (22) used the same model to compare differences in irritation between Hispanic and Caucasian skin. This study also revealed similar blood vessel responses between the two groups. In a subsequent study, Berardesca and Maibach used LDV to measure ethnic differences induced by corticosteroid application (a vasoconstrictive stimulus) (50). They examined six black and eight Caucasian men, matched for age, and measured cutaneous hyperemia using LDV, before and after the application of 0.05% clobetasol ointment to the forearm. In their analysis, black subjects showed a 40% decreased area under the curve response (p <
0.04), a 50% decreased peak response (p < 0.01), and a decreased decay slope after peak blood flow (p < 0.04) compared with the whites. Overall, their data were consistent with a decrease in blood vessel reactivity of blacks compared with whites. Gean et al. (69) also found differences in blood vessel reactivity between different ethnic groups; the investigators observed that the area under the curve for LDV response versus time was greater in blacks than Caucasians after application of methyl nicotinate (a vasodilator) (p < 0.05). This contrasts with prior studies, which found either no difference (18,48) or a decrease (50) in the area under the curve response in blacks. Note, however, that in this study a vasodilator (methyl nicotinate) was given, whereas in the prior study by Berardesca and Maibach (50) a vasoconstrictor was given. They also found that the area under the curve response versus time was greater in Asians compared with Caucasians for higher dose levels of methyl nicotinate (p < 0.05). Finally, a similar study by Kompaore et al. (20) revealed ethnic differences in time to vasodilation whereas studies by Aramaki et al. (29) and Hicks et al. (40) found no difference in baseline ethnic skin blood vessel reactivity. Differences in racial/ethnic blood vessel reactivity do exist. However, since each of the above studies administered different vasoactive substances that may act on different receptors on blood vessels, they could not be objectively compared (51). Furthermore, comments summarized by Hicks et al. (40) and others reveal that small changes in the position of the measuring probe and anatomic site can produce significant changes in measurements and may result in decreased reliability of results.

ELASTIC RECOVERY/EXTENSIBILITY The data on skin elastic recovery and extensibility vary by anatomic site and by race. Age is also a large confounding factor. Berardesca et al. (24) evaluated elastic recovery and skin extensibility, on the dorsal and volar forearm in blacks, whites and Hispanics by applying a torque parallel to the skin’s surface and quantifying skin extensibility and the time required for the skin to return to its original state after release of the torque. There were no significant differences between the races with respect to extensibility. However, elastic recovery was 26% less in blacks compared with whites on the volar forearm (p < 0.001). There was no significant difference in elastic recovery between whites and Hispanics. The authors suggest the difference is due to greater actinic damage in whites compared with the photoprotective melanocytes in blacks. This conclusion can also be drawn because within each race as there were significant differences between dorsal and volar forearms in Hispanics and whites (dorsal < volar) (p < 0.0002 and p
but extensibility was the same on both sides of the forearm in blacks likely due to the photoprotected volar surface of the forearm. Finally, skin elasticity overall is defined as elastic recovery divided by extensibility. The investigators found no significant differences between the races with respect to this ratio. Contradicting this study, Warrier et al. (34) examined elastic recovery in black and white women and found no significant difference between blacks and whites on the legs, but elastic recovery on the cheeks was 1.5 times greater in blacks than in whites (p < 0.05). Warrier et al. (34) explained their findings of higher elastic recovery on the cheeks of blacks on the basis of the higher WC in the same anatomic area, thus presumably resulting in a higher elastic deformation. These conflicting studies are outlined in Table 44.3, however further studies with more standardized methods are warranted to be able to draw further conclusions. pH GRADIENT The pH of the skin plays a crucial role in skin homeostasis and barrier recovery mechanisms. Ethnic differences in pH have been studied, but only until recently has pH been elucidated to play a role in melanosome reactivity. In a study by Elias et al., stratum corneum pH, permeability barrier homeostasis, and SC integrity in three geographically different populations with pigment type I/II versus IV/V skin were evaluated. Type IV/V subjects showed (i) lower surface pH (approximately 0.5 U), (ii) enhanced SC integrity (TEWL change with sequential tape strippings), and (iii) more rapid barrier recovery than type I/II subjects. The authors concluded that enhanced barrier function may be due to increased epidermal lipid content, increased lamellar body production, and reduced acidity, leading to enhanced lipid processing. In type I/II skin, there is decreased barrier integrity due to increased serine protease activity, resulting in accelerated des
moglein-1 (DSG-1)/corneodesmosome degradation. In contrast, DSG-1-positive corneodesmosomes persisted in type IV/V subjects, but because of enhanced cathepsin-D activity, SC thickness did not increase. Additionally, an increase of acidity of type I/II skin to that equal to type IV/V skin improved epidermal function. The most intriguing aspect of this study illustrated that dendrites from type IV/V melanocytes were more acidic and transfer more melanosomes than those from type I/II subjects. This could suggest that melanosome secretion could contribute to the more acidic pH of type IV/V skin (53). In contrast, Berardesca et al. (27) also examined differences in pH in skin types I/II and skin type VI women at baseline and after tape stripping. They found no significant differences between the two races in pH at baseline. After tape stripping, however, they found a significantly lower pH in blacks compared with whites after three tape strippings, but no significant differences after 9, 12, and 15 strippings. Thus, there was a lower pH in black skin compared with white skin in the superficial layers of the stratum corneum, but not in the deeper layers. The investigators stated that the data were difficult to
explain. It was hypothesized that since the TEWL was also found to be increased after three and six tape strippings, the increased TEWL might allow for an increase in the hydrogen ion concentration in a normally hydrophobic stratum corneum. Of note, although the difference between the races in pH was not significant at deeper layers of the stratum corneum, the pH in both races did decrease with more tape strippings, but TEWL did not follow the same trend. Thus, an increase in TEWL does not fully explain the findings in pH. Warrier et al. (34) also included pH in their study of 30 black and 30 white women; however, they only examined pH at baseline, not after tape stripping. There was a decreased pH on the cheeks of blacks compared with whites, pH \(\approx 5.15 \) versus p \(\approx 5.52 \), respectively (p < 0.05). There was also a decreased pH in blacks on the legs, but the difference was not significant. The authors attributed the decreased pH in blacks to a higher number of sweat glands secreting lactic acid and dicarboxylic amino acids in sweat secretions (35,54). Similar results, though not statistically significant were also produced in the study by Grimes et al. (55). The skin pH, measured above the left eyebrow in African American women was found to be lower than in white women. These studies, also highlighted in Table 44.3, highlight the well described phenomenon of lower pH in blacks compared with
whites. However pH changes in the skin can be attributed to multiple causes, among them, genetics, environment, ultraviolet radiation, aging, atopic dermatitis, oral glucocorticoids, disease, diet, stress, and humid or dry environments. The highly regulated barrier function of the stratum corneum is intricately linked to its pH and alterations thereof could also explain racial differences in skin barrier function and irritancy. LIPID CONTENT Ethnic differences in skin lipid content have been very contradictory. This is likely due to discrepancies in the literature highlighting lamellar membrane lipid content (ceramide, cholesterol, and free fatty acids) and the quantification of those lipids and that of sebaceous gland sebum production. The greater the cohesion of the corneocytes, the greater the WC of the stratum corneum occurs, assuming the same TEWL. Sugino et al. (21) studied WC (by impedance), TEWL, and ceramide levels in black, white, Hispanic, and Asian subjects. Ceramide levels were 50% lower in blacks compared with whites and Hispanics but WC levels were highest in Asians. (They did not document the ceramide levels of Asians because according to their hypothesis, Asians should have the highest ceramide levels.) Thus, they correlated high WC and low TEWL in blacks with high ceramide levels. In contrast, Reinertson and Wheatley (25) showed higher total epidermis lipid and sterol content in blacks compared with whites when evaluating abdominal skin from cadavers and living white and black subjects. Though the data is limited, epidermal lipid content plays a crucial role in barrier maintenance, homeostasis, and reaction to irritants. The discrepancy in the data may be due to the difficulty in quantifying the concentration of these lipids in the stratum corneum and the multiple confounders that play a role in the measurement of epidermal lipid content. Further studies are needed to elucidate these differences in ethnic skin and these differences may play a vital role in understanding disease mechanisms in the various skin types, including atopy and disorders of cornification. SEBUM CONTENT AND SECRETION Sebum is an exogenous lipid secreted on the skin surface by sebaceous glands (56). Not only does sebum help maintain the barrier and protect from irritants and friction, but it also is broken down by the skin microflora resulting in free fatty acids that help acidify the stratum corneum. Sebum levels decline...
l melanosome distribution,
l transepidermal water loss,
l pH black < white skin,
l variable racial blood vessel reactivity, and

l photodamage. Racial differences in l skin elastic
recovery/extensibility, l lipid content, l vellus hair
follicles, and l epidermal innervation. Racial differences
in l water content, l corneocyte desquamation, and l sebum
content and secretion.

a Labeled as “insufficient evidence for” racial differences
rather than “inconclusive” because only two studies or less
examined these variables.

Source: Adapted from Ref. 52.

INTRODUCTION

With the advent of the 20th century, fat reduction, cellulite removal, body sculpting, face and neck rejuvenation, hair loss, alopecia, pain management for sports injuries, tendonitis, bursitis, and osteoarthritis have been approached with minimally invasive medical techniques. One modality that was first introduced in 1952 by Dr Michel Pistor, a French physician, is called mesotherapy. In his small village of Bray-Lu, France, Dr Pistor attempted to abort an acute asthma attack in a patient by administering 10 mL of procaine intravenously. While the
treatment did not ameliorate the patient’s respiratory status.

upon follow-up, the patient reported a significant improvement

in his impaired hearing. Soon thereafter, Dr Pistor began experimenting with superficial injections of procaine around the ears of hearing-impaired patients and experienced some success (1). With this new knowledge, he moved to Paris, and in 1958, presented the first publication on the subject, wherein he proposed the name “mesotherapy” for this procedure. In 1964, his professor and friend, the medical surgeon Lebel, invented the small needle that carries his name and recommended the creation of The French Society of Mesotherapy, which Pistor started that same year (2). Mesotherapy is derived from the Greek words mesos meaning “middle” and therapeia, “to treat medically.” It is a form of treatment that involves injecting tiny amounts of a substance into the mesoderm, which is the embryonic middle layer located between the ectoderm and endoderm. Depending on the indication, each session may involve several injections administered at various skin levels by syringe or specially engineered delivery guns. It is thought that the injection of certain substances can either dissolve underlying fat or cause healing by other mechanisms. It is virtually painless,
requires

no postoperative recovery time, heavy bandages or girdles, and

anesthesia. The injected solution is individually prepared

depending on its purpose and is administered directly to the

desired area. This limits side effects, reduces the

possibility of

drug interactions, and allows for a substantial reduction in the

amount of medicine utilized for each procedure. Although

other surgical procedures may require one to two weeks of recovery, patients undergoing mesotherapy have no disrup
tions in their daily activities. The first international conference on mesotherapy took

place in 1976. At that same year, mesotherapy was first used in

in-patient settings in France. In 1981, Dr Jacques Le Coz

introduced mesotherapy at the orthopedic clinic of the Institut

1987, the French Academy of Medicine officially recognized

mesotherapy as a legitimate treatment modality within con

ventional medicine (3). Mesotherapy was popularized for medical therapy in Europe and South America as a method of utilizing cutaneous injections containing a mixture of compounds for the treatment of local medical and cosmetic conditions. Although mesotherapy was traditionally employed for pain relief, its cosmetic applications as a form of fat and cellulite removal have recently received attention in the United States. Mesotherapy received its initial advance into the American consciousness when a popular American singer cited that mesotherapy, combined with a comprehensive diet and exercise work. Dr. Lionel Bissoon,
an osteopathic physician, was responsible for her dramatically improved appearance (4). “Wellness centers” and “medical spas” in the United States have embraced mesotherapy as a novel treatment for cellulite, fat loss, and photoaging (5). Mesotherapy has been categorized depending on the objective, depth of injection, and the kinds of solutions to be used. Handog and Legaspi-Viscerra defined Mesolift as a mesotherapy procedure that helps decrease wrinkles and “crepe skin” in the facial and décollete’ areas, improve skin tone and texture, enhance skin contour, and subtly lift sagging skin in the face and neck. It may not be a substitute for face lift, but it offers an alternative method for facial rejuvenation. A combination of hyaluronic acid, highly concentrated vitamins, trace elements, coenzymes, amino acids, and antioxidants is delivered into the skin to nourish and rejuvenate, promote production of collagen and elastin, and stimulate metabolism. This is aimed at improving blood circulation in the skin, further strengthening its structure and restoring its firmness (6). To even out skin color and improve complexion, specific cocktails of vitamins and antioxidants are utilized. This is called Mesoglow. Dull skin turns healthy and glowing. Collagen and elastin production are expected benefits of the antiaging ingredients (6). The injection of phosphatidylcholine singly or in combination to effect weight loss, to remove localized adiposities, cellulite, and contour-specific undesired fat pockets, is called Mesosculpt. The face, neck, abdomen, thighs, buttocks, and arms are areas that can benefit from Mesosculpting (Fig. 46.1) (6). An alternative to liposuction, mesolipotherapy, which is by far the most popular mesotherapy procedure, can be used to contour the different parts of the body. It works by removing fat from adipose tissue without completely destroying it. Phosphatidylcholine is the most thoroughly researched medication used in mesolipotherapy (7). Vedamurthy reports a needleless mesotherapy technique using ultrasound or iontophoresis that delivers mesotherapy products. Although this is practically painless, there is only 20% efficacy as compared with the traditional mesotherapy (8). SCIENTIFIC RATIONALE Pistorian Reflex Theory There are a number of theories proposed to explain how mesotherapy could possibly work. According to Dr. Pistor, the direct pharmacological action of the drugs administered locally or regionally is not enough to explain the results obtained in pathologies, which is located in the deep organs. He thinks that the skin could be a projection of different internal locations of deep organs, which can be mapped out as in acupuncture. This suggests a correlation between a pathology and its cutaneous...
representation. According to this reflex theory, mesotherapy has an inhibitory stimuli originating at the dermal level. This interrupts the visceral-medullar-cerebral path at the lateral medullar level where the vegetative system is connected to the cerebral-spinal system. These inhibitory stimuli can be both mechanical, that provoked by the needle, and physiochemical-pharmacological, that which is due to the medicines administered through the needle. This represents a localized “shock” on the lateral-medullar sympathetic center. Lichwitz in his 1929 thesis showed that vegetative, medullar, and cerebral reactions maybe produced depending on the substance injected at the dermal level. Few chemical products and small doses may even be capable of producing significant results based on this concept (9). Bicheron’s Microcirculatory Theory Drugs administered locally or regionally may produce a stimulating effect on the local microcirculation. This may be altered by the lesion. Microcirculatory vascular damage may arise from a diseased organ, tendon, or articulation, which further aggravates the problem. Thermographic studies reveal alterations before and after treatment. This is the rationale behind mesotherapy’s actions in diverse pathologies such as cephalgias, rachialgia, degenerative osteoarticular disease, vascular acrosyndromes, or cellulite (10).

Mesodermic Theory This theory applies to the treatment of connective tissues originating from the mesoderm such as the skin, bone, and cartilage. According to the mesodermic theory, three units are involved: 1. The microcirculatory unit comprises of the small capillary and venous spaces that ensure blood interchange as well as the transport of the secretions from the connective tissue cells and the medications introduced via the mesoderm. Figure 46.1 (A) Patient before mesosculpture; (B) two and a half weeks after mesosculpture. Source: Courtesy of Dr Ma Encarnacion Lagañap-Vicerra.

2. The neural-vegetative unit is the element of the sympathetic system that exists in the dermis, which is responsible for achieving the regulation of the nervous system.

3. The immunological aspect unit consists of the connective tissue that generates defense zones with specialized cells, the plasmocytes and mastocytes. These cells respond to the penetration of a product through the skin, which explains the influence of mesotherapy on the immunological system (10).

Third Circulation Theory
There are three compartments: namely, the blood circulation as the first, the lymphatic system being the second, and the interstitial compartment, known as the third circulation, which is the area for mesotherapy. A process mediated by procaine, with its membrane-stabilizing action, in some way retards the passage of medicines to the lymphatic and venous capillaries.

Medications would be delivered through the interstitial space to the deepest tissues and reach the target site without loss due to absorption by vessels, hence achieving the highest concentration. This will explain how mesotherapy can have a therapeutic effect even with minimal doses (10).

Benefits and Advantages of the Method

Mesotherapy enhances therapeutic efficacy when treating diseases locally. It is possible to administer allopathic microdoses, hence reducing the required quantity needed. Since the required dose is lower than the conventional dose, this would mean lesser iatrogenic side effects. Overall, there will be fewer therapeutic sessions (11).

TECHNIQUES

Handog and Legaspi-Viscerra in the Handbook of Cosmetic Skin
Care, 2nd edition, enumerated the different techniques for mesotherapy. These include intraepidermal (tremor), superficial intradermic (multipricking), deep intradermic (point per point), and intrahypodermic. Intraepidermal techniques, intended for facial rejuvenation, refer to injecting the mesotherapeutic agents into the epidermis using rapid fine movements. A 13-mm needle (30G) is used for this injection technique. The needle is placed tangentially on the skin with the bevel facing upward.

Multiple small punctures on the epidermis at a depth not exceeding 1 mm are performed with quick synchronized flicking movements of the practitioner’s wrist. Mastery of the technique is important to prevent accidental skin abrasions and bleeding.

Mesotherapy injections at two-week intervals for a total of 10 treatments are recommended (7). Superficial intradermic or multipricking method, mainly used for treatment of cellulite, refers to the injection of mesotherapeutic agents into the dermis by multiple rapid injections using a 4 or 6-mm needle. It is also called superficial pricking “nappage bouncing” and was given the name “Parkinsonian sprinkling” technique by Dr. Pistor, who described a slight bouncing action of the wrist. The practitioner performs quick
needle pricks on the skin at a rate of 10 punctures/sec without dragging the needle on the skin between punctures. The punctures are spaced between 2 and 4 mm apart. Another method known as dry mesotherapy technique may be carried out without any substance in the syringe. This technique is used for chronic painful episodes or for treatment of rebound effects after a mesotherapy session. On the contrary, wet mesotherapy wherein there is a substance in the syringe may cause cutaneous stimulations by applying a few drops of an active substance on the skin before nappage. Mesotherapy injections done weekly for 10 to 15 visits are recommended. This may be tapered off to once a month for maintenance treatment (7). Another way of doing mesotherapy uses superficial injection utilizing point-by-point technique (PPP). In this technique, a traditional intradermal type of injection is done by injecting between 0.05 and 0.1 mL of a substance at each point. Nappage technique may be carried out on dry skin, followed by deposits of a few drops of the substance into it. The product is then massaged into the skin. Alternatively, a patch may be used. It is possible to use the last two techniques on children for microvaccination sessions (12). In the nappage technique, there are multiple injections on the skin to a depth of 0.5 to 2 mm with the needle placed at an angle of 45° to the skin. Nappage technique allows the injection of the medication into the target lesion based on the knowledge that normally only one-third of the dose will reach its target. The deep intradermal injection technique, used for arthritis and tendonitis, refers to the injection of mesotherapeutic agents into the dermis using a 4-mm needle directed to the areas that are inflamed (7). Injections are administered at a depth of 1 to 3 mm without papule formation, and the dosage can vary from 0.1 to 0.2 mL per point. Intrahypodermic injections, used for low back pain or musculoskeletal pain, refer to the injection of mesotherapeutic agents into the subcutaneous layer using a 13-mm needle (7). Injections can vary in depth from 4 to 13 mm depending on the location. The various depths of the needle injections are based on the indications (12).

PRODUCTS There is no standardized formulation for mesotherapy, and active ingredients vary depending on indications. One of the ingredients most consistently used
for fat loss is a soybean lecithin extract, phosphatidylcholine. Initially it was thought that this was the responsible agent for the nonspecific lysis of cell membranes resulting in fat reduction. It can alter cholesterol and other triglyceride metabolism and appears to increase cholesterol solubility (13). However, recent data suggests that the cell lysis may in fact be due to the action of deoxycholate, a natural detergent used in these formulations to keep the phosphatidylcholine soluble in water. Other products available in the market may also be used in mesotherapy. The following substances are used for Mesolift and Mesoglow treatment. 1 Vitamin A acts by regulating the growth of epidermal cells and helps restore collagen and elastin. 1 Vitamin B5, which is involved in the cellular production of energy, is needed for hormone synthesis. 1 Vitamin C helps stimulate synthesis of collagen and inhibits synthesis of melanin. 1 Vitamin D is necessary for the synthesis of calcium. 1 Vitamin E, being an antioxidant, fights the formation of toxic peroxides. 1 Vitamin K plays a major role in regulation of microcirculation. 1 Amino acids are the basis of tissue architecture of the skin. 1 Silica is important in maintaining the ceramide matrix. 1 Zinc protects against free radicals and is needed in the body repair process. 1 Coenzyme Q10, an antioxidant, protects against free radicals and assists in energy production and healing. 1 Cytokines Epidermal Growth Factor (EGF), Basic Fibroblast Growth Factor (BFGF) stimulate the cell functions of aged skin. 1 Copper peptide increases the biosynthesis of collagen and elastin. It also increases the body’s natural tissue building process and helps firm, smooth, and soften the skin. Nucleic acids stimulate synthesis while the reducing agent glutathione acts as a super antioxidant. Superoxide dismutase prevents melasma, while Argireline helps in wrinkle reduction. A number of solutions are being used for Mesosculpt.

1 Phosphatidylcholine, derived from natural soy lecithin, is an excellent fat burner altering the metabolism of fatty substances like cholesterol and triglycerides in the body.

1 Hyaluronidase is being used in combination with other injectable drugs to increase their absorption and dispersion. It breaks down hyaluronic acid and may help to break down the connective tissue bands that create the dimpled appearance of cellulite.

1 L-Carnitine is required for fatty acids to be delivered into the cells where the fat can be burned as a source of fuel.
Artichoke acts as a diuretic and stimulates the lymphatic draining system. When used in crude form (20 mg/mL), it can cause local necrosis.

EGCG (epigallocatechin gallate), another antioxidant derived from green tea, inhibits an enzyme that destroys norepinephrine. It increases metabolic rate and uses fat as energy source.

Caffeine is an alkaloid that increases blood flow and stimulates the fat cells to release fat to the blood stream to be burned by the body’s metabolism. It acts to drain the fat cells and tightens and tones the skin.

Aminophylline stimulates the release of fat into the bloodstream. It is as effective as caffeine, although less stable and must be kept in a cool place.

Yohimbine (Iombina), an alkaloid found in the inner bark of a tree growing in South Africa, Corynanthe yohimbe, is excellent for targeting localized fat. It is an α2 antagonist having a lipolytic effect and potentiating β-receptor activation. It has been primarily used for lower body fat in females and abdominal fat in males.

Triiodothyroacetic acid is an excellent fat burner. Phosphatidylcholine and deoxycholate act as detergents causing adipose cell walls to dissolve and break down, thereby leading to shrinkage of fat cells. The immune system removes cellular debris from the broken cell wall. The body excretes it through the lymphatic system (12).

OTHER PRODUCTS Organic silicium acts by increasing collagen production. CRP 1000 has cytokines for cellular stimulation and copper peptide that improves collagen and elastin synthesis. Hyaluronic acid is a substance that improves hydration. A number of chemicals acting as antioxidants and are claimed to decrease pigmentation are also currently being used for mesotherapy. These are glutathione, ascorbic acid, glycolic acid, and calcium pyruvate. Chemicals used to stimulate hair growth like butomedial, minoxidil, and finasteride are other options. Vitamin C is used for hyperpigmentation and melasma and acts as an antioxidant and helps in collagen and elastin production. Vitamin A used as antiaging treatment to improve fine lines, biotin used in the treatment of alopecia, and minerals such as copper peptide used for increasing the skin elasticity are also being utilized for this procedure. Antibiotics, caffeine, aminophylline, carnitine, hormones such as calcitonin and thyroxin, β-agonist, ephedrine,
isoproterenol, enzymes such as collagenase and hyaluronidase, and herbal extracts are likewise being used. INDICATIONS The general indications of mesotherapy include the following: 1. Sports injuries: Arthropathy, muscle tear, stress fractures, tendon strain, meniscal tear, plantar fascitis, tendon calcification, tendon degeneration, and tendon strain. 2. Chronic painful conditions: Bone spurs, carpal tunnel syndrome, chronic low back pain contractures, degenerative arthritis, fibromyalgia, frozen shoulder, ulnar neuropathy, degenerative arthritis, gout, herniated disc pain, and neuralgia. 3. General medical conditions: Allergies, alopecia, asthma, autoimmune disease, bronchitis, coronary insufficiency, degenerative arthritis, obesity, vascular insufficiency, and vertigo. 4. Skin conditions: Acne, alopecia, cellulite, contusions, eczema, keloids, male/female hair loss, obesity, scar, telangiectasia, vitiligo, wrinkles, and hyperpigmentation (6). The aesthetic indications of mesotherapy include face and neck rejuvenation, improving skin texture and appearance, firming the skin, wrinkle treatment, cellulite and “dimpled” skin, localized adiposities, body sculpting, and hair loss or alopecia (6). Other benefits of mesotherapy include improved blood flow to the area, removing fibrotic hardened connective tissue, improved lymphatic drainage, no downtime. CONTRAINDICATIONS The contraindications to mesotherapy are observed in patients who are pregnant or breast-feeding; insulin-dependent diabetics; patients suffering from or with a history of cancer; patients with blood dyscrasias; patients receiving anticoagulants; and patients on multiple heart medications, with cardiovascular disease, or with previous history of cardiovascular accident. ADVERSE REACTIONS/COMPLICATIONS Mesotherapy, in general, has very few side effects. Because mesotherapy is administered directly to the desired area, it is believed that side effects are limited or reduced. Patients undergoing mesotherapy may resume their normal activities immediately. Unlike liposuction, mesotherapy does not require restrictive garments and usually causes only slight bruising that resolves in one week (Fig. 46.2). Swelling from mesotherapy is mild and lasts a day or two, and some patients may notice slight itchiness or soreness for two to three hours after the procedure. Adverse effects depend on the product used. Skin necrosis can occur due to the irritant effect of the chemicals used.

Liver toxicity and demyelination of nerves have been reported with large doses of phosphatidylcholine. Atypical mycobacte
rrial infection is a rare complication at injection sites necessitating antimycobacterial therapy. These reports were largely due to nonsterile techniques. Infections may become a serious problem because the drug is not being administered by physicians. Localized adverse events have included irregular contours and tender subcutaneous nodules. Urticarial and lichenoid reactions to the injected medications as well as mycobacterial infections have been reported in the literature. Systemic side effects of phosphatidylcholine include mild transient elevations in liver function tests and rare cases of nausea and vomiting after injections of high volumes. Additional side effects of mesotherapy include immediate or delayed allergic reaction to the injected drugs or solutions.

For example, lecithin is known to cause inflammation and swelling, skin infections, pigmentation at the injection site, bruising at the injection site, ulceration and scarring at the injection site, and panniculitis. Davis reports two cases of noninfectious granulomatous panniculitis following mesotherapy injection. In the first case, the injection solution contained deoxycholate, and in the second case, the injection solution was unknown. In both cases, accumulation of deoxycholate results in a granulomatous reaction.
cases, the solutions were administered by multiple injections to the subcutaneous adipose. Within two months, both patients developed numerous erythematous to violaceous, tender, subcutaneous nodules at the injection sites. All tissue cultures were negative. One subject improved with dapsone treatment, while the other with etanercept. Permanent hyperpigmented scars persisted in both individuals (14). Mesotherapy has recently become an advertised method for the treatment of different types of alopecia despite the lack of any data regarding its efficacy and possible side effects. The substances injected into the scalp include “cocktails” of natural plant extracts, homoeopathic agents, vitamins, vasodilators, and drugs that may stimulate hair growth, such as finasteride and minoxidil. Duque-Estrada et al. report two cases of patchy alopecia that developed after mesotherapy for the treatment of androgenetic alopecia (15). Outbreaks of rapidly growing mycobacteria have been occasionally described. The article reports an outbreak of cutaneous abscesses due to Mycobacterium chelonae following mesotherapy in Lima, Peru. From December 2004 through January 2005, 35 subjects who had participated in mesotherapy training sessions presented with persistent cutaneous abscesses. Thirteen (37%) of these suspected cases underwent complete clinical examination. Skin punch biopsies were collected from suspicious lesions, and substances injected during mesotherapy were analyzed. Suspected cases were mainly young women, and lesions included subcutaneous nodules,
abscesses, and ulcers. M. chelonae was isolated from four patients and from a procaine vial. It has been concluded that it is important to consider mesotherapy as a potential source of rapidly growing mycobacterial infections (16). Carbonne et al. describe an outbreak of severe subcutaneous infections due to nontuberculous mycobacteria following mesotherapy. Epidemiological studies and molecular comparisons of M. chelonae strains from different patients and the environment suggested that contamination may be associated with inappropriate cleaning of the multiple-injection device with tap water (17). Mesotherapy is a popular procedure that poses risks that include scarring, contour changes, and bacterial infections. Beer and Waibel report a case of mycobacterial infection from M. cosmeticum resulting from mesotherapy. This infection should be considered when a patient consults with a mesotherapy complication, and the possibility of developing mycobacterial infections should be discussed with the patient prior to the procedure (18). Mesotherapy consists of cutaneous injections of a mixture of compounds and has recently been used for cosmetic purposes to reduce local fat and cellulite. To date, several reports have described only local adverse events related to this therapy. Danilovic et al. describe the first report of a female patient who developed thyrotoxicosis due to cosmetic mesotherapy with triiodothyroacetic acid in its formulation. A disturbance of type III deiodinase activity or skin fibroblast paracrine function and vascular alterations related to simultaneously injected vasoactive compounds were observed apart from the mechanical rupture of the epidermal barrier. These findings could be related to thyroid hormone metabolite absorption and systemic consequences in the reported case. This case of factitious thyrotoxicosis induced by mesotherapy was reported to raise awareness of a systemic adverse effect resulting from this widespread cosmetic practice (19). Kadry et al. report a case of multifocal scalp abscess with subcutaneous fat necrosis and scarring alopecia as a direct result of mesotherapy requiring extensive surgical repair (20). Panniculitis is a rare adverse reaction to mesotherapy that may result from injection pressure, local trauma, or the type of injected substances. Tan et al. report a case of mesotherapy-induced panniculitis successfully treated with dapsone. This case shows that one of the potential adverse effects of mesotherapy is panniculitis and suggests that dapsone is an effective treatment for this condition (21). Infectious complications following mesotherapy are usually due to ordinary bacteria or atypical mycobacteria. MarcoBonnet et al. report two new cases of mycobacterium bovis BCG infections following mesotherapy. A 52-year-old
A woman developed vaccinal MERIEUX BCG cutaneous abscesses following mesotherapy. Identification was made by a novel class of repeated sequences using mycobacterial interspersed repetitive units. Although patient received prolonged antituberculous treatment, this complication persisted.

Figure 46.2 One complication of mesotherapy is bruising and swelling. (Reproduced from Rotunda AM, Kolodney MS. Mesotherapy and phosphatidylcholine injections: historical clarification and review. Dermatol Surg 2006; 32:465-480.)

Transdermal drug delivery does not mechanically penetrate as deeply. A major barrier in transdermal drug delivery is the stratum corneum. It is the outermost layer of skin that is approximately 15 mm in thickness and is composed of keratinized dead cells. Transdermal drug delivery systems aim to bypass the stratum corneum since it is usually the rate-limiting barrier in transdermal delivery. The stratum corneum is lipophilic in nature and is resistant to the passage of hydrophilic substances or the passage of molecules that are larger than a few hundred daltons. In general, three different approaches are taken to bypass the stratum corneum (1). The first approach is to depend on passive diffusion of topically applied products, and this in principle is utilized by many of the transdermal patches. A limitation to this approach is that only drugs that are low in molecular weight and lipophilic are best suited. The second approach is to actively aid drug movement during topical application. This is done through temporary disruption of the stratum corneum, acceleration of drug travel time, or a combination of both. Some examples include the use of liposomes and iontophoresis. The third approach is to create physical conduits or channels through the stratum corneum, as is done by microneedles. Microneedles are miniature needles that are created using lithographic techniques. Most are designed to penetrate the stratum corneum and enter into the epidermis without entering the underlying dermis. By doing so, they avoid nerve endings in the dermis, rendering insertion painless (2–6).

Microneedles come in several different designs, including out-of-plane and in-plane microneedles (7). Out-of-plane needles are designed such that the microneedle is perpendicular to the surface (Fig. 47.1). In-plane microneedles are parallel to the surface but are more difficult to place into arrays. Because cosmetic applications have focused on the out-of-plane microneedle, this chapter will review their use in cosmetics. In-depth discussions of in-plane microneedles can be found elsewhere (8). One exception is where in-plane microneedles are used to develop out-of-plane microneedle sheets, which are then converted into a microneedle roller (9). Microneedle rollers have been used for cosmetic applications and will be discussed later. Out-of-plane microneedles are further subdivided into solid and hollow microneedles. Solid microneedles do not have an internal conduit for infusion of drugs and are used to either create physical holes in the stratum corneum or to coat the microneedle such that the drug is delivered from the surface of the microneedle upon insertion. Hollow microneedles have a conduit (Fig. 47.1), and this allows for either bolus or continuous
infusion after the microneedle is inserted (Fig. 47.2). Although the first microneedles were fabricated from a silicon surface, the design strategies have evolved to include fabrication from metal (10), titanium (11,12), glass (13-15), polymers (9,14,16-19), and even sugars (3,16,20). MICRONEEDLE STRATEGIES FOR DRUG DELIVERY The strategy for drug delivery depends on the design of the microneedle. Because solid microneedles do not have an internal conduit, they cannot be used to infuse drug through the needle. Instead, solid microneedles are used in three different strategies. The first strategy is to create micropores in the stratum through insertion and removal of the microneedle array, and it has been shown that these pores remain open for up to 24 hours before they close (6). Drug solutions can then be applied topically such that they can traverse these transiently open channels to bypass the stratum corneum, and some studies have utilized iontophoresis to accelerate movement through these transiently open channels (21-23). A second strategy is to coat microneedles with a drug prior to insertion. The third strategy is to create dissolving microneedles that dissolve upon insertion to deliver a drug payload. The strategy of coating microneedles or encapsulating a drug payload into a dissolving microneedle is limited to drugs that are stable to undergo the coating or encapsulation process (24). Hollow microneedles have an internal conduit and can be used to infuse drugs as a bolus (25,26) or as a continuous infusion (27) after insertion. Utilizing these various strategies, microneedles have been employed to deliver vaccines (28-30) or drugs in animals, including insulin (10,14,27,31,32), erythropoietin (16), desmopressin (11), and methotrexate (33). In vivo microneedles investigations in humans have shown their ability to inject nicotinic acid derivatives through hollow silicon out-of-plant microneedles (25,26) and insulin through a hollow glass micropipette tip (34).

COSMETIC USES

Solid Microneedles

Several studies have investigated the use of solid microneedles (Table 47.1) in cosmetics. Two microneedle-based devices are available commercially, which include the Dermaroller 1 and the MTS-Roller TM. Their applications have included the
increased penetration of topical hair growth products, photodynamic therapy, and a claim to stimulate collagen reformation. One study evaluated the use of a polymer-based micro needle roller to enhance the topical delivery of L-ascorbic acid for hair growth. In this study, the strategy employed was to create microchannels and then topically apply L-ascorbic acid. They showed that, in mice, the use of microneedle roller could enhance cutaneous permeation by approximately 10-fold and that this enhanced hair growth in mice (35). No human studies have investigated the use of microneedle rollers to facilitate delivery of hair growth molecules. Photodynamic therapy (PDT) frequently requires the local application of a photosensitive drug in conjunction with incident light to selectively destroy cells, presumably through locally generated singlet oxygen (36). In successful treatment of basal cell carcinomas (BCCs) with topical 5-aminolevulonic acid (5-ALA), patients required four to six hours of topical treatment time, and this was effective for lesions with a depth up to 1 mm (37). In particular, superficial BCC are more amenable to photodynamic therapy than other BCC subtypes that can extend deeper. In an attempt to more efficiently deliver topical photosensitive drugs, silicon microneedle patches were used to create transient microchannels in nude mice and deliver either 5-ALA (38) or meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate, a preformed photosensitizer (39). Both of these studies delivered the photosensitizing drug by placing a transdermal patch over the area that had been transiently perforated with a microneedle patch. Both studies found that

Figure 47.1 Out-of-plane silicon hollow microneedles. (A) Symmetric hollow microneedles are designed so that the opening is right at the
(B) Asymmetric microneedles are designed with the opening offset from the point of insertion.

Figure 47.2 Schematic of hollow out-of-plane microneedle injection. The ability of a substance to move from the skin surface into the stratum corneum is determined by k_1. The rate of movement from the lipophilic stratum corneum into the more hydrophilic epidermis is determined by the ratio k_3/k_2. Drug solutions injected by microneedle bypass the transitions indicated by k_1 and k_2. In the case of lipophilic drugs, some of the drug may partition back into the stratum corneum due to the "effective partition coefficient" k_3/k_2. Source: From Ref. 25. the photosensitizing drug was delivered in greater quantities, to a greater depth, and in a shorter time in comparison to sites that were not perforated with the microneedle patch. Advantages of microneedle-based therapy would be the use of less photosensitizing drug, less side effect profile, and increased depth of treatment. However, this will require more critical evaluation through clinical studies before the mice studies can be extended to human treatment.

Another commercially available microneedle device sold by Dermaroller S.a.r.l. (Germany) is the Dermaroller (40), which is a hand-held roller with rows of stainless steel, solid out-of-plane microneedles (Fig. 47.3). Two claims made regarding the Dermaroller are that it can be used to enhance transdermal drug delivery and to reorganize underlying collagen in the dermis (40). The first claim for enhancing transdermal drug delivery works on the strategy of creating transient microchannels in the stratum corneum to allow for topical delivery of various drugs, sera, or vitamins necessary for the particular cosmetic treatment. This is supported by a study that evaluated the use of the Dermaroller in human skin ex vivo to show that the use of the Dermaroller significantly enhanced transdermal drug penetration (41). Increased penetration was noted with an increase in the microneedle size. The second claim has less evidence as there are no published studies that analyze the underlying dermis after use of the Dermaroller. Interestingly, the Dermaroller is claimed to be painless, which by definition requires that the microneedles should not penetrate past the epidermis since it is the dermis that contains nerve endings. However, a claim that the microneedles could cause microinjuries to the dermis to
stimulate reorganization of the collagen would require penetration into the dermis and would stimulate the pain fibers in the dermis. Clinically, the Dermaroller leads to bleeding at the insertion and treatment sites. This indicates that the microneedles penetrate into the dermis since the epidermis does not contain blood vessels. It is likely that the Dermaroller penetrates into the dermis and causes pain, necessitating the use of anesthetics prior to use. Clinical studies will be necessary to further evaluate the claim of painless reorganization of the dermis. Another commercially available device sold by Clinical Resolution Laboratories, Inc. is the MTS-Roller, which is another roller composed of an array of microneedles similar to the Dermaroller. The MTS-Roller is used to create transient microchannels in the stratum corneum to deliver two proprietary formulas for wrinkles and for hair loss. However, no clinical studies are publicly reported regarding the use of the MTS-Roller for these indications. The company lists two studies of MTS-Roller for the stimulation of collagen reformation in the dermis and for comparative investigation against intense pulsed light (IPL) as a stimulus for collagen synthesis. Similar to the Dermaroller, the MTS-Roller is claimed to induce collagen reformation through injury to the dermis. Autologous platelet-rich plasma is obtained from the patient and then delivered to the treatment site to induce more collagen synthesis, but there are no published clinical studies to support or refute this claim. The MTS-Roller is claimed to be painless; however, the MTS-Roller likely reaches the dermis. Because the dermis contains nerve endings, a formal clinical study would better elucidate the mechanisms involved in the use of the MTS-Roller. Hollow Microneedles Only a few animal (27,42) and clinical (25,26,34) studies of hollow microneedles have been performed. Currently, there are no commercial cosmetic devices that utilize hollow microneedles. However, microinjection through microneedles offers many exciting opportunities including the injection of Botox, photodynamic therapy, localized stimulation of hair. Table 47.1 Studies of Microneedles Used For Cosmetic Treatments Device Material Type of study Use Notes Out-of-plane solid MN roller (35) Polymer In vivo animal study in rats Topical delivery of L-ascorbic acid through MN created microchannels 10-fold increase in permeation at MN treated sites Faster hair growth in MN treated rats Out-of-plane solid MN roller (Dermaroller) (41) Stainless steel Ex vivo human skin Topical delivery of radiolabeled mannitol through MN created microchannels 2to 10-fold increase in TEWL after MN treatment 300 to 500-fold increase in penetration after MN treatment Out-of-plane hollow microneedle patch (38,39) Silicon coated with
Titanium and platinum in vivo animal study in nude mice. Topical delivery of 5-ALA and a preformed photosensitizer (TMP) 3-fold decrease in time to reach the concentration of non-MN treated sites 2 to 3-fold increase in concentration of photosensitive drug delivered in MN treated sites. Abbreviations: MN, microneedle; TEWL, transepidermal water loss; TMP, meso-tetra (N-methyl-4-pyridyl) porphine tetrasoylate; ALA, aminolevulonic acid. Figure 47.3 Dermaroller schematic. Stainless steel microneedles are placed in a cylindrical arrangement. Source: From Ref. 41.

growth or hair loss, and localized melanin injection. Future research will determine the hollow microneedle's impact in cosmetic therapy. In particular, superficial and painless injections of Botox may be possible in light of the development of topical Botox delivery (43).

SAFETY OF MICRONEEDLES

One of the initial concerns with microneedles was the biocompatibility of silicon or glass, since there are reports of silicon and glass-related granulomas (44,45). Most microneedles are developed to only penetrate into the epidermis, and not the dermis. Therefore, any broken pieces of a microneedle will likely be discarded within four weeks, as this is the normal turnover time for the epidermis. In addition, microneedle fabrication is moving toward polymer and sugar-based synthesis since silicon is expensive when considering mass production for commercialization. The polymers and sugars are biocompatible and many are designed to biodegrade. As microneedle technology continues to move toward biocompatibility, micro
needle material-related toxicity will likely become less of a concern. The stratum corneum is also a formidable barrier against infection. Microneedles physically breach this barrier, raising the possibility for cutaneous infections. Channels created by solid microneedles are open transiently for 24 hours or less (6), and microneedles create a lower bacterial burden than injection with traditional hypodermic needles (46). Transient insertions of solid microneedles likely present decreased infectious risk as compared with the traditional hypodermic needle. However, the use of hollow microneedles for extended infusions may elevate the risk for infection. There are no studies of the infectious risk of long-term infusions with hollow microneedles, and the risk of cutaneous infections will need to be addressed in future studies.

CONCLUSION

The future of microneedle use in cosmetics is bright. With microneedles, it is now possible to transdermally deliver large peptides and molecules that would not have been possible previously. Because they are typically painless upon inser
tion, this can greatly increase patient comfort and acceptance.

Currently, cosmetics research has focused on solid microneedles, but this will likely broaden to hollow microneedles. Continued collaboration between bioengineers and dermatologists will be critical to the evolution and growth of the micro needle’s role in cosmetics.

Photodynamic therapy (PDT) is a therapeutic that has been used since the beginning of the 20th century to destroy tumorous skin lesions.

1903: von Tappeiner describes the first PDT with eosin and sun exposure to treat a carcinoma of inferior lip.

1913: Friedrich Metz-Beyer administers porphyrin to himself and becomes photosensitive.

1950: The absorption of porphyrin by cancerous cells that become photosensitive is highlighted.

1980: The interest for PDT increases but patient’s photosensitivity is an obstacle.

1993: Publication of the first clinical essay on a-aminolevulinic acid (ALA) in PDT.

1995: Registration of the first ALA-modified patent. This therapeutic had essentially developed in Northern Europe for the treatment of nonmelanocytic skin cancers. Then, PDT had expanded to other European countries and in Northern America in other indications than the ones dealing with skin carcinologic.

PRINCIPLE

The basic principle in cancer research lies in the
selective destruction of abnormal cells of target tissue by a chemical reaction

activated by specific light, while preserving normal skin structures. This reaction results from the fixation of a photosensitizing agent on tumorous cells followed by its activation by a floodlight of a light visible at appropriate wavelength. This activation is followed by a phototoxic effect created by an irreversible oxidation mechanism that destroys tumorous cells. The mechanism of this photochemical reaction is based on light effects on the photosensitizing molecule (1). To each kind of molecule matches a type of wavelength likely to be absorbed. In the basal state, this photosensitizing molecule presents an energy ground state (S0); under the effects of photons produced by the light, this molecule reaches a superior and unstable level of excitation. At this unstable level, the molecule holds an excess of energy that it quickly looses by three ways: heat liberation, fluorescence emission, and transition to a triplet intermediate stage. Turning back from this triplet stage to the basal stage is slow. It is during the triplet stage that the
photosensitizing molecule interacts with cells’ organelles; thanks to two mechanisms requiring the presence of oxygen in the targeted tissues:

Direct mechanism: Production of toxic-free radical. In that case, the photosensitizing is damaged.

Indirect mechanism: Transfer of energy to the oxygen. It fosters its transition to a singlet state able to oxidize amino acids, nucleic acids, and membranes’ cells lipids. This mechanism prevails; in that case, the photosensitizing returns to its basal state likely to be excited by the light anew.

Effects on Tissues Cellular damages caused by this oxidative stress essentially affect cellular membranes and organelles of cell (mitochondria, endoplasmic reticulum, plasma membrane). These deteriorations lead to cellular necrosis (2). Histological signs of necrosis (eosinophilic cytoplasm, hyperchromatic nuclei) appear within an hour after the lighting. This cellular necrosis is associated with apoptosis (3) phenomenon (cellular suicide). Apoptosis signs occur more lately; they can be seen 24 hours after the PDT. Three “actors” are necessary for PDT: A photosensitizing molecule, A light source, Oxygen.

Photosensitizing Several photosensitizing have been used at the beginning of the PDT, part of them were systemic sensitizing. These had no specificity and would lead to residual phototoxicity phenomena of the whole tegument imposing on patients extended ousting from visible light. Thus, to be easily used in dermatology, the photosensitizing requires specificities: To focus on tumorous cell, Can be activated by a light penetrating into the skin, To produce a significant amount of cytotoxic substances (free radicals and singlet oxygen), Can quickly be eliminated from the skin. The use of topical has been favored in dermatology. Most of them are five ALA drifts. In reality, ALA is not the photosensitizing. It is the precursor of an endogenous photosensitizing that physiologically exists in the skin and notably in keratinocytes: protoporphyrin 9 (Pp9). This porphyrin is an
intermediate stage in the heme synthesis chain (Fig. 48.1). Physiologically, some mechanism can auto regulate this heme synthesis by enzymatic systems, especially the ferrochelatase which transform Pp9 in heme. During an ALA or MAL excess supply these auto regulation mechanisms are overwhelmed and a cellular accumulation occurs. The accumulation increases in epidermic dysplasia (4,5). The intimate mechanism of this specific accumulation is not clearly solved. Several mechanisms are suspected: Intense penetration of the ALA in the epidermic dysplasia thanks to membranous modified transportation phenomena. Increase of the porphobilinogen desaminase activity Decrease of ferrochelatase activity Nowadays, two kinds of Pp9 precursors are used in skin PDT: amino levulinic acid ALA (Levulan 1, Kerastick 1) and its precursor methyl aminolevulinic acid (Metvix 1, Metvixia 1). These two drifts have different properties; the MAL is more lipophilic than the ALA, which awards it a better penetration in the skin. This indication will have an impact on the occlusion time necessary to the product to penetrate: 12 to 18 hours recommended for the ALA (Levulan) and 3 hours for the MAL (Metvix, Metvixia). Moreover, the specificity to the P9 accumulation in keratinocytes in differentiation is more important for the MAL than for the ALA, whereas for a healthy skin, the Pp9 production is much more important after the ALA application than after the MAL one (6). The systemic diffusion of MAL is less important than the one of ALA for the mouse (7). Photoactive porphyrin synthesis detected by fluorescence for the mouse decreases faster after the MAL application than after the ALA one (8). After 24 hours, the fluorescence induced by the MAL has nearly disappeared. As for the human healthy skin, the fluorescence decrease to 93.4% 6.1% 30 hours after the cream removal to 20% MAL (9). The depth of MAL penetration measured by the fluorescence intensity is estimated to 2 mm after three hours of occlusion (10). The Light Source It requires two characteristics: to activate the Pp9 to penetrate sufficiently into the skin to allow the destruction of the targeted lesions. The Pp9 activation spectrum consists of several stripes of color (Fig. 48.2) The maximal absorption stripe for which the Pp9 becomes more energetic lies in the blue at 410 nm, it is the Soret band. Other absorption peaks are of 510, 530, 580, and 630 nm, but they are less energizing (5). The light penetration in the skin depends on the wavelength of the light. The longer the length is, the deeper the penetration in the skin is. Thus, the blue penetrates in the stratum corneum, whereas the red penetrates until 2 mm in the skin reaching the dermis hypodermis limits. Red is preferred for the treatment of cancerous and precancerous lesions regarding
its better penetration into the skin. The merest absorption by Pp9 being countered by the use of a more important light energy. Several sources can be used: Sources of high energy LASERS are attractive as they are monochromatic and very energetic. Although the lightening scope size is narrow, the exposure time is very short. As the pulse dye LASER emits at 695 nm, it can be used to activate the Pp9.

Intense pulsed light (IPL) are very energetic polychromatic light sources. The light emission spectrum depends on the filters used, which allows to choose the inferior limit of the spectrum 550, 560, 580, and 590 nm. As for the LASERS, the exposure time to light is very short (of the order of millisecond kind), but, on the other hand, the lightening scope size is broader. Sources of low energy Slides projectors that emit between 570 and 1100 nm have been used by PDT pioneers. Xenon halogens (630 nm) and fluorescence lights emit narrow spectrum and have a good energetic capacity. The light-emitting diodes (LED) are the most frequently used. Their specificity is to emit on a very precise wavelength (variation between 5 to 10 nm). Those small diameter light bulbs are braced to one another to create lamps of which the surface is significant and the form adaptable to the targeted ski area. Their life span is long (10,000 hours) without any energy loss. They are even more attractive that they do not emit infrared and so have no thermal impact. Figure 48.1 Mechanism of action of ALA/MALA. Figure 48.2 Pp 9 activation spectrum. Should a high or low-energy source be chosen? A short lightening with a very strong energy will brutally activate the porphyrins, which will lead to an intense release of free radicals and of singlet oxygen responsible for the selective destruction of the targeted tissues. Nevertheless, Pp9 synthesis by keratinocytes recurs itself. Some authors advocate for the use of low energy light sources that allow a long lightening and a continuous activation of porphyrin, which ensure the emission of less
brutal and better distributed cytotoxic substances during the lightening (9). Some teams use low-energy sources made of LED (11). A recent study (12) compared MAL PT with LED (530 nm, 37 J/cm\(^2\)) versus MAL PDT with IPL (610–950 nm 80 J/cm\(^2\)) for the treatment of actinic keratosis, the patient being his own witness. Neither the complete remission rate at three months nor the cosmetic outcomes show a significant difference. On the other hand, the pain is less important with IPL as the lightening time is very short. There is no comparative study dealing with basal cell carcinoma (BCC) and Bowen disease. What kind of energy can activate Pp9 and lead to cell destruction? The amount of necessary energy depends on the Pp9 ALA or MAL precursor, its concentration and the lightening spectrum. The necessary energy had been evaluated for different topical depending on the intensity of the fluorescence visible in Wood light. Thus, the maximal fluence had been determined to obtain the maximal fluorescence. The latter will depend on the emission spectrum: the larger the spectrum is (so outside Pp9 absorption peaks), the more important the fluence will have to be. For
instance, for the MAL, the necessary energy is:

37 J/cm² for a narrow spectrum of 630 nm
75 J/cm² for a spectrum from 570 to 670 nm
85 J/cm² for a spectrum of 600 to 750 nm

For LED, halogens, and fluorescent lamps, several indications will have an influence on this fluence (J/cm²): the power of the lamp (mW/cm²), the distance between the lamp and the skin, and the lightening time.

Oxygen

It is brought by the blood circulation. Therefore, the elements fostering l’anoxie tissulaire will decrease the efficiency of the technique: cold, vasoconstrictors, sclerosis.

PDT INDICATIONS IN DERMATOLOGY

Validated Indications

They are at the center of studies allowing the registration of products. Today, only the MAL is registered in Europe since 2002 with the following indications:

1. Actinic keratosis
2. Nodular and superficial BCC when surgery is impossible
3. Bowen disease

Actinic Keratosis

Those precancerous lesions are common on photo-exposed field of scalp, face, hands, and forearms (Fig. 48.3). As
are often many on these areas, they create real fields of possible cancer development (Fig. 48.4). The annual rate of transformation of those actinic keratosis (AK) in squamous cell carcinoma can change from one extreme to another. According to authors, it ranks from 0.25% to 16% (13). All the studies had been done with the MAL, which is the only available product on the market. The studies done versus placebo (14) had shown a slightly superior efficiency on complete cure rate (the lesion having completely disappeared). The comparative studies had been made versus cryotherapy (15,16), which is the reference treatment. Cryotherapy was performed using nitrogen spray and a double-freeze-thaw cycle; the MAL PDT had been done regarding two protocols, either one session or two sessions with a week of interval. There was no significant difference in the complete response rate at three months and five years between cryotherapy and MAL PDT one session. The difference between these two techniques lies in the healing result. In studies (15,16), cosmetic outcomes are seen as excellent and good according to more than 90% of the investigators. In comparison to cryotherapy, cosmetic outcomes are seen as superior for the MAL PDT.

- The MAL PDT efficiency is significantly superior to the one of the placebo: the complete answer rate per patient and per lesion increases under MAL PDT.
- MAL PDT is as efficient as cryotherapy, reference treatment of KA.
- A single session of MAL PDT is efficient on AK lesions and can be renewed if necessary.
- The MAL PDT cosmetic outcomes are considered as superior as the cryotherapy ones.
- In majority, the MAL PDT treatment is considered as very
satisfactory by patients who had already been treated and is preferred to former treatments.

MAL PDT using red light is an appropriate alternative treatment for multiple actinic keratosis on large skin surface (Fig. 48.4). In its conclusion (13), the International Society for Photodynamic Therapy (IPDT) considers that PDT can be considered as a first intention treatment in the treatment of AK. Superficial BCC BCC are the most frequent tumors occurring in human. The superficial forms are the less aggressive and are considered as low-risk lesions outside the face H zone. Most of the time, these lesions are broad on the above or multiple with a risk of having significant of numerous scars after the surgical cure. PDT is a noninvasive treatment and the quality of its healing result has to be taken into account into the therapeutic decision-making process. A European multicenter study carried out in seven countries had compared the MAL PDT one session to cryotherapy (freezing of at least 20 seconds) in two groups of patients carrying BCC (17,18). The rate of complete answers at 3 months and at 30 months and 5 years per patient and per lesion did not show significant differences between the two groups. The healing quality assessed by investigators and patients is superior in the MAL PDT group. More patients had an excellent cosmetic outcome with PDT than with cryotherapy. Those recurrence rates are higher compared to surgery ones. That is the reason why it is better avoiding risky face areas. But PDT offers a best cosmetic outcome than a simple excision surgery (19). The PDT is a therapeutic alternative for the treatment of CBCs as surgery would be hard to perform because of the localization, the size, the number of lesions (Fig. 48.5), the pathologic state of the patient, or because the healing risk would be disproportionate for a low-risk lesion. The other advantage compared to other nonsurgical techniques such as cryotherapy, electro curettage is that it does not leave any scar, which is satisfying to the patient (Fig. 48.6). Moreover, in case of recurrence, PDT can be repeated and surgery remains possible, as there is no skin modification. In the superficial CBC treatment:

- The clinical efficiency of the MAL PDT is equivalent to the one of cryotherapy.
- This efficiency is maintained in an equal way after five years of follow-up for both treatments.
- The PDT cosmetic outcome is better than the one of cryotherapy. In its conclusions, the IPDT (13) considers
the PDT as an effective and reliable treatment option for BCCs that offers excellent or good cosmetic outcomes. PDT offers an advantage in the treatment of large, extensive, and multiple lesions. Photodynamic diagnosis fluorescence diagnosis (PDD) serves as a valuable noninvasive diagnostic and treatment tool. Following topical application of the photosensitizer, a large amount of Pp9 selectively accumulates in the neoplastic cells. When the skin is illuminated with a UVA light source (370–405 nm), the tumoral area shows a distinctive pink to red fluorescence on a background of blue light. This photodynamic diagnosis is useful to detect tumors but is not sufficient to evaluate their margins. Margins evaluation with PDD is better than clinical evaluation but does not correspond with the real margins found with Mohs surgery (20). Figure 48.5 Multiple superficial basal cell carcinoma on a patient treated by X-ray therapy for Hodgkin disease. Figure 48.6 Cryotherapy scars for basal cell carcinoma.

Nodular Basal Cell Carcinoma

The difficulty in the treatment of these lesions lies in the penetration of both the light and the photosensitizer in the superior lesions at 2 mm of thickness. For this kind of tumors, a debulking is performed preliminary to the photosensitizing application. Several studies (21) show three months complete answers rate between 73% and 94% with the MAL PDT. At five years, recurrence rates reach 14%. A comparative study between MAL PDT and surgery showed that the three months complete answers rate was not inferior for the PDT (91% versus 98% for surgery). At 60 months, the recurrence rate equal 14% versus 4% for surgery (22). According to patients, the cosmetic outcomes are superior to the ones of surgery. In its conclusions, the IPDT believes PDT is an effective and reliable treatment for thin lesions with the advantage of
good cosmetic outcome.

Bowen Disease

This squamous cell carcinoma in situ is frequent on elderly patients. It appears anywhere on the skin but mainly on the lower legs. Approximately 3% transforms in invasive carcinoma. There are often healing problems on leg localization for elderly patients regarding circulatory insufficiency. The treatment of reference is surgery when possible or 5-FU topically (Figs. 48.7 and 48.8). A European multicenter comparative random study (23) had assessed the MAL PDT in Bowen disease treatment. The assessed therapeutics were MAL PDT or PDT placebo, 5-FU, and cryotherapy. In Bowen disease treatment:

1 MAL PDT efficiency is significantly superior to the one of the placebo.

1 The answer rate per patient or per lesion is similar when the patient is treated by MAL PDT, cryotherapy, or 5-FU.

1 Those results are maintained 24 months after the treatment: the lesions recurrence rate under MAL PDT is the same as the one under cryotherapy or 5-FU.

1 The great majority of investigators believe that the cosmetic outcomes are excellent or good after the treatment by MAL PDT. These results are superior to the ones obtained after cryotherapy. In its conclusions, the IPDT considers PDT to be an effective treatment for Bowen disease. This therapeutic can be considered as a first-line treatment for Bowen disease. After repeated treatments nonresponders should be considered for surgery. Out-of-Label Indications PDT had been used in multiple indications in studies started with varying protocols. These several studies had been taken up again in a consensual conference by North American authors (24). Acne The mechanism of action is not clearly elucidated. There is a clear diminution of
Propionibacterium acnes, but the target of free radicals and singlet oxygen is essentially the sebaceous gland (25). Atrophy or even destruction is demonstrated in biopsy after one PDT treatment. Comparison can be made with isotretinoin that induces a cellular apoptosis of sebocytes and reduces the sebum excretion rate. This glandular atrophy is not permanent and seems to be restored with time. But there is a lack of long-term histological data on sebaceous gland atrophy after PDT. PDT is especially useful for inflammatory acne but side effects are sometimes serious. Observations report varying degrees of pain, erythema, edema, blistering, and acute flare up. This last side effect can be compared to isotretinoin. Optimization of efficacy-tolerance ratio is necessary. Concentration of photosensitizer, time of application, occlusion or not, and fluence parameters are certainly different from those used to treat nonmelanoma skin cancer. Mavilia et al. report a significant improvement of inflammatory acne. It appears that the nature of photosensitizer has an impact on efficacy.

Figure 48.7 Bowen disease before treatment. Figure 48.8 Bowen disease after two sessions. The acne indication had benefit from many studies, especially with the ALA PDT and several light sources. The consensual conference conclusions are as follows: i. The best indications are inflammatory and cystic acne. ii. The improvement is limited in comedonal acne, except in a study with a pulsed dye LASER. iii. Acneiform flares appear after each treatment. They seem to depend on the photosensitizing concentration, the application time, and the light source. Nevertheless, these therapeutic protocols are not clearly defined yet. Photoaging This indication has also been submitted to several works in Canada and in the United States. Pp9 is prone to store in keratinocytes in multiplication. Therefore, PDT is particularly recommended in severe photodamage: severe elastosis associated with AK, early skin cancer, pigmented changes, vascular changes (erythema, telangiectasia), and rhytides (26). Photorejuvenation action of PDT was found after AK treatment and the skin on the treatment area appears younger, without rhytides, smooth with a best trophicity. This improvement of the appearance of skin corresponds to significant molecular changes in the photodamaged skin. Type I and type III procollagen mRNA significantly increased after treatment with ALA PDT and pulsed dye laser (PDL) versus PDL alone. Historically, increased proliferation and changes in epidermis thickness were observed. High-resolution echography shows an increase in skin thickness and a reduction of subepidermal low
echogenic band thickness. Clinically, there is an improvement of signs of photodamage: mottled pigmentation, fine lines, roughness, and sallowness of the skin. There is no change in deep wrinkles, telangiectasia, and sebaceous gland hypertrophy. The majority of North American studies deal with PDT with ALA and IPL with various protocols regarding photosensitizing concentration, time of application, and light energy. There is no doubt that the decrease of the concentration and of the application time diminishes side effects but it also implies a very weak synthesis of Pp9, which can damage the technique’s efficiency. The use of IPL PDT versus IPL only would reduce the number of IPL sessions to obtain the same result on photoaging signs. European studies with MAL PDT also confirm the efficiency on photoaging (27). PDT and onychomycosis Some case reports suggest that PDT may represent an alternative treatment in therapeutic strategy for onychomycosis. The nail plate and the hyperkeratosis nail bed are first removed, and the treatment is repeated between three and six times according to the studies. The MAL PDT protocol is the same as that in oncologic indications: MAL 20% three hours with occlusion, uncoherent red light (630 nm), 37 J/cm². Patients do not report pain during irradiation or after. Warts Dyskeratosis: Hailey Hayley; Darier Healing Extramammary Paget. Psoriasis Hair removal Cutaneous leishmaniasis Cutaneous T cell lymphoma Molluscum contagiosum PDT IN PRACTICE It is a simple technique; non-operator-dependent that can easily be done at a medical office. The PDT session takes place in three stages: Lesion’s preparation: soft cleaning with the curette to remove loose scales and crusts, application of the MAL as a cream covering the lesion with a one cm margin at the edge. Cover with an occlusive dressing and then with a totally opaque dressing, especially on exposed areas. Keep the cream and the dressing during three hours Remove the dressings, wash the remaining cream with a compresse and saline solution, and start the lightening. Parameters of LED lamps are generally already set. Depending on the lamps, it usually lasts between 8 and 10 minutes (Fig. 48.9) Post-treatment care is simple: the treated zone needs to be protected from light for at least 24 hours, then a dry dressing and application of emollient can be done daily. Right after, the reactions are pain, erythema, l’edema. In a second time, the following reactions may happen: Squamae Crusts Suppuration Blisters Skin ulceration Skin pigmentations after sun exposure PDT and Pain All the patients report an unpleasant burning, stinging, or prickling feeling. Around 20% of them report a pain ranking between 7 and 10 (on a pain analogical scale) requiring specific care (28). Pain appears from the beginning of the
lightening and increases since the first minutes, reaches a plateau, and decreases slowly once the lightening stopped (29). The pain origin seems to be neurological as les GABA receptors intervene (30). Figure 48.9 Lesion illumination.

This pain depends on (31):

1. The localization: more intense at the scalp and face than on the rest of the body (32)

2. The kind of tumor: more important for actinic keratosis than for BCC and Bowen disease

3. The lesion’s size: the pain increases with the size

4. Fluence rate, pain is reduced with lower fluence rate but time exposure is increased.

The patrician has to take the pain into account during the lightening

1. Vocal anesthesia: do not leave the patient alone, talk to reduce his anxiety, modify the pain, and suggest solution to reduce it.

2. Physical means aimed at cooling down the pain are the most efficient: fan, water spray, liquid nitrogen spray. If the pain is too important, it is possible to interrupt the lightening a few minutes, to cool down the skin to start the lightening again (20).

3. Nerved block and local anesthesia without vasoconstrictive agent may be useful.

PDT should be considered as a new therapeutic resource that especially fits numerous AK on large area treatment. Future studies will have to confirm the PDT preventive aim in field cancerization. Regarding Bowen disease and CBCs, PDT represents a solution for broad and multiple lesions when surgery is hard to perform or risky. We can only wish that in a few years indications out of nonmelanoma skin cancer will benefit
from studies able to define precise protocols.

INTRODUCTION

Actinic keratoses (AKs) are precancerous lesions, primarily on sun-exposed areas of the skin, caused by nonionizing radiation (1). Histologically, they appear as dysplastic epidermal keratinocytes (2,3). They occur in approximately 11% to 26% of people in the United States (1). Treatments for AKs include cryosurgery, photodynamic therapy with aminolevulinic acid (ALA), imiquimod, chemical peels, electrosurgery, excision, and dermabrasion (4-8).

The most common treatment in the United States is cryosurgery with liquid nitrogen (7,9,10). Although this is effective for a fixed number of lesions, it is difficult if lesions are numerous and widespread. Treatment of a large number of lesions with cryotherapy may be painful or may result in the development of adverse effects (e.g., blisters or pigmented disturbance), thus limiting the utility of cryotherapy. Topical 5-FU has been a treatment for AK for over 40 years. A number of studies have been conducted to determine the efficacy, safety, and optimal treatment regimens of 5-FU in the management of AKs.

DISCUSSION OF 5-FU

Topical 5-fluorouracil (5-FU), an antineoplastic antimetabolite, is indicated in the setting of generalized AKs and Bowen’s disease (in situ squamous cell carcinoma). Although it is difficult to assess the potential for progression of individual AKs to SCCs, an estimated 40% of SCCs begin as AKs (11,12). Safety and efficacy in other indications have not been established, and diagnosis should be established prior to treatment (13). As a chemotherapeutic agent, fluorouracil destroys AKs by interfering with DNA and RNA synthesis by blocking the methylation reaction of deoxyuridylic acid to thymidylic acid. The subsequent depletion of thymine, particularly in cells that are growing quickly and taking
fluorouracil at a more rapid rate, leads to chemotoxic death of these cells and may be associated with a local inflammatory reaction (6,14). Fluorouracil is considered pregnancy category X and should not be used in pregnant women. Ideally, it is best to use topical fluorouracil during periods of the year when patients can minimize their sun exposure (e.g., winter) secondary to risk of a phototoxic reaction. Patients should be advised to avoid application of the medicine near the lid margins and mucocutaneous junctions. During the treatment phase, lesions become increasingly erythematous and cause discomfort; small subclinical lesions become visible. This treatment can be temporarily disfiguring, with erythematous ulcerations and crust formation. Once the patient completes the treatment, the lesions usually heal within two weeks of discontinuing treatment. Patients may apply topical fluorouracil preparations for multiple lesions safely. However, follow-up is required to monitor the progress of treatment and to ensure that the appropriate end point is achieved before ceasing application of the fluorouracil topical agent. Topical fluorouracil has the added benefit of making some subclinical AKs more visible and subsequently clear following its application (15). Topical 5-FU is available in several concentrations. In the early years of treating AKs, investigators used a variety of concentrations varying from 0.5% to 20% in different vehicles. The most commonly used vehicles were propylene glycol, petrolatum, and a water-washable or water-miscible cream. Today, formulations of topical 5-FU in the United States include 0.5% cream (Carac TM), 1% cream and solution (Fluoroplex TM), 2% solution (Efudex TM) and 5% cream and solution (Efudex), as well as generic formulations (Table 49.1). There is suggestive evidence that higher concentrations may be more effective, but also more irritating (18). We review studies examining the efficacy and tolerability of the most commonly used formulations: 0.5% and 5% topical 5-FU cream in the setting of AKs of the face and scalp. HISTORY OF 5-FU Topical 5-FU has been a treatment for AKs for over 40 years. 5-FU was first introduced to the medical profession in 1961. When used systemically, it has palliative effects in patients with breast and rectal carcinoma. Falkson and Schultz, who used 5-FU for the treatment of advanced carcinomatosis with prolonged cancer chemotherapy, noted the disappearance of AKs in these same patients (19). Klein first reported the local effects of using cytostatic agents in skin tumors (20), and Dillaha published a report on the use of 5-FU topically (21). Since this time, 5-FU has become one of the most effective modalities available in the treatment of AKs (22). The most commonly used formulations today include
A micronized form of 0.5% 5-FU (Carac) is the most recent addition to the list of formulations. COMPARISON OF TRIALS/METHODS We reviewed the literature examining efficacy of topical 5-FU preparations for treating AKs of the face and scalp. A Pubmed search (1965 to April 13, 2009) with the terms “topical 5-FU,” “5-fluorouracil,” and “actinic keratosis” was initially conducted. Inclusion criteria included (i) randomized controlled trials (RCTs); (ii) English language; (iii) studies involving the face, ears, neck, and/or scalp; (iv) no additional medications applied to the face or scalp except mild topical corticosteroids; and (v) only specified drug regimens (0.5% 5-FU once daily for 1-4 weeks, 1% 5-FU twice daily for 2-8 weeks, and/or 5% 5-FU twice daily for 2-4 weeks). The primary efficacy measure was complete clearance of all AKs (the proportion of patients at follow up with no clinically visible AKs in the treatment area) at 4 weeks post treatment for studies examining 0.5% 5-FU, 4 weeks and 11 months post-treatment for 1% 5-FU, and 4 to 6 weeks post treatment for 5% 5-FU. Thirty-two studies were evaluated, and 10 met our study criteria (Table 49.2). Six of these examined 0.5% 5-FU at 4 weeks post treatment (12,18,23-26), while 4 examined 5% 5-FU at 4 to 6 weeks post treatment (18,27-29), and 2 examined 1% 5-FU at 4 weeks and 11 months post treatment (27,30). Complete clearance rates of 0.5% 5-FU ranged from 14.9% (with 1 week of treatment) to 57.8% (with 4 weeks of treatment) and 5% 5-FU complete clearance rates ranged from 43% (with 4 weeks of treatment) to 100% (with 2 weeks of treatment). In two studies,
subjects were permitted to apply mild topical corticosteroids, in addition to the topical 5-FU (18,24). As the various studies employed different measurements of tolerability, we were unable to compare this data.

0.5% 5-FU

Six studies examined 0.5% 5-FU at four weeks post treatment (12,18,23-26). Complete clearance rates of 0.5% 5-FU ranged from 14.9% (with 1 week of treatment) to 57.8% (with 4 weeks of treatment). Smith et al. examined the use of 0.5% 5-FU versus topical ALA activated by blue light or pulse dye laser. At four weeks post treatment, 54.5% of patients using 0.5% 5-FU had complete clearance of their AK lesions. In several RCTs comparing 0.5% 5-FU to vehicle control cream, 5-FU demonstrated greater efficacy and clearance rates with continued use over time from 14.9% to 26.3% after one week of treatment (12,23-25) to 43% to 57.8% after four weeks of treatment (12,18,25,26).

1% 5-FU

1% 5-FU is not a commonly used formulation of 5-FU. However, there are two trials for 1% 5-FU that met the inclusion criteria. Breza et al. performed a split-face controlled comparison study of 1% 5-FU applied twice daily for three weeks versus 1% 5-fluorouracil twice daily followed by 0.4% or 0.5%
triamcinolone acetonide cream (TAC) in 10 subjects for 3 weeks

and found no detectable difference in the number of new AKs between the combination therapy and fluorouracil alone. Furthermore, after 1 month 4 of the 10 subjects had no AKs on either side of their face. Of note, the combination of 5-FU with TAC decreased the unpleasant irritation caused by fluorouracil.

These findings demonstrated that the degree of success with fluorouracil therapy in AKs is not necessarily related to the degree of inflammation associated with treatment. Dillaha et al. compared concentrations of 1%, 2.5%, and 5% 5-FU ointment twice daily in a controlled clinical study. The response with the 5% ointment was comparable to some original studies with 20% 5-FU ointment. The results showed that 7/8 (87.5%) patients using 1% 5-FU had complete clearance at 2 to 8 weeks, and 25/26 (96.1%) patients with 5% 5-FU had complete clearance at 2 to 8 weeks. At 4 weeks specifically, 94.4% (17/18) of 5% 5-FU patients achieved clearance. At 11 months post treatment, complete clearance was seen in 0% and 86.4% of the 1% 5-FU and 5% 5-FU groups, respectively; thus the 1% formulation was found to be ineffective for long term clearance of AKs. 5% 5-FU Four studies examined 5% 5-FU at four to six weeks post treatment (18,27–29). 5% 5-FU complete clearance rates ranged from 43% (with 4 weeks of treatment) to 100% (with 2 weeks of treatment in one study). Two of the trials have been compared with other formulations of 5-FU. Dillaha et al. found 5% 5-FU to be effective with a 94.4% clearance rate. Shuttleworth and Marks had the most impressive results using 5% 5-FU (Efudix TM) twice daily for two weeks versus Interferon-alpha 2b injectable. They had a 100% (5/5) clearance rate with no severe adverse reactions. Krawtchenko et al. compared 5% 5-FU twice daily for four weeks to cryosurgery and imiquimod. They found a 96% (23/24) complete clearance rate with 5-FU compared to a 68% (17/25) clearance rate in patients treated with cryosurgery, and an 85% (22/26) clearance rate in patients treated with imiquimod. The histological clearance rates were 32% (8/25) for cryosurgery, 67% (16/24) for 5-FU, and 73% (19/26) for imiquimod. The 12-month follow-up demonstrated high rates of recurrent and new lesions in the 5-FU and cryosurgery arms. The sustained clearance rate of
initially cleared individual lesions was 28% (7/25) for cryosurgery and 54% (13/24) for 5-FU. The high rate of recurrence should prompt physicians to offer close follow-up, generally every six months to one year to reassess for recurrent or new lesions. SIDE EFFECTS We were unable to compare data on side effects since the various studies employed different measurements of tolerability. However, it is known that 5-FU can commonly be associated with pain, erythema, inflammation, erosions, and contact dermatitis. Possible adverse reactions to topical 5-FU include (from most common to least common): application site reactions, conjunctivitis, rash, dry skin, allergic reaction, facial edema, hyperesthesia, skin discoloration vesiculobullous rash, and cheilitis (24). To minimize adverse reactions, patients should avoid sun exposure during the treatment period. Of the more common side effects, facial irritation was reported a side effect after four weeks of treatment with topical 0.5% 5-FU in 78% to 96% of patients (12,25). Conversely, Smith et al. reported erythema as the most common and pronounced effect (26). Although both 0.5% 5-FU and 5% 5-FU were found to have comparable degrees of irritation as rated by the investigator in a split-face trial, patients preferred the 0.5% cream, which was rated as more tolerable, convenient, and easier to apply (13,18). The symptoms of severe application site reactions include erythema, edema, dryness, pain, erosion, burning, and pruritus.

Table 49.1 Topical 5-FU Formulations Currently Available in the United States

<table>
<thead>
<tr>
<th>Concentration (%)</th>
<th>Formulation</th>
<th>Trade name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Cream</td>
<td>Carac TM</td>
</tr>
<tr>
<td>1</td>
<td>Cream, solution</td>
<td>Fluoroplex TM</td>
</tr>
<tr>
<td>2</td>
<td>Solution</td>
<td>Efudex TM</td>
</tr>
<tr>
<td>2</td>
<td>Solution, Generic</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cream, solution</td>
<td>Efudex TM</td>
</tr>
<tr>
<td>5</td>
<td>Cream, solution, Generic</td>
<td></td>
</tr>
</tbody>
</table>

Information from Physician’s Desk Reference (16) and Clinical Derma
Clinical Studies Examining 0.5%, 1%, and 5% 5-FU

<table>
<thead>
<tr>
<th>Authors</th>
<th>Treatment comparison</th>
<th>Complete clearance results</th>
<th>4-6 wk post treatment</th>
<th>Adverse effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith et al., 2003 (24)</td>
<td>Randomized trial evaluating 0.5% 5-FU (Carac TM) once or twice daily for 4 wk vs. application of ALA for 1 hr followed by activation with blue light or pulsed dye laser (PDT) in 36 subjects</td>
<td>6/11 (54.5% Erythema) was the most common and pronounced effect; significant crusting and erosions were seen only in the 5-FU group</td>
<td>6/11 (54.5%)</td>
<td>Loven et al., 2002 (16) Single-blind, split-face randomized trial evaluating 0.5% 5-FU daily vs. 5% 5-FU cream twice daily for 4 wk in 21 subjects</td>
</tr>
<tr>
<td>Weiss et al., 2002 (12)</td>
<td>Randomized, double-blind, multicenter, parallel-group trial examining 0.5% fluorouracil (Carac) vs. vehicle cream once daily for 1, 2, or 4 wk in a total of 177 subjects</td>
<td>10/38 (26.3%) subjects in the 1-wk treatment group 8/41 (19.5%) in the 2-wk treatment group 19/40 (47.5%) in the 4-wk treatment group</td>
<td>10/38 (26.3%)</td>
<td>Jorizzo et al., 2002 (23) Randomized, double-blind, vehicle-controlled, parallel-group multicenter phase III trial examining 0.5% fluorouracil (Carac) once daily for 1, 2, or 4 wks vs. vehicle control in 207 subjects</td>
</tr>
</tbody>
</table>
Controlled clinical study comparing 1% 5-FU ointment twice daily for 4 wk vs. 5% 5-FU ointment twice daily for 4 wk in 17 subjects. 17/18 patients (94.4%)—5% 5-FU 7/8 patients (87.5%)—1% 5-FU completed clearance at 2–8 wk. After 7 to 14 days of treatment, inflammation increased and erosions formed at sites of AKs; no one developed eye irritation and a lower lip erosion occurred in 1 patient. Study comparing 5% 5-FU cream twice daily for 2 wk (Efudix TM) vs. interferon-a 2b injectable in 20 subjects. 5/5 patients (100%) No adverse reactions occurred; those in the 5-FU group reported minor redness and scaling during the treatment period, with negligible discomfort. Randomized controlled trial comparing 5% 5-FU ointment (Efudix) twice daily for 4 wk vs. cryosurgery vs. 5% imiquimod in 75 subjects. 23/24 patients (96%) Irregular pigmentation and hypopigmentation less frequent in the imiquimod group than in the 5-FU or cryosurgery group; mild atrophy observed in most patients with significant differences between groups; no serious adverse events in the treatment area. A split-face controlled comparison trial comparing 1% 5-FU twice daily for 3 wk vs. 1% 5-FU twice daily followed by 0.4–0.5% triaminolone acetonide cream (TAC) twice daily for 3 wk in 10 patients. 4/10 patients (40%) The inflammation was noticeably suppressed in subjects treated with 5-FU in combination with 0.4% or 0.5% TAC. Six of 10 experienced less burning and 7 of 10 experienced less crusting and discomfort on the side with less inflammation. Two of the 10 subjects developed labial fold inflammation, which occurred only on the control side in both. TOPICAL 5-FU and the symptoms of eye irritation are burning, sensitivity, itching, stinging, and watering. When compared to other treatment modalities such as ALA with photodynamic therapy, significant crusting and erosions were seen only in the 5-FU group. In a study by Weiss et al., 35% of patients experienced facial edema and 29% experienced erosions when using 0.5% 5-FU (Carac) (12). In the split-face study by Loven et al. (previously discussed), there were no statistically
significant differences in the incidence of erosion, dryness, burning, pruritus, pain, edema, or other signs and symptoms between the two 5-FU formulations (18). However, a lower cumulative proportion of patients reported these symptoms in association with the 0.5% cream compared with the 5% cream, suggesting an increased in the tolerability of 0.5% 5-FU (Carac). Some of the expected side effects of fluorouracil may possibly be avoided with the use of the 0.5% formulation. Adverse effects aside, patients may continue applying the drug unless it becomes intolerable to do so. Methods used to “calm” the skin after or during treatment with topical 5-FU include topical steroids, dilute acetic acid soaks (26), cool compresses, and emollients (e.g., white Vaseline) to cracked or sore areas. In two studies, subjects were permitted to apply mild topical corticosteroids during 5-FU treatment, which were added to increase tolerability of the 5-FU and lessen side effects (18,24).

Breza et al. demonstrated that use of TAC in conjunction with fluorouracil is a way to lessen the adverse effects of fluorouracil (30). In this split-face study, subjects applied 5-FU alone to one side of their face and 5-FU and TAC to the opposite side of
face—subjects preferred the side with 5-FU and TAC. Six of 10 experienced less burning and 7 of 10 experienced less crusting, inflammation, and discomfort on the combination side.

CURRENT LIMITATIONS IN KNOWLEDGE

Lesion counting and clearance rate measurement are two factors that have yet to be perfected. AKs fall on a continuous spectrum ranging from sun-damaged skin to squamous cell carcinoma in situ, making them difficult to distinguish. Wein stock et al. found significant differences in AK lesion counting even between experienced dermatologists, suggesting unreliability in counting (31). In the setting of AKs, a large confluent lesion may be counted as one lesion initially and then as multiple lesions on subsequent visits. Furthermore, studies differ in methods used to count lesions—lesions from different “zones” of the face may be counted and summed or lesions from the whole face may be counted and summed. More precise zone division with stereotaxis or well-defined counting templates could increase accuracy of these measurements. Another issue that makes lesion counting difficult is the enhancement of subclinical lesions occurring after application
of topical 5-FU—lesions may be missed if counts are done prior
to initial application of 5-FU (26). Additionally, the fact
that
5-FU always produces side effects, no placebo-controlled
study
is truly double blind. Though there is no way to control
for this,
it is important to recognize.

CONCLUSION
Though results from various trials suggest the superior
efficacy
of 5% 5-FU to 0.5% 5-FU and 1% 5-FU, high-powered clinical
trials comparing treatments are lacking. This is important for
two reasons: efficacy and tolerability. In the only
split-face

INTRODUCTION
Most dermatologists and dermatologic surgeons limit them
selves to warts and keratoses. Some also treat skin cancers.
Many are unaware of the diverse range of conditions, patho-
logic and cosmetic, amenable to treatment with liquid
nitrogen.
Cryosurgical treatments, when applied correctly to appropri-
ately selected patients, produce excellent cosmetic results,
which justifies a description of these techniques in a

cosmetic
dermatology text. As liquid nitrogen is freely available
and cheap, and can be
used without local anesthetic, it is often thought of as
and unable to compete with the newest lasers. On the contrary, cryosurgery is the equal of high-tech alternatives for therapeutic efficacy and aesthetic outcome for a wide range of conditions.

Despite these advantages, cryosurgery tends to be underutilized. Cryosurgery developed as a dermatological treatment modality about a century ago, with the first cryogens being liquid air and compressed carbon dioxide snow (1). Liquid nitrogen (boiling point −196°C) became available during the 1940 and is now the most commonly used cryogen in Dermatology. Other available cryogens include carbon dioxide (boiling point −79°C), nitrous oxide (−90°C), and fluorocarbon liquids (−60°C). The article focuses on the potential uses of liquid nitrogen. The following is a description of the specific cryosurgical techniques for treatment of an array of lesions seen by the cosmetic and dermatologic surgeon and describes the steps to be taken to achieve good cosmetic results.

TECHNIQUE AND TERMINOLOGY

Various methods have been devised in the use of cryotherapy of lesions.

1. Open spray freeze technique
2. The applicator technique
3. The cryoprobe method

4. The thermocoupler method

The Timed Spot Freeze Technique

The spot freeze technique involves the use of a liquid nitrogen spray gun (Brymill Cryac Gun, Owen Galderma, Fort Worth, Texas, U.S.) that, through an appropriate nozzle, emits an open spray of liquid nitrogen (Fig. 50.1). In general, the nozzle size is chosen according to the size of the lesion; however a “D nozzle” will be suitable for most benign lesions. The flask should be two-thirds full to ensure an even flow of cryogen. Overfilling the flask can lead to the valve icing over. The nozzle is held 1 cm from the skin surface and the center of the lesion is sprayed until an ice ball forms that encompasses the lesion and the desired margin. Pretreatment, the “designated ice field,” may need to be marked out with a suitable pen, as freezing blurs lesion margins. Once the ice field reaches the desired size, freezing is stopped temporarily to allow palpation of the ice ball to ensure that the lesion is entirely frozen. Once satisfied of adequate ice formation, the spray of liquid nitrogen may recommence and continue for the appropriate treatment time. During this time, the ice field size should remain constant, with the spray of liquid nitrogen adjusted with the trigger on the spray gun appropriately. If more than one freeze-thaw cycle is needed, then complete thawing should occur before the next cycle. This can be assessed by palpation between the finger and thumb again for the presence of an ice ball as well as waiting for the disappearance of the frozen-white surface appearance. Lesions greater than 2 cm in diameter are
generally best divided into overlapping treatment fields to ensure that the timed spot freeze technique adequately treats all parts of a large lesion (Fig. 50.2). Using only one treatment field may not adequately freeze the deep margins at the periphery of a large lesion. For the purpose of keeping treatment; for example, a myxoid cyst may be notated as such: Myxoid Cyst, LN 2 (OS), 30 Seconds, 2 FTC, 1 Field The record shows that a myxoid cyst was treated with liquid nitrogen (LN 2) using the open spray timed spot freeze technique (OS), for two freeze-thaw cycles (FTC) of 30 seconds duration each. A single treatment field was required. The open spray technique is extremely versatile and can be used for most easily accessible lesions. Variations do exist: the paint brush method involves spraying starting from one side of the lesion and moving up and down across the lesion, and the spiral method, where treatment starts in the center of the lesion and moves outward in ever-increasing circles (2). These two techniques are particularly useful for larger lesions and when a light, superficial freeze is desired. Hyperpigmentation may complicate the treatment of some lesions. Hyperpigmentation is particularly common in people with Fitzpatrick type 3 and 4 skin. Although usually temporary, it may take three to four months to resolve. In general before embarking on this treatment in people with darker complexions, a small test should be performed first. Hypopigmentation is generally only seen after large doses of liquid nitrogen are applied to the skin, for example, in the treatment of skin cancer. In very fair people, this may go unnoticed. For patients with an olive complexion, to prevent a sharp demarcation between the hypopigmented treated area and surrounding normal pigmentation, “feathering” may be performed. This involves spraying the border of the ice field to ice formation to produce mild hypopigmentation that reduces the contrast with untreated skin. A better cosmetic outcome
Tissue Injury

INTRODUCTION

The cosmetic use of botulinum toxin (BT) on the upper face was first developed by Carruthers and Carruthers in the late 1980s (1). For this proposal, two types of BT are currently available: A and B. The first studies of the cosmetic use of BT were published in the early 1990s, and approximately 10 years later it was approved by the Food and Drug Administration (FDA) in the United States, and similar authorities in other countries. This represents one of the most important contributions to the approach of the aging face in recent years. Easily applied by experienced physicians, BT injections are now perhaps the most frequently used cosmetic procedure. Their popularity and success among physicians and patients can be related to their consistent positive results and safety, besides being a fast, minimally invasive (2) and low-risk procedure. BT is now a recognized treatment for a wide spectrum of conditions characterized by relative overactivity of one or a few muscles (m.). BT injections are also effective in the treatment of localized hyperhidrosis (HH). The relative simplicity of the procedure and the lower rates of side effects or significant
complications make this procedure increasingly attractive for cosmetic use. Even though the anatomy of the facial musculature is well described, individual differences between patients, gender, population groups, and some characteristics, such as turgor and elasticity of the skin, are important factors to be considered before undertaking BT injections (3).

PHARMACOLOGY AND MECHANISM OF ACTION

Clostridium botulinum produces an exotoxin that is considered the most poisonous of all poisons (4). It is an anaerobic, gram-positive bacillus that forms spores and that makes eight different antigenic structures with different functions: A, B, C1, C2, D, E, F, and G (5). The currently available serotypes A and B result from modification of the protein structure. BT causes a temporary chemical denervation of the motor neuron in the treated muscle, resulting in therapeutic and cosmetic actions. It selectively inactivates these nerve terminals by blocking the release of acetylcholine, producing a temporary and ultimately reversible blockade of cholinergic transmission (6). In the neuromuscular junction, the blockade of the release of acetylcholine promotes a
different spectrum of action (5,7), varying from muscle relaxation to muscular palsy, depending on the subtypes and doses used. Table 51.1 shows the principal characteristics of the main commercial preparations of BTs. RECONSTITUTION, HANDLING, DILUTION, AND DOSE EQUIVALENCE Available preparations of BT type A (BT-A) are usually stored in a refrigerator and reconstituted with isotonic sodium chloride (0.9% saline solution) with or without preservative (2) prior to their use. The manufacturers of the commercial preparations of BT-A recommend their use within the first four or eight hours after reconstitution, depending on the product. The reason of these recommendations is to ensure that the potency of the drug is maintained and to prevent the possibility of contamination of the vials. However, a study showed no statistical differences in injections of BT-A from Allergan (Botox 1) diluted up to six weeks prior to use (8) and also no microbiological contamination in the remaining liquid of the used vials (9). Another study showed the safety and efficacy of Dysport 1 after reconstitution up to 15 days after injection and also concluded no evidence of contamination and no loss of efficacy in the BT-A vials (10). BT type B (BT-B) (Myobloc 1) remains stable if stored in a refrigerator for 30 months and at room temperature for 9 months (11). Reconstitution of BT in smaller rather than larger volumes of saline solution is preferable. For cosmetic purposes, the higher concentration allows a low volume injection that permits more precise placement of the toxin. Table 51.2 shows the most common regular dilutions of Botox 1/Vistabel and the recommended equivalent doses for Dysport 1/Azzalure 1. A dose-equivalence of 1:2.5 U between Botox 1 and Dysport 1 is adopted by the most experienced physicians in the use of both products, and is mentioned in recent studies (12). This can also be inferred by comparing controlled studies that aimed to establish the optimal dose for glabellar area. Such studies demonstrated comparable results and optimal effects in treating glabellar wrinkles using doses of 20 U of Botox 1 (13) and 50 U of Dysport 1 (14,15), respectively. Hexsel et al. showed that injections of different commercial BT-A at an equivalence ratio of 2.5:1 U, respectively, applied at the same volume and depth, using the same technique resulted in similar field of effects with regard to muscular and sweat gland activity (16). CONTRAINDICATIONS, PRECAUTIONS, AND RECOMMENDATIONS
Contraindications and/or limitations for BT are listed in Table 51.3. Pain and bruising at the injected sites are reduced by applying cold and pressure before and after treatment (20). The injections are usually painless if small syringes and fine-gauge needles are used (21). Injections should be performed slowly and superficially. Patients should remain in vertical position

<table>
<thead>
<tr>
<th>Table 51.1 Comparison of Different Commercial Preparations of BT Available in the Majority of the Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botox (100U)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Lyophilized powder for solution for injection</td>
</tr>
<tr>
<td>Reconstitution</td>
</tr>
<tr>
<td>0.9% NaCl solution</td>
</tr>
<tr>
<td>Reconstituted up to 24 hr depending on country approval</td>
</tr>
</tbody>
</table>

Auxiliary substances: Albumin 0.5 mg/vial NaCl 0.9 mg A
albumin 0.5 mg NaCl 0.9 mg Albumin 0.125 mg lactose 2.5 mg Albumin 0.125 mg lactose 2.5 mg Gelatin 5 mg, dextran 25 mg, and sucrose 25 mg Albumin 1 mg, sucrose 4.7 mg Albumin, NaCl, succinate, octanoate, tryptophan pH 5–7.5–7.5–7.5–7.5–7.5–7.5–7.5–7.5, 6 Toxic load in dose equivalence range 5 ng/100 U 2.5 ng/50 U 5 ng/100 U 5 ng/300 U 5 ng/125 U 4–5 ng/100 U 0.6 ng/100 U 100 ng/10 000 U

after BT injections and avoid manipulating the injected area for at least four hours after injections. These measures may prevent the undesirable action of BT in adjacent muscles (17). Injections should be symmetrical regarding doses, muscles, and areas. This is important for the natural balance of the facial structures (9) and to avoid asymmetries. Exception includes important and evident asymmetries, such as those caused by facial palsy. Treatments are usually repeated twice a year for maintenance of the results. A period of 15 to 30 days for touch-ups should be respected. It is important to avoid more than one touch-up and respect the minimal interval of three to four months between treatment sessions, because of the risk of inducing the formation of antibodies. However there is no evidence of immunogenicity to BT for cosmetic use (22). When BT is injected adjunctively to some surgical procedures, such as facelift, blepharoplasty, and laser resurfacing,
some physicians prefer to inject in the postoperative period (23). The dose to be injected depends on the target muscle and can vary from patient to patient and from one application to another, according to patient’s needs, muscle mass and activity of the target muscles, gender, and number of previous treatments. The suggested doses of BT-A according to the area to be treated are given in Table 51.4. These represent the doses recommended by the consensus groups for Dysport 1 and Botox 1 (24–26). Patients should read and sign the informed consent form before application, and photographs should be taken before all cosmetic procedures, to evaluate the results (18). Photographs must be taken at rest and also with contracted muscles. Makeup should be removed and the skin cleansed before application. UPER FACE BT indications for the upper face include the treatment of glabellar lines, forehead lines, brow lifting, crow’s feet lines, and the treatment of frontal or other focal forms of HH (27–31). HH treatment will be mentioned as other topic in this chapter. The direction of facial wrinkles and lines is usually perpendicular to the direction of the muscle fibers. In the upper face, most wrinkles result from muscular action (32), and are considered “expression lines.” The muscles of the upper face are intricately intertwined. In this area, location, muscle Table 51.2 Regular Dilutions of 1, 2, and 2.5 mL for Botox 1, Vistabel 1, and Xeomin 1 Recommended by the Present Authors as an Equivalent Dose for Dysport 1/Azzalure 1 To achieve the
equivalence between Botox â /Vistabel and Dysport â /Azzalure of If the vial of 100 U (Botox â) is usually diluted in If the vial of 50 U (Vistabel) is usually diluted in The vial of 100 U (Xeomin) is usually diluted in The vial of 500 U of Dysport â should be diluted in The vial of 300 U of Dysport â should be diluted in The vial of 125 U of Azzalure should be diluted in

1:2.5 U

1:2.5 U

1:2.5 U 1 mL 2 mL 2.5 mL 0.5 mL 1 mL 1.25 mL 1 mL 2 mL 2.5 mL 2 mL 4 mL 5 mL 1.2 mL 2.4 mL 3 mL 0.5 mL 1 mL 1.25 mL

Table 51.3 Contraindications for BT Injections

Contraindications

Pregnancy and breast-feeding

Active infection in the proposed area

Neuromuscular transmission disorders (myasthenia gravis, Eaton-Lambert syndrome, Rooke syndrome)

Hypersensitivity to components of the BT-A injection solution (BT-A, human albumin)

Medication that influences neuromuscular transmission such as quinine, calcium channel blockers, penicillamine, aminoglycoside antibiotics, pancuronium, galamine, tubocurarine succinylcholine

Medication that interferes with coagulation (e.g., acetylsalicylic acid, anticoagulants, vitamin E) and coagulopathies

Candidates with unrealistic expectations, unrealistic fears of the toxin, psychiatric disorders such as psychosis, mania, body dysmorphic disorder, and eating disorders

Abbreviation: BT, botulinum toxin.

Source: From Refs. 17–19. Table 51.4 Suggested Doses of Botox 1 and Dysport 1 in Different Cosmetic Treatments
Botox à Dysport à Average total dose (U) Average total dose (U) Facial indications Glabellar lines 10–40 30–70 Forehead lines 6 to >15 20–60 Crow’s feet 10–30 30–60 Infraorbital rhytides 2–4 5 Bunny lines 4–8 10–20 Nasal tip droop 2–3 10 Repeated nasal flare 4–10 10–20 Perioral area 4–5 4–12 Mentalis 4–10 10–20 Depressor angulis oris 3–6 10–20 Gingival smile 4–10 5–15 Masseteric hypertrophy 25–30 Platysma bands 40–60 50–100 De’collete´ 30–100 75–120 Doses are expressed in total number of units per treatment divided in both sides, when applicable. anatomy, and muscle mass, as well as the way patients use their muscles vary greatly between individuals. The frontalis m. have a quite variable anatomy and are responsible for the horizontal forehead lines. These muscles are mainly responsible for raising the eyebrows, especially in aging people, who use these muscles to amplify the visual field. Muscles controlling the frown include the corrugators m. and the orbicularis m., which move the brow medially, while the procerus m. and the depressor supercilli m. pull the brow inferiorly. The orbicularis oculi m. is divided into three parts, the orbital, the preseptal, and the pretarsal portions. Glabellar Lines Glabellar lines (Fig. 51.1) are interpreted as presenting negative sentiments, such as sadness, anger, and frustration (13,33). One or two injection sites may be used on the belly of the procerus m. This muscle is treated in the midpoint of an imaginary “X” formed by lines joining the inner brows and the contralateral inner canthus (34,35). If the frontalis m. is not treated, the middle to lateral portion of the eyebrows will be slightly raised by the opposing levator action of the frontalis m. (36). The conventional injection technique involves the observation of the medial aspect of the eyebrow, while the patient squints and frowns. BT is slowly injected into the belly of the corrugator m., taking care to maintain the needle tip approximately 1 cm superior to the orbital rim (Fig. 51.2). The needle should be positioned perpendicularly and advanced slightly within the muscle fibers in a vertical direction toward the hairline (36). A variety of different injection techniques and doses have been reported over the years. They range from a single injection into the belly of each corrugator m. with total doses of 20 U of Botox 1 and 50 U of Dysport 1 (14,35), although doses can vary and be customized. The total doses of Dysport 1 for glabellar lines range from 30 to 70 U (35). A study has shown that injections of BT into five sites in the glabellar area using 4 U of Botox 1 or 10 U of Dysport 1 per site is effective for reducing glabellar lines (37). The safety and efficacy of repeated treatments with BT for glabellar lines were shown and seems that increased benefits occur with successive treatments (2).
study using Myobloc suggested that it may be used in selected cases with glabellar wrinkles not responsive to BT-A injections (38). The eyebrow is a mobile structure elevated by frontalis m. and depressed by brow depressors (orbicularis oculi m., corrugator supercillii, and procerus m.). BT-A treatment for glabellar lines causes an elevation of the medial and lateral brows (34,35) (Figs. 51.3 and 51.4), leading to a desirable shape and height of the brows (27). It was observed that the ideal brow shape in Figure 51.1 Glabellar lines due to frowning of corrugators and procerus muscles. Figure 51.2 The five-point technique for glabellar lines: one in the procerus and two in each corrugator muscle. Figure 51.3 Upper face at rest before injections, showing the original position of eyebrows.

women is the lateral and medial elevation, instead of medial elevation only (27). BT injections in both medial and lateral brow depressors produce elevation of the entire brow, leading to an arched shape (37), which is desired by women but not by men. Male brow pattern is rectilinear.

Forehead Lines

The frontal region should always be treated in association with the glabellar area to avoid increased use of glabellar m., which are mainly depressors (35,39). It is also important to preserve the frontal muscle movements that are responsible for facial expression and lift of the eyelids and brows. Total paralysis of the frontalis m. can cause brow ptosis (36). It is also important to point out that the frontalis m. are largely responsible for facial expressiveness. Therefore, multiple
injections of small amounts of BT-A are used in this area to create

only a weakening of the muscle instead of a total paralysis, preventing expressionlessness (36, 40, 41). The total dose varies from 6 to >15 U of Botox 1 (26) and 20 to 60 U of Dysport 1 (24).

Periorbital or Crow’s Feet Lines

The wrinkles radiate from the lateral canthus outwardly and laterally, and are perpendicular to the direction of the muscle fibers of the orbicularis oculi m. (36) (Fig. 51.5). The total doses used to treat crow’s feet lines range from 4 to 5U/side to 5 to 15U/side of Botox 1 or 5 to 10U/side to 15 to 30 U/side of Dysport 1 (24) (Fig. 51.6). These doses are generally distributed over two or three injection sites (35), although sometimes four to five sites are needed (Fig. 51.7). All the injections must be performed at least 1 cm lateral to the lateral orbital rim. Intradermal injections made in the preseptal portion of the lower eyelid reduce these specific fine wrinkles (42). Infraorbital rhytides (Fig. 51.8) can be treated by 1 to 2 U/side of Botox 1 and 0.8 to 2.5 U/side of Dysport 1 (24), 3 to 4 mm below the eyelid. FACIAL ASYMMETRY Facial asymmetry is a frequent complaint and can result from many different causes, which will determine whether it will be temporary or permanent (43, 44). BT-A or BT-B injections are
successful treatments for a variety of facial nerve palsies and facial dystonias. BT-A can also be used to treat lesions or muscle hypertrophy resulting from surgical procedures or trauma, to achieve

Figure 51.4 The same patient as in Figure 51.3, showing the brow lift after botulinum toxin injections. Figure 51.5 Crow's feet wrinkles, radiating from the lateral canthus, before treatment. Figure 51.6 The same patient as in Figure 51.5, after treatment with botulinum toxin, better cosmetic and functional results. Usually the BT-A injections are performed on the unaffected side of hemiparesis, treating the hyperkinetic muscles (23). BT-A can provide a simple, noninvasive, and safe way of correcting obtrusively distracting asymmetry (43). Application of BT in the healthy side of the face can improve symmetry of the face at rest and during facial motion, especially when smiling, speaking, or exposing the teeth (45). In treating asymmetries, the duration of the BT-A is generally shorter, due to the low doses required to achieve partial relaxation of the muscles, with normal contraction returning in approximately eight weeks. MIDDLE FACE While the duration of the effects of BT-A injections in the upper face is about three to four months or longer, sometimes six to eight months, in the middle and lower face, only about two to three months can be expected. Other factors may lead to a decrease in duration (46). These include the technique and doses, individual differences, and previous treatment with BT-A. The most important wrinkles in the middle face are nasal wrinkles. The levator labii superioris m. and nasal m. as well the medial portion of the orbicularis (47) are involved in these wrinkles. Bunny Lines Nasal wrinkles, called “bunny lines” (Fig. 51.8), are treated with low doses of BT-A (48). These lines may become more pronounced after BT injections for the treatment of glabellar and periorbital wrinkles. The injection must be applied in the high lateral nasal wall, below the angular vein, avoiding injections near the nasofacial groove to prevent relaxation of the levator labii superioris m., which may lead to upper lip ptosis (48,49). The recommended dose is 4 U of Botox 1 and 5 to 10 U of Dysport 1 (25) intradermally at just one point on each side. The treatment may be less effective in patients who recruit these muscles excessively or have had prior rhinoplasty (48). Nasal Tip Droop The depressor septi nasi m. is a small muscle located in the external inferior base of the nasal septum, which contributes to the nasal tip lowering, aggravating the nasal tip ptosis that usually occurs with aging. Injections are done at the base of the
columella (48). BT injection of 2 to 3 U of Botox 1 (26) and 5 to 10 U of Dysport 1 (25) in a single site at the junction of the columella and the upper lip can result in partial lifting of the tip of the nose. Repeated Nasal Flare Some people present dilate or rhythmic contractions of the nostrils on certain occasions, which may cause embarrassment. Injections of BT-A are indicated on each side in the lower nasal fibers above the lateral nasal ala (48). LOWER FACE Lower doses of BT than those usually used in the upper face are recommended for the lower face. Such doses permit muscle relaxation instead of paralysis of target muscles, which is desirable for this area (50). However, there are no specific doses or specific recommended techniques for BT injections, as muscles vary in size or muscle mass, location, force of Figure 51.7 Superficial injections of botulinum toxin type A for the treatment of crow’s feet wrinkles. Figure 51.8 Points for botulinum toxin injection in infraorbital rhytides and bunny lines.

contraction, and function between patients, as described for the upper face. Because of the low doses used to treat the lower face, it is recommended to inject lower face together with upper face. Care should be taken not to inject all areas in the lower face because of the increased risk of the accumulated effects and doses in this area, increasing the risks of side effects. Most of the muscles of the lower face are functionally related to the mouth and lips (49). In the lower face, BT is useful to treat a series of conditions, including perioral wrinkles, masseteric hypertrophy, “peau d’orange” chin (mentalis m.), marionette lines (depressor angulis oris m.) as well as gingival and asymmetric smile.

Perioral Area
Photodamage, heredity, cigarette smoking, loss of deep structures volume, sleep positions, orthodontic deformities, and dynamic component like playing a musical instrument that requires embouchure, or even whistling have been thought to cause this aesthetic problem (48,51). Fine, vertical lip rhytids are also caused by repetitive action of the orbicularis oris m. Tiny doses of BT produce localized microparesis of the orbicularis oris m. reducing dramatically perioral lines and also giving a pleasant pseudoeversion of the lip, with enhancement of the vermilion contour (48). The patient is asked to pucker and the adjacent areas of muscle contractions are marked. It is recommended to inject low doses and, superficially, above the vermilion ridge in the area of muscle contraction adjacent to the creases, away from the oral commissures and Cupid’s bow. Caution is required for musicians who play wind instruments, professional singers, speakers, or actors, because of the chance to have difficulties with lip proprioception after treatment. The total dose varies from 4 to 10 U of Botox 1 (26) and 4 to 12 U of Dysport 1 (25).

Mentalis and Depressor Angulis Oris

Mentalis m. cause wrinkles giving the chin a dimpled or “cellu
litic” aspect (Fig. 51.9). These muscles can be treated with one injection in the midline or two injections in each side of the insertion of these muscles at the point of the prominence of the chin (Fig. 51.10), with good results (Fig. 51.11) (46). Deep injections are suggested because of the reasonable amount of fat that exists in the chin area (52). The total doses of 4 to 10 U of Botox 1 (26) or 10 to 20 U of Dysport 1 (25) are recommended. The depressor angulis oris m. is responsible for lowering the corner of the mouth; this worse the nasolabial fold, producing the so-called “marionette” lines and thus giving a negative expression to the patient (Figs. 51.10 and 51.11). These muscles can be treated with injections of BT at the border

Figure 51.9 “Cellulitic” aspect of the chin before treatment. Figure 51.10 Treatment of mentalis with 3 U of botulinum toxin on each side. Figure 51.11 The same patient as in Figures 51.9 and 51.10, after botulinum toxin treatment of the mentalis. The depressor angulis oris was not treated.

20. Pena MA, Alam M, Yoo SS. Complications with the use of

Botulinum Toxin Treatment. 2nd edn. Oxford: Blackwell
Science, 2003:422-437. 33. Wieder JM, Moy RL. Understanding
botulinum toxin. Surgical anatomy of the frown, forehead
34. Steiner D. Botulinum toxins: types and subtypes. In:
Hexsel DM, Almeida AT, eds. Cosmetic Use of Botulinum
Botulinum toxin type A: history and current cosmetic use in
the upper face. Dis Mon 2002; 48:299-322. 36. Benedetto AV.
The cosmetic uses of botulinum toxin type A. Int J Dermatol
Pharmacological weakening of extraocular muscles. Invest
Botulinum toxin type B for dynamic glabellar rhytides
refractory to botulinum toxin type A. Dermatol Surg 2003;
Complications and adverse effects: diagnosis and treatment.
In: Hexsel D, Almeida AT, eds. Cosmetic Use of Botulinum
Kiene K, Carruthers J. Botulinum A exotoxin use in clinical
Louarn C. Botulinum toxin A and facial lines: the variable
Carruthers J, Carruthers A. Botulinum toxin (Botox)
chemodenervation for facial rejuvenation. Facial Plast Surg
Asymmetrical smiles corrected by botulinum toxin serotype
A. Dermatol Surg 2007; 33(1 Spec no.):S32-S36. 44. Finn JC.
Botulinum toxin type A: fine-tuning treatment of facial
M, Bento RF. Botulinum toxin in facial palsy: an effective
treatment for contralateral hyperkinesis. Plast Reconstr
Surg 2007; 120:917-927. 46. Carruthers J, Fagien S,
Matarasso SL; Botox Consensus Group. Consensus
recommendations on the use of botulinum toxin type a in
facial aesthetics. Plast Reconstr Surg 2004; 114(suppl
Aplicacções não-classicas. In: Kede MP, Sabatovich O, eds.
Dermatologia Estetica. Rio de Janeiro: Atheneu,
botulinum A toxin in the mid and lower face and neck.
Dermatol Surg 2003; 29(5):460-476. 49. Carruthers J,
Carruthers A. The adjunctive usage of Botulinum toxin.
wrinkles. In: Hexsel D, Almeida AT, eds. Cosmetic Use of
Kadunc BV, de Almeida ART, Vanti AA, et al. Botulinum toxin
A adjunctive use in manual chemoabrasion: controlled
long-term study for treatment of upper perioral vertical
INTRODUCTION

As people live longer and healthier lives, more seek physicians to help them maintain and restore a more youthful appearance.

A large component of the skin’s natural aging process is manifested by volume loss. Contour changes and rhytids occur secondary to atrophy of soft tissues and loss of skin resistance as dermal collagen, hyaluronic acid, and elastin are depleted. Traditionally, rejuvenation has been achieved with surgical resection of redundant skin, namely through “face lift” or “eye lift” procedures. Today, a multitude of minimally invasive procedures, of which soft tissue augmentation is one, produce significant rejuvenation without the risks, downtime, and expense of major surgery. Smooth, symmetric facial contour may become disrupted by either natural disease, such as acne, or environmental causes, such as sun exposure, or trauma, or merely by the process of aging. Scars caused by acne or trauma leave depressions of various depths that can be improved using soft tissue fillers. Depressions of an entire cosmetic subunit may be caused by diseases such as HIV lipodystrophy or morphea. Fine rhytids, particularly perioral and periorcular lines, can be
caused by excessive actinic damage. Normal lines of facial
expression become accentuated with age. Injectable soft
tissue augmentation materials available
for use in the United States have proliferated during the past
five years. In addition to bovine collagen and autologous
fat, physicians can now choose between numerous other
options, including hyaluronic acid derivatives, poly-L-lactic
acid (PLLA), injectable calcium hydroxylapatite (CaHA), poly
methylmethacrylate (PMMA) microspheres, and human,
bovine and porcine collagen. This chapter provides an
overview of the currently available dermal fillers that are used for augmentation of superficial
contour irregularities and subdermal fillers and soft tissue
implants that correct contour defects where more volume is needed.

HISTORICAL ASPECTS
The search for an ideal dermal filler for the correction of facial
lines and wrinkles has spanned a century. The first organic
injectable filler was injectable paraffin, first used at the turn of
the 20th century. This material was significantly complicated
by the appearance of paraffinomas and was abandoned (1).
Subsequently, in the 1960s, the Dow Corning Corporation
(Midland, Michigan, U.S.) introduced a form of liquid silicone
(medical grade 360) for the correction of facial
deformities,

lines, and wrinkles (2). Complications were minimal with the
use of the “microdroplet” technique, where silicone was
injected in small aliquots through a fine-bore needle. Unfortunately, the lack of uniformity in silicone
preparations, with the use of impure and adulterated
silicones, resulted in several severe complications (3). These complications, as well as the lack of approval for
silicone by the FDA, significantly limited silicone use in
the United States. In the 1970s, research into collagen
production led to a bovine formulation that could be placed
into a syringe and injected. Injectable bovine collagen was
introduced into the market in 1981 by the Collagen
Corporation (Palo Alto, California, U.S.) (4-8). Bovine
collagen is currently marketed by Inamed Aesthetics (Santa
Barbara, California, U.S.) as Zyderm and Zyplast, and is
characterized by easy administration, safe, and effective
short-term tissue augmentation. Injectable bovine collagen
equivalents are also available in Japan (Kokenatelocollagen
implant, Koken Co, KTD, Tokyo) and Europe (Resoplast, Rofil
Medical International BV, Breda, The Netherlands), all of
which have similar indications to Zyderm and Zyplast
collagen. However, the incidence of allergic responses to
bovine collagen products and their limited longevity have
fueled the continual search for a more ideal dermal filler
product (9-11). Human collagens, Cosmoderm and Cosmoplast,
have largely replaced treatment with bovine collagen due to
the lack of need for skin testing. A readily available
augmentation substance is the patient’s own dermis and fat.
Early in the 20th century, fat grafts were utilized to fill
volume after trauma. However, excising and transplanting
fat still represented a major procedure, which in many
cases did not have long-lasting effects (12-17). Neuber was
the first to report use of autologous tissue for
subcutaneous augmentation through the use of dermis and fat
(18). Dermis and fat have varying degrees of resorption
after implantation, rendering unpredictable outcomes (19).
The modern use of fat as a filling substance dates to its
reintroduction by Fournier with the “microlipoinjection”
technique in the late 1970s (20). The longevity of contour
correction after autologous fat injection is highly
variable. Duration of correction is dependent on a variety
of factors including whether fat is fresh or frozen,
viability of fat cells, harvesting and injection
techniques, amount of fat injected, location of recipient
site, and type of defect treated. Data by Coleman suggest improved duration of correction with autologous fat transfer (21). In 1957, Spangler first published his studies on the use of “fibrin foam” to treat depressed scars (22). On the basis of this work and modifications by Gottlieb (23), a new product, Fibrel (Mentor Corporation, Santa Barbara, California, U.S.), was developed in 1985. Fibrel is a mixture of epsilon-aminocaproic acid, gelatin powder, and plasma from the patient. The gelatin forms a scaffolding upon which new collagen synthesis occurs. Although venipuncture and centrifugation of the patient’s blood made Fibrel preparation tedious, reported results were generally favorable (24–26). Nonetheless, a corporate decision was made by the Mentor Corporation to discontinue marketing of the product, which at the current time remains unavailable. The search for an ideal, injectable, soft tissue filler continues. A number of new products have appeared worldwide in the last two decades and new additions to the repertoire of dermal and subdermal fillers continue to grow each year. Many of the currently available injectable filler include biologically compatible agents, such as hyaluronic acid gels (Restylane, Perlane, Juvederm, Hylaform, Puragen), human fibroblasts (Isolagen), fibroblast-derived human collagen (Cosmoderm, Cosmoplast), fascia lata (Fascian), acellular human collagen (AlloDerm, Cymetra), elastin, and other human dermal products. Others have introduced substances such as Dextran (Reviderm Intra), polyethylene beads (Profill), silicone polymers (Dermagen), polymethylmethacrylate (Artecoll), calcium hydroxyapatite (Radiesse), or poly-lactic acid (New-Fill/Sculptra) to increase duration of correction. Balazs and Denligner established that insoluble, injectable, cross-linked hylan gels derived from hyaluronic acid exhibited a prolonged residence time in soft tissues and were as biocompatible as natural hyaluronan (27). Hylan B, first developed in the mid-1980s, is produced by introducing sulfonyl-bis-ethyl cross-links between hydroxyl groups of the polysaccharide chain of hyaluronan. Hylan B gel has a number of attributes that make it a favorable intradermal injectable implant material. It is water insoluble, resists degradation, and unlikely to migrate. The high water content mimics the natural hydrating function of native hyaluronan in the skin. The physical properties of hyaluronic acid gels are controlled by the molecular weight and the concentration of the material and by the degree of cross-linking (28). The most commonly used sources of hyaluronic acid are rooster combs (Hylaform), bacterial cultures (Restylane, Juvederm), as well as human umbilical cord, vitreous humor, tendons, and skin (29). PMMA was first synthesized in 1902 by the German chemist
Rohm and was patented as Plexiglass in 1928. It has had medical applications since 1945, commonly used in bone cement, intraocular lenses, dental prostheses, and repair material for craniofacial surgery. In addition to being biocompatible and immunologically inert, PMMA has never demonstrated degradation or carcinogenicity (30,31). The initial product tested, Arteplast, was heterogeneous, containing various PMMA monomers, spheres of various sizes and even some impurities. It led to several cases of granuloma formation, with swelling and inflammation. Artecoll (formerly ArteFill), which has been available in Europe for a decade, contains only smooth microspheres of 30 to 40 mm in size, and 99% of the remaining monomers have been removed during processing. These changes in the product size and uniformity of particle composition have resulted in a significantly decreased incidence of granuloma formation (32). In 1971, Robert and William Gore developed expanded polytetrafluoroethylene (e-PTFE) as an expanded fibrillated form of Teflon (PTFE). Teflon was first used as a vascular prosthesis in bypass surgery (33–43) but rapidly found uses in a variety of other surgical procedures, such as the treatment of facial lines and wrinkles and lip augmentation. It was approved for use in facial and reconstructive surgery in 1993. Advanta (Atrium Medical Corporation, Hudson, New Hampshire, U.S.) is one of the newer versions of these products. It is a dualporosity e-PTFE that is marketed as a softer, smoother implant that comes in a larger diversity of shapes and sizes. It became available in 2001, with studies by Hanke (44) demonstrating encouraging results in the treatment of marionette lines (the vertical grooves extending downward from the oral commissures to the mental area), nasolabial folds, and lip augmentation. Alloderm (LifeCell Corporation, Palo Alto, California, U.S.) is acellular human cadaveric dermis, which has been freeze-dried. It is processed as sheets and has been widely used in the treatment of full-thickness burns, blistering conditions such as epidermolysis bullosa, and in reconstructive surgery for patients with urinary incontinence. It is also used as an implant in soft tissue augmentation procedures such as rhinoplasty, lip augmentation, glabellar contouring, and scar revision (45,46). Cymetra (LifeCell Corporation) is the injectable form of Alloderm. Both Cymetra and Alloderm have been available since the mid-1990s. Most recently, two novel filling substances, Radiesse and Sculptra, which are considered stimulatory fillers, have been introduced into the filler market. These two fillers are considered “stimulatory fillers” as they induce a fibroblastic response that results in the formation of new collagen and connective tissue. This
allows the clinical effects to last for a prolonged duration, which has been reported to range from 12 to 36 months. Radiesse (Bioform, Franksville, Wisconsin, U.S.) is composed of CaHA microspheres suspended in polysaccharide gel. It has been utilized as a soft tissue filler for augmentation of the nasolabial folds, zygomatic region, lips, under-eye region, and as a nonsurgical rhinoplasty treatment to improve nasal contouring. PolyL-lactic acid (PLLA, Sculptra, Dermik, BridgeWater, New Jersey) was initially approved by the FDA for the correction of facial lipoatrophy in patients with HIV infection. PLLA was approved for nasolabial folds in non-HIV patients in 2009. It was utilized for the correction of fine lines, wrinkles, folds, and creases, as well as for augmentation, repositioning, and contouring of the cheeks, chin, and lips. The PLLA microparticles are absorbed slowly over a period of several weeks after injection, but the newly generated collagen and clinical effects last for at least 18 to 24 months.

INDICATIONS Fillers either replete defects or augment existing facial structures. Beginning with the upper third of the face, fillers can be used to fill in depressions in the forehead from acne scars. Temporal depression that is associated with age may also be augmented, and lines of expression such as glabellar frown lines can be diminished. Filling the upper third of the face is potentially more challenging because of the concurrence of dynamic creases in this region. In the periorbital region, fillers may be used for “etched-in” crow’s feet, with some practitioners advocating using fillers in the lateral eyelid as a substitute for surgical brow lift. In the lower eyelid, restoring this subunit’s volume rather than removing fat has become a guiding principle in restoration of the upper face. The appropriate use of a filler can remove the “double bubble” between the lower eyelid and the upper cheek as well as camouflage the nasojugal groove. In the midface, fillers can be used to correct traumatic or acne scars. The types of acne scars most amenable to treatment are either atrophic or rolling scars. Sinking and effacement of the malar eminence and hollowing of the cheeks can also be corrected with fillers. While the malar region can be directly built up, often merely adding volume diffusely to the cheeks will increase the malar prominence. Cheek hollowing is commonly treated with fillers in patients with HIV lipoatrophy.

While the thinness of nasal skin may lead to a higher rate of
complications or unsatisfactory results with the use of fillers, experienced practitioners can effectively fill scars and alter the profile of the nasal dorsum. The most popular anatomic areas for injectable soft tissue augmentation, and the ones with the most prolonged results, are the nasolabial folds and the marionette lines, also known as “smile” lines. Deepening of the nasolabial folds, which are in the transition zone between the midface and lower face, creates an abnormal demarcation between these two major facial regions. The desire of even young patients to fill these lines reflects the aesthetic aspiration for a smooth facial contour. A secondary effect of filling these lines is to increase the profile prominence of the medial cheeks. The lower face is dominated by the lips. Fine vertical rhytids of the upper lip can be diminished with judicious use of fillers. Age-related effacement of both the upper and the lower lip margins, as well as thinning of the lips, can also be corrected. Many types of fillers can be used in the lips to achieve a natural fullness, and other fillers can be used to redefine the effaced vermilion border. Marionette or “drool” lines are a combination of expression, aging, and genetics.
While a variety of fillers can be used to reduce them, in older individuals or those with advanced actinic damage and sagging, filling them may create ripples lateral to the injection area. A sign of aging in the lower face is unevenness of the jawline. This is caused not only by loss of skin elasticity and gravity but also because of resorption of the mandible. Selective injection of the appropriate filler can create a smooth and robust mandibular line. Although permanent implants are the procedure of choice for increasing chin projection, using fillers can temporarily create a prominence at this point. Use of fillers for this indication may also be useful in allowing the patient to determine if he or she desires a permanent implant.

TECHNICAL ASPECTS AND OVERVIEW OF COMMONLY USED PRODUCTS

Bovine Collagen

Bovine collagen was the first device approved in 1981 for soft tissue augmentation in the United States (47). Since this time, over 1 million patients have been treated. The results typically last for three to four months. The desire for a longer duration of correction has lead to a decrease in the use of collagen injections.
as a dermal filler substance. The material is derived from
isolated hides of domestic cattle (48). Given the 1% to 3%
risk of hypersensitivity, bovine
 collagen requires pretesting for hypersensitivity
reactions. Internal postmarketing surveillance by Inamed showed a 3% preva
lence of circulating antibodies to bovine collagen. Two
skin tests,
performed at two to four weeks, are the standard assessment
recommended (49,50). Positive skin test is defined as
erythema,
induration, tenderness, or swelling that persists more than six
hours after implantation, and typically arises two to three
days
after implantation as a delayed hypersensitivity reaction.
Patients are typically very upset in the event of a
hypersensitivity
reaction. Therefore, skin testing and waiting the entire
duration
of follow-up prior to injection are imperative prior to
treatment.
Treatments for hypersensitivity reactions include
intralesional
steroids, topical tacrolimus 0.1% ointment b.i.d., systemic
steroids, or systemic cyclosporine (51,52). Contraindications
to injectable bovine collagen include anaphylactic event of
any cause, prior hypersensitivity to bovine collagen,
lidocaine sensitivity, pregnancy or lactation, and any
signs of infection at the injection site. Zyderm I consists
of 3.5% bovine collagen suspended in sodium chloride with
0.3% lidocaine. It contains 95% to 98% type I collagen and
2% to 5% type III collagen. It is designed to be injected into papillary dermis for superficial rhytids and is useful around eyes, lips, glabellar region, and cheek. Zyderm II consists of 6.5% bovine collagen suspended in sodium chloride with 0.3% lidocaine and is slightly more viscous than Zyderm I. It is injected deeper than Zyderm I (into upper reticular dermis) for the treatment of more coarse rhytids as well as for acne scarring and lip augmentation. Zyplast, like Zyderm I, is composed of 3.5% bovine collagen suspended in sodium chloride with 0.3% lidocaine. Zyplast is cross-linked with glutaraldehyde to form a latticework and a more viscous compound. It is less immunogenic than either Zyderm I or II and is more resistant to degradation. Zyplast is injected into the mid to deep reticular dermis for treatment of deeper rhytids and contour defects, including marionette lines and significant volume lip augmentation. Human Collagen Cosmoplast and Cosmoderm are human-derived collagen products from long-standing fibroblast culture lines. They are similar to bovine collagen in injection technique; however, the significant advantage of human collagen includes the lack of antigenicity that makes skin pretesting unnecessary. Cosmoplast and Cosmoderm contain lidocaine that decreases discomfort associated with injection. For the injection of Cosmoplast and Cosmoderm, the skin should be held taut by the free hand with the patient’s head supported by back/neck rest. The needle should be angled parallel to the skin for superficial lines and wrinkles with a gradually greater angle for deeper lines and grooves. Serial punctures are generally made, along or adjacent to the wrinkle being treated, with small aliquots of material injected through each puncture site. Gentle massage can mold the collagen at the treatment site to ensure the final result is even and smooth. For deeper rhytids, the needle may be placed perpendicular to the skin surface. Care must be taken to ensure placement at the base of the furrow rather than at the shoulder of overhanging redundant skin. With the threading technique, a longer needle may be used and advanced for some distance under the rhytid with injection as the needle is withdrawn. Threading is utilized more routinely with hyaluronic gels as well as more viscous products, including Zyplast and Cosmoplast. Injections at the medial side of the nasolabial fold and marionette lines should be performed to avoid further heaviness laterally. Crow’s feet should be approached with caution to avoid overfilling and lumpiness. The orbital area is highly prone to bruising. Local pressure prior to injecting will help prevent bruising. Hyaluronic Acid Hyaluronic acid (hyaluronan) is a naturally occurring glycosaminoglycan biopolymer, which is a component of all connective tissues.
It exhibits no species or tissue specificity because the chemical structure of the polysaccharide is uniform throughout nature. Therefore, there is no potential for immunologic reactions to hyaluronan in humans. In nature, the primary biologic function of hyaluronan is to provide stabilization to the intercellular structures and to form the elastoviscous fluid matrix in which collagen and elastic fibers become embedded (53). In addition, the hyaluronan matrix regulates cell movement and functions, and plays a role in developing and remodeling tissues (54). Hyaluronan has a very large average molecular weight (4–5 million Da in all human tissues) and consists of repeating disaccharides of D-glucoronic acid and N-acetyl-D-glucosamine arranged in long, unbranched polyanionic chains (53–56,30). These molecular chains form highly hydrated random coils that entangle and interpenetrate each other, producing highly elastoviscous solutions (53–56,30). The amount of hyaluronic acid in the skin progressively decreases with age (55), and results in reduced dermal hydration and increased skin folding (56). With its unique elastoviscosity, immunologic compatibility, and natural role as a structure-stabilizing, space-occupying, cell-protecting connective tissue matrix filler, hyaluronan would at first sight appear to be an ideal material for soft tissue augmentation (30). However, with a tissue half-life of only one to two days, hyaluronan turns over too quickly to be of value in this regard (57). Exogenous hyaluronic acid is rapidly cleared from the dermis and degraded in the liver to carbon dioxide and water. For this reason, investigators sought modifications of hyaluronan that would render it more stable following injection while preserving its properties of biocompatibility. Stabilized hyaluronic acid gel fillers, first evaluated in 1998, provide good efficacy with a considerably longer duration of action than the first generation of dermal fillers, namely, bovine and human collagen. The first injectable stabilized hyaluronic acid filler approved by the U.S. Food and Drug Administration, a non-animal-stabilized hyaluronic acid (NASHA) 100,000 gel particles/mL filler, was introduced in the United States in 2003 and has been shown to be safe and effective while providing a much longer duration of action than that of collagen fillers. The use of hyaluronic acid gel fillers has increased considerably since that time. They are currently the most commonly used injectable fillers by a wide margin. According to the American Society for Aesthetic Plastic Surgery, hyaluronic acid gels accounted for approximately 80% of the nearly 2 million soft tissue filler injections performed in 2006. The prolonged efficacy of stabilized hyaluronic acid gel fillers is attributed to
the cross-linking between hyaluronic acid polymers and to
the gradual absorption of water as the filler degrades.
Some data suggest that stabilized hyaluronic gels stimulate
collagen synthesis and inhibit collagen breakdown, which
may contribute to their effectiveness and long duration of
action (53-56,30,57-66). Injection Technique In general,
yaluronic acid products are injected into the dermis or
close to the dermal-subcutaneous junction (66-69).
Injections high in the skin, near the interface of the
epidermis and papillary dermis, are usually avoided as
superficial injection technique can result in visible
white, yellow, or blue nodules, which may be persistent.
Injections deep into the subcutaneous fat may result in
decreased efficacy of correction with the subsequent need
for larger volume injections. One injection technique for
hyaluronic acid is the linear threading technique (70-73).
Injections are administered using a threading technique
with the needle advanced along the line to be treated with
constant pressure on the syringe plunger as the needle is
withdrawn and advanced. Successive threads of injected
material are placed adjacent to previous injections until
the entire fold has been treated. After injection, massage
of the product, along the line of injection, can be
performed to ensure that the implant is smooth and uniform.
For lip enhancement, the technique should include first
defining the lip margin by gently injecting along the
vermillion border (74-76). A row of successive aliquots of
hyaluronic acid should be administered in five to six
treads for the lip margin (total volume of 0.3 to 0.4 mL
should be used for lip definition). The remainder is
injected, with the threading technique, along the wet line
of the red lip (the line at which the dry outer mucosa
meets the moist inner mucosa). Spreading is noted as the
hyaluronic acid spreads through the plane of injection.
Gentle massage should be performed throughout the treatment
to ensure uniformity and smoothness of the correction. For
treatment with hyaluronic acid products under the eyes and
in the glabellar space, injections should be performed
slowly, with limited injectant, to avoid intravascular
injection that can result in vascular occlusion as well as
bruising (77,78). Significant edema can occur for several
days after injection, and patients should be apprised of
this prior to injection (see further, Figs. 52.1-52.3).
Figure 52.1 (A,B) Pre- and post-hyaluronic acid injections
for nasolabial folds and marionette lines in a 60-year-old
woman.

Calcium Hydroxylapatite

Radiesse is composed of CaHA microspheres suspended in a
polysaccharide carrier that holds the microspheres in place until resorbed and fibroblast-driven collagenesis takes place (79–88). Injectable CaHA consists of a 30% concentration of 25 to 45-mm CaHA spherical particles suspended in a sodium carboxymethylcellulose gel (79–88). CaHA microspheres remain in place to act as a scaffold that promotes soft tissue ingrowth. Fibroblasts lay down a collagenous extracellular matrix (79–88). As the matrix is deposited, the implant becomes integrated into the surrounding soft tissue, which provides for its long-lasting effects (79–88). Implant palpability diminishes over time as CaHA is integrated into the surrounding soft tissue (79–88). It is FDA approved for two facial soft tissue augmentation indications: treatment of moderate-to-severe facial lines and folds, such as nasolabial folds, and for correction of facial soft tissue loss resulting from HIV-related lipoatrophy (79–88). In previous studies of soft tissue augmentation in facial applications, Radiesse has been demonstrated to last up to a year or more in most patients (79–88). Collagen proliferation combined with the slow breakdown of the CaHA is believed to account for the prolonged effects observed when CaHA is utilized for soft tissue augmentation (81). The CaHA used in Radiesse is synthetic in origin. It is inherently biocompatible because it is identical in composition to bone mineral. Radiesse has been demonstrated to be nonobstructive in X rays, and
when placed in soft tissue has not demonstrated any heterotopic bone growth (79–88). In 2006, Radiesse gained FDA approval for use in facial aesthetics and in treating facial lipoatrophy associated with HIV (82). CaHA is radiopaque when injected as a bolus, but when utilized for soft tissue augmentation, the material is spread throughout the targeted area, making the material invisible on routine X rays (82). It can, however, be easily detected on MRI scans (82). Longevity of correction with CaHA is attributed to slow rate of dissolution, rapid rate of soft tissue ingrowth, and slow rate of particle dislocation (82).

Figure 52.3 (A,B) Pre- and post-hyaluronic acid injections for lower eyelid tear trough in a 40-year-old woman.

Figure 52.2 (A,B) Pre- and post-hyaluronic acid injections for upper and lower lip volume loss in a 50-year-old woman.

Injectable CaHA is approved for correction of mild-to-moderate facial rhytids and for correction of facial wasting associated with HIV lipoatrophy. Additional off-label indications include correction of marionette lines and oral commissure, prejowl sulcus, cheek volume loss, and dorsal nasal deformities. It may also be injected into the glabellar fold, but with caution since there may be an increased risk of tissue necrosis, given the viscosity of the material. It may also be injected into the lips; however, there have been reports of lumpiness and nodularity, and possibly granulomas, following injection into the lips. For injection of malar and zygomatic regions, a 27-gauge 1.25-in. needle is utilized. Multiple linear threads are placed three-dimensionally in a double-fanning motion across the malar eminence. Crosshatching of material in multiple planes and depths is essential to provide optimal structural support. Target layers can be subdermis, subcutaneous, or periosteal. Multiple strands of the product are extended laterally across the zygoma, using the fanning technique, to accentuate its natural prominence. To avoid clumping of the material by the orbicularis oculi muscle, deposition of the material should not extend above the inferior orbital rim. Small volumes of CaHA are required during each thread deposition (0.05 mL per pass). Following injection, the implanted material can be easily massaged and molded to provide the desired end result and eliminate any possible palpable filler material. Typical volumes required for facial contouring of the malar and zygomatic regions range from 0.7 to 1.0 mL per malar area. For injection technique of the nasolabial folds, a fanning technique is utilized starting medially to the nasolabial fold with a depth of...
injection in the subdermal plane. The entry point is placed at the lowest point of the straight component of the nasolabial fold. Porcine Collagen Cross-Linked with GlymatriX Technology Dermicol-P35 (Evolence, Ortho Dermatologics, Los Angeles, California, U.S.) is a highly purified form of porcine type I collagen, which is a preferred medical grafting substance due to its nearly identical similarity to human collagen (89). The unique feature of Evolence is the cross-link with natural Dribose (GlymatriX technology) rather than glutaraldehyde or butanediol diglycidyl ether (BDDE), which renders the product significantly less antigenic and obviates the need for skin test prior to treatment (89). Evolence is designed to be injected deeper into the dermis where it forms a 3D cellular matrix, replacing the skin’s depleted collagen with new collagen (89). It is designed for correction of moderate to deep facial wrinkles, such as nasolabial folds and marionette lines (89). Evolence was officially taken off the U.S. market on November 3, 2009. Poly-L-Lactic Acid Sculptra (PLLA) is a stimulatory filler designed to be injected into the deep dermis or dermal-subcutaneous junction to treat lipodystrophy of the face and hands, HIV lipodystrophy (only current FDA approved indication), liposuction contour deformities, and atrophic lips (Figs. 52.4A and 52.5B) (90–98). It is a non-animal-derived PLLA that is biocompatible, biodegradable, and immunologically inert. PLLA is distributed freezedried and can be stored at room temperature, and is reconstituted 24 hours prior to injection in sterile water. Importantly, it is not intended for direct injection of rhytids (it is too bulky to be injected superficially), rather, it is intended to recontour the face, causing a 3D augmentation that serves to lift the face and stretch rhytids and soft tissue redundancies. PLLA is a sterile freeze-dried preparation composed of 24.5% sodium carboxymethylcellulose (an emulsifying agent), 34.7% nonpyrogenic mannitol (promotes osmosity), and 40.8% PLLA microparticles (90–98). Injection of PLLA into the subcutis results in subcutaneous volume restoration. The postulated mechanism of action includes a foreign body tissue response, leading to an increase in fibroblasts and subsequent neocollagenesis. PLLA gained FDA approval in 2004 for the treatment of HIV lipodystrophy (90–98). In 2009, PLLA gained FDA approval for correction of nasolabial folds. Patients should be advised that between three and six treatment sessions will likely be required, with a definable photographic difference occurring between two and three treatments. Although the precise duration of volumetric correction is unknown, results seen after injection with PLLA have been demonstrated to last for up to two and three years. Gradual
resorption is thought to occur over a twoand three-year period with eventual breakdown of the material to lactic acid, found naturally in the body. Injection Technique The appropriate reconstitution of the material and continuous mixing is essential for obtaining optimal results with PLLA injections. The material should be reconstituted with at least 3 to 5 mL of sterile water on the night before the procedure (93,94). On the day of the procedure, an additional 2 to 4 mL of 1% lidocaine is added for a total of 5 to 9 mL dilution (90–98). The material is drawn into a 3-mL syringe with an 18-gauge needle that is then changed to a 25-gauge 1¼-in. needle for injection (90–98). Prior to injection, the material is vigorously shaken (preferably with the use of a vortex device) to obtain a uniform translucent suspension (93,94). This should be done immediately prior to injection and at any point during the procedure when the product appears to have settled out of suspension (93,94). The physician’s nondominant hand is utilized to stretch the skin, avoiding hand positioning in target of the advancing needle (93,94). The suspension is injected into the outlined areas using several of the predrawn dots as injection points (93,94). The needle is advanced in even fan-like sweeps in the upper subcutaneous fat layer just below the dermal-subcutaneous junction (93,94). The material should be injected as evenly as possible during needle withdrawal (93,94). Movements should be fluid and expeditious with constant motion until injection is complete to minimize needle blockage of uneven material dispersion (93,94). Of the six to eight marked anesthesia injection sites, only three to four need to be utilized for the injection of PLLA (93,94). As injection of PLLA into the dermis can result in dermal nodules, injection should cease prior to pulling the needle upward from the dermal-subcutaneous junction in the mid to superficial dermis (93,94). Focal blanching and outpouching of the skin may be a sign that injection is too superficial and should be followed by firm focal massage if observed (93,94). Treatment is followed by 10 minutes of firm massage to the treated areas to ensure a smooth and natural appearing correction (93,94). On average, a patient with moderate-to-severe HIV lipodystrophy will require approximately one vial of PLLA injected to each cheek per injection session; however, treatment volumes vary significantly from patient to patient. A patient with minimal subcutaneous loss due to lipoatrophy of aging
may only require one half vial to each side. A total of three to six treatment sessions are typically required for patients with both HIV lipoatrophy and lipoatrophy of aging to achieve full correction (see further, Figs. 52.4 and 52.5).

Polymethylmethacrylate

Injectable PMMA is composed of a suspension of 20% non resorbable PMMA and 80% bovine collagen (99–101). PMMA is a chemically inert and biocompatible synthetic implant material widely used in bone implants, intraocular lenses, and dental implants. In the prepackaged injectable filler, PMMA is present as 30 to 50-mm spherical particles. The injectable filler consists of 20% by volume PMMA microspheres suspended in a water-based carrier gel composed of partially denatured 3.5% bovine collagen, 92.6% buffered, isotonic water for injection, 0.3% lidocaine hydrochloride, 2.7% phosphate buffer, and 0.9% sodium chloride. The bovine collagen source is from an isolated, U.S.-bred calf herd monitored according to both FDA and USDA guidelines. Injectable PMMA implants are provided in syringes containing 0.8 and 0.4-mL fill volumes. Skin tests of the bovine collagen gel only are provided in syringes containing a 0.3-mL fill volume for allergy prescreening. After injection, the collagen carrier is degraded by the body within one to three months, and then new collagen is deposited by the host to encapsulate and engulf the remaining scaffold of PMMA particles (99–101). The PMMA microspheres are nonbiodegradable and too large for macrophage phagocytosis. The in vivo persistence of PMMA particles is extremely long lasting to permanent. Injectable PMMA is FDA approved for the correction of nasolabial folds (99–101). Other off-label indications for this material are deep facial
wrinkles at other sites on the face, as well as other soft tissue contour deficiencies or deformities. Injectable PMMA is most appropriate for patients with well-defined deeper facial wrinkle lines and little excess skin laxity. Patients with sebaceous skin and large pore size, or those with

Figure 52.4 (A,B) Preand posttreatment with PLLA injections for HIV lipoatrophy of the malar areas in a 60-year-old man. Extremely thin and loose skin, are poor candidates, in whom the implant may be palpable, result in a shiny skin appearance, or even be directly visible after placement. In October 2006, the FDA approved injectable PMMA (ArteFill) for the correction of nasolabial folds in men and women (99–101). The efficacy and safety evaluation period in the data submitted for FDA evaluation was 12 months. Further data on longer-term efficacy and safety were submitted to the FDA in March 2007. Adverse Events with PMMA The most common short-term side effects include injection-related bleeding, bruising, erythema, and edema (99–101). Because of its long-lasting effect, PMMA is less forgiving of faulty technique than other injectable fillers. If gaps are apparent in the initial correction, such uneven distribution may be correctable by subsequent injections into the gaps. Excessively deep injection results in ineffective treatment, and further treatments may be required to create adequate correction. Implantation done too superficially may cause, in addition to visible disfigurement, pruritis and erythema, which can be treated with topical corticosteroids or intradermal corticosteroid injections. Papules and areas of excessive fullness due to incorrectly placed or excess injectant, as well as true granulomas, have been reported (99–101). Both of these may respond well to injection of triamcinolone acetonide (20 mg/mL). The corticosteroid should be injected with care to avoid atrophy and to ensure that only the locus of PMMA is targeted. It is reportedly prudent to administer very small amounts of low concentration triamcinolone acetonide (e.g., 0.05–0.1 mL per treatment session of 10 mg/mL triamcinolone acetonide) directly into the area of excess fullness or inflammation. Use of a small syringe and fine needle (e.g., a BD-II 0.3-mL syringe with a swaged-on 31gauge needle) can provide maximal control of injection rate and minimal discomfort to the patient. Treatment can be repeated every three to four weeks until the desired result is achieved. Areas of undesired fullness due to excess injectant or due to treatment sessions more frequent than every 8 to 16 weeks are especially common in the lips, and for this reason treatment of the lips is a contraindication (99–101). Figure 52.5 (A,B) Preand post-poly-L-lactic acid
injections to the malar areas in a 59-year-old woman with non-HIV lipoatrophy. Granulomas have been described with Artecoll more so than ArteFill (99-101). Because of the reduction in the number of small particles in ArteFill, it is hypothesized that granulomas will be less frequent with ArteFill than with Artecoll. Granulomas show a characteristic clinical appearance. They typically occur a number of years after Artecoll injection, sometimes associated with a procedure, affect all the treated areas even usually, and have a hard texture and bluish appearance if superficial. Sometimes they respond well to intralesional triamcinolone acetonide, but at other times they are very persistent and resistant to therapy. The possible occurrence of this complication is the main potential drawback to therapy with ArteFill. It is wise to obtain a biopsy in all cases where a granuloma is suspected, to confirm the diagnosis and to determine whether the granuloma, if present, is related to ArteFill or to another filler (e.g., silicone) or to another cause, that is, injection. The pathology report will also help to guide the most appropriate treatment.

Injection Technique
The FDA currently requires a skin test prior to PMMA. Four weeks prior to treatment, the patient should receive a 0.1-mL intradermal injection of collagen into the volar forearm to determine sensitivity to the treatment material. The patient should observe the test site daily in the four-week test period and notify the physician immediately if any possible positive or equivocal responses occur. A positive response consists of erythema of any degree, induration, tenderness, and swelling, with or without pruritus. Patients developing a positive response should not be treated. An equivocal response is one in which there is no localized skin reaction, but the patient does develop a possible systemic reaction such as rash, arthralgia, or myalgias that occurs at any time during the four-week observation period. If an equivocal response is observed, a second injection in the opposite arm is required. Patients demonstrating a positive or equivocal response in the second test should not be treated. Since injectable PMMA contains 0.3% lidocaine, treatment without additional anesthesia is possible. However, topical anesthesia or an infraorbital local anesthetic block can be
applied prior to treatment. Injectable PMMA is supplied in 0.8 and 0.4-mL syringes.

A 26-gauge 5/8-in. needle is recommended for use. A 25-gauge 1-in. needle may be substituted as the extra length enables a smaller number of needle insertions. The syringe must be brought to room temperature prior to injection. Prior to injection, a small amount of material should be extruded from the tip to ensure that there is no blockage. Postoperative ice packs may be used. PMMA is injected into the dermal-subcutaneous junction utilizing the “tunneling” or “linear threading” technique. Depending on the thickness of the skin and depth of the fold receiving correction, the needle is inserted at a 20° to 40° angle beneath the wrinkle. Proper needle placement will result in the needle outline being visible. If the needle is placed too superficially, the needle will be visible and blanching will be observed on injection. In this event, injection should then immediately cease and proper placement reestablished. If any product was inadvertently injected, it should be massaged out of the tract. If the needle is placed too deep, a pop will be felt as the subcutaneous tissue is entered and the needle outline is no longer visible. Injection into the subcutaneous tissue
results in

65. Narins RS, Dayan SH, Brandt FS, et al. Persistence and improvement of nasolabial fold correction with nonanimal-stabilized hyaluronic acid 100,000 gel particles/mL filler on two retreatment schedules: results up to 18 months on two retreatment schedules. Dermatol Surg 2008; 34(suppl 1):S2-S8; discussion S8.

66. Carruthers J, Carruthers A. A prospective, randomized, parallel group study analyzing the effect of BTX-A (Botox) and nonanimal sourced hyaluronic acid (NASH, Restylane) in combination compared with NASH (Restylane) alone in severe glabellar rhytids in adult female subjects: treatment of severe glabellar rhytids with a hyaluronic acid derivative compared with the derivative and BTX-A. Dermatol Surg 2003; 29:802-809.

INTRODUCTION

Mankind’s interest in using electricity to treat ailments has a very long history. The electric torpedo fish was used to shock people to treat headache and gout over two centuries ago (1).

The importance of the electrical control of cell physiology became apparent from the famous experiments of Galvani. His epic work on frog nerve-muscle preparations included the use of lightning rods connected to nerves via wires resulting in leg muscles twitching during a lightning storm. Similarly, static electricity generators creating sparks that activated nerve conduction also caused muscle to twitch. Equally important was his observation during a public experiment in Bologna in 1794 that the cut end of a frog sciatic nerve from one leg stimulated contractions when it touched the muscles of the opposite leg. Collectively, these experiments provided definitive evidence for “animal electricity” (bioelectricity). In addition, with this last experiment, Galvani had demonstrated the existence of
the injury potential. An injury potential is a steady, long-lasting direct current voltage gradient induced within the extracellular and intracellular spaces by current flowing into and around an injured nerve. This discovery predated the finding of the better known action potential, which is a rapid, self-regenerating voltage change localized across the cell membrane (2). In parallel with Galvani’s work, Volta was developing these ideas to create the first battery. Recognizing the parallel with animal electricity, Volta used batteries therapeutically to treat deafness. Others, however, were less rigorous scientifically in the promotion of electrical-based therapies. For more than a century, there has been widespread and irrational use of galvanism and static electricity. Static electricity generators were in common use and were promoted and sold because they created an allegedly beneficial “electric air bath” or a “negative breeze.” The electric air bath involved charging the patient and using a grounded electrode to draw sparks from a chosen part of the body. The negative breeze allegedly was helpful in treating insomnia, migraine, and bald
ness. With the electrode polarity reversed, a “positive breeze”

was used to treat kidney disease (2). Naturally occurring electric currents at human skin wounds were measured by a German physiologist Emil Du Bois-Reymond over 160 years ago (Fig. 53.1). As a founder of modern electrophysiology, he documented in detail the electric activities associated with nerve excitation, muscle contraction,

and wounds. While electric activities in the nervous system and muscles are prevailing concepts in science, however, the wound electric fields have remained very poorly understood and largely ignored until recently. Modern technologies, such as vibrating probe, glass, and platinum microelectrodes have been used to confirm and provide significant understanding of the wound electric fields. Therapeutic applications of electrotherapy may be generally grouped into two areas: electric neurostimulation and biomimetic electric stimulation. Electric neurostimulation applications are well known and relatively well studied. Electric neurostimulation devices can either be implanted inside the body such as the cardiac pacemaker or be applied to the skin surface such as transcutaneous electrical nerve stimulation (TENS) devices. While better mechanistic understanding has been achieved with electric neurostimulation applications, much less well understood is the biomimetic electric stimulation that utilizes very low electric potential and current intensity for tissue healing and regeneration. In contrast to electric neurostimulation, the microamperage of electricity used in biomimetic electric stimulation is typically below the threshold of human sensory detection. This threshold is similar in magnitude to the body’s own bioelectricity, hence the terminology biomimetic electric stimulation. While electric neurostimulation offers a surprisingly wide range of therapeutic applications and possibilities, the potential of electric biomimetic stimulation is equally promising due
to its tissue regenerative ability. Historically, there have been periodic interests in the bioelectricity and use of biomimetic electricity for therapeutic applications. However, because of the separate research paths between the biophysics and modern cellular biology and molecular biology, a knowledge gap exists between the biophysical and biochemical research. It is well known that specific levels of electric current intensity can induce biological responses (3). There are some general thresholds (as approximate reference points) corresponding to different tissue responses to electrical current. The passage of a high electrical current (>100–200 mA) through the human body may result in serious injury or tissue damage such as cardiac excitation, fibrillation, or electrical burns. If greater than 1000 mA, the electric current may cause defibrillation or even fatality. Low to moderate electrical currents (1–20 mA) are generally considered safe and have been applied to patients for neuron stimulation for a wide variety of therapeutic applications (Fig. 53.2) (3–5). When an ultralow electrical current (10–1000 mA) is applied to a patient, the electrical stimulation of the skin tissue cannot be perceived by the patient because it is below the sensory detection threshold of the skin. Nevertheless, the biological responses of the tissue under the treatment are as profound as, if not more than, the neurostimulation by commonly known electrotherapeutic modalities. Therefore, the focus of this chapter is on less commonly known ultralow microampere electrical stimulation of tissues and its potential applications to cosmetic dermatology.

TRANSCUTANEOUS ELECTROTHERAPY AND DELIVERY ENHANCEMENT

Transcutaneous electrotherapy is one of the fundamental elements of physiotherapy practice and sports medicine with widespread applications including TENS, and interferential current, as well as microcurrent therapy for pain control and wound healing. Electrical devices and battery-powered patches are used for topical or transdermal drug administration via iontophoresis, and electrical stimulation in various medical practices such as pain and chronic wound management (6,7) and dermatology (8,9).

Ultralow Intensity Electricity Therapy It has been reported that direct electric currents ranging from 10 to 1000 mA increase ATP concentrations in the tissue and stimulate amino acid incorporation into the proteins of rat skin. Minimum current intensities of approximately 50 mA are necessary to obtain a maximal stimulatory effect on protein synthesis. When higher currents at a range above 1000 mA are applied, the current failed to increase ATP levels significantly. These stimulatory effects are maintained to a level of approximately 1000 mA (10). The application of specific low-intensity currents for the metabolic effects
implies a new area for exploration. The amino acid transport through the cell membrane, followed by the α-aminoisobutyric acid uptake, is stimulated between 100 and 750 mA. The stimulatory effects on ATP production and amino acid transport, apparently mediated by different mechanisms, contribute to the final increased protein synthesizing activity; DNA metabolism followed by thymidine incorporation remains unaffected during the course of current application. The effects on ATP production can be explained by proton movements on the basis of the chemiosmotic theory of Mitchell, while the transport functions are controlled by modifications in the electrical gradients across the membranes. The microcurrent treatment was reported to be more effective than conventional therapy for chronic Achilles tendinopathy in a randomized comparative trial (11). The healing processes of tendon tissue remain to be explored. BIOELECTRICITY Human body has its own innate electrical system that regulates body’s functions via communications among organs through the well-known neural system, and some less understood Figure 53.1 Endogenous wound electric fields—measurement of endogenous wound electric currents from a cut in his own finger by Du Bois-Reymond. Source: From Ref. 2.

Figure 53.2 Different electrical current intensities produce different biological responses. Ultralow electric current intensity in the range of 10 to 500 mA is known to have regenerative activity, whereas higher current intensities in 1 to 20 mA have neuron-stimulation activity. Above certain thresholds of electric current intensities, adverse effects such as cardiac excitation, fibrillation, or defibrillation may occur. (Note: these electric current intensities only serve as approximate reference points rather than precise threshold values.) cellular activities such as the bioelectricity associated with tissue regeneration (12). When injured, the body generates a low-level wounding electricity to facilitate the healing process, for example, human skin generates up to 10 mA/cm² of outward bioelectric current during healing, and common
Signaling pathways are able to steer cell movement in both electrical and chemical gradients (13,14). Most recently developed microneedle arrays are able to measure the transdermal skin potentials at multiple sites simultaneously. Bio-Electric Field Imager 1 detects and visualize electric potential at skin surface without direct skin contact, which will be discussed in detail in a later section. The measurable bioelectricity during the wound healing process has been described as the endogenous “skin battery” that pumps sodium ions from the exterior of the epithelium to the interior using the Na/K-ATPase located on the basal surface of epidermal cells together with Na⁺ channels on the apical surface with an outward electric current of about 10 to 100 mA/cm² and an electric potential gradient about 60 mV/mm around the wound (1). The bioelectric field and current can be detected within about 0.5 to 1 mm from the edge of the wound and last until the wound is re-epithelialized (2). For an intact epithelium (or skin), because of the Na⁺ transported inward is not completely balanced out by anion movement, an excess of positive charge accumulated results in positive potential of the epithelium membrane, that is, transepithelial
potential (TEP) as shown in Figure 53.3A. However, if the epithelium is perforated by a wound as shown in Figures 53.3B and C, the potential drives the current flow through the newly formed low resistance path generating an electric field with the negative pole at the wound and the positive under the unbroken epithelium or skin surrounding the wound that behaves just like a battery. Hence, the term “skin battery,” which is sometimes used to describe the bioelectricity phenomena influencing healing of a skin wound. As mentioned earlier, endogenous DC electric fields occurred naturally during skin injury was first demonstrated in wounds by Emil DuBois-Reymond over 150 years ago. He measured electric currents flowing out of a cut he made in his own finger as shown in Figure 53.1. In recent studies with various modern techniques such as microglass electrodes and vibrating probes, scientists confirmed a similar electric current flow in wounds in both the skin and cornea of several species including human skin (14). In cornea and skin, a laterally oriented, wound-induced electric field is generated instantaneously when the epithelium is damaged, and it persists until re-epithelialization restores the electrical resistance barrier.
function of the epithelium. These electric fields are estimated to be at least 40 to 50 mV/mm at cornea wounds and 100 to 150 mV/mm at skin wounds (2). Growing experimental evidence suggests an important role for such electric signals in directing cell migration in wound healing. Endogenous DC electric fields have also been measured during development and regeneration and after damage to nonepithelial tissues. These electric fields arise because of spatial and temporal variations in epithelial transport of charged ions such as Na\(^+\), K\(^+\), and Cl\(^-\), and spatial variations in the electrical resistance of epithelial sheets. Disruption of the endogenous electrical gradients during development induces skeletal and neural abnormalities. For example, it has been reported that the spinal cord responds to damage by generating large and persistent electrical signals. Conceivably, externally applied electric stimulation of physiological magnitude can promote spinal cord repair in human and other mammals (21,23). It is now generally accepted that there are endogenous electric fields associated with wounds, and disruption of these electric fields interferes with wound healing. Research has been conducted into cellular response to electric fields for several decades. Among the various signals hypothesized to guide cell migration and division in development and wound healing, electric signals have not been well studied. The biological and medical research community generally is not familiar with the possible roles of electric fields as a directional signal in guiding cell
migration to heal a wound. The lack of rational explanation for the mechanism of bioelectricity on tissue regeneration has led to skepticism, especially when modern molecular biology and electrophysiology has taken different approaches to the phenomenon, and few researchers are really at home in both fields (1). It has been repeatedly demonstrated by in vitro experiments that electric fields of strength similar to those measured Figure 53.3 Wounding collapses the transepithelial electric potential (TEP) locally, resulting in an electric field lateral to the plane of the epithelium. (A) Intact mammalian corneal epithelium maintains a uniform TEP of 40 mV. This results from net inward transport of K and Na from the tear fluid and the net outward transport of Cl from the cornea into the tear fluid. The TEP is maintained by the presence of tight junctions (squares). (B) Upon wounding, the epithelial seal is broken. The TEP collapses catastrophically to 0 mV at the wound, and ions immediately begin to leak out establishing an injury current (curved arrows), which persists until the leak is sealed by reepithelialization. However, the TEP is maintained distally at 40 mV, and this gradient of electrical potential establishes an electric field within corneal tissues (horizontal arrow). (C) Ion transport (predominantly inward transport of Na) properties of mammalian skin also result in a substantial TEP, which establishes an injury current (curved arrows) upon wounding and an electric field within the subepithelial tissues (horizontal arrow). In this case, the return path for the current is in the layer between the dead, cornified tissue and the living epidermis. Source: From Ref. 2. in vivo dictate important cell behaviors such as directional cell migration and cell division orientation. Zhao et al. (13) provides further experimental evidence that the electric signal as a directional cue probably plays a far more important role in directing cell migration in wound healing of epithelium than previously believed, and two genes are important for electric field–induced cellular response. It was showed that polarized phosphatidylinositol 3-kinase (PI3K) signaling steers the migration of human cells across a gradient of electric potential, a process called electrotaxis. The lipid phosphatidylinositol 3,4,5-triphosphate (PIP3) appears to be a pivotal molecule. It is concentrated at the leading edge of the cell, where signaling components bind to it. These signaling components, in turn, lead to the localized polymerization of actin and the formation of a protrusion in the direction of migration (14). Figure 53.4 shows a promyelocytic cell with its leading edge labeled with a probe that detects PIP3 production. The narrow arrows at the top left show the
gradient of electric potential in which the cells are migrating. The wide arrows show the direction of cellular movement. Reversal of the polarity of the electric field is followed by a change in locale of PIP3 to a region that becomes the new leading edge shown as arrowheads. RECENT SCIENTIFIC ADVANCES IN APPLICATIONS OF BIOELECTRICITY/BIOMIMETIC ELECTRICITY The application of biomimetic electrical stimulation similar to body’s own bioelectricity has been used to achieve clinical efficacy, particularly in healing enhancement of chronic wounds (15-17), as well as to perform various in vitro and in vivo investigation on cellular activities to result in the effects of physiological level of electricity on tissues (18-25) or to utilize its power for tissue engineering (26). It was reported that the biomimetic electric field appeared to play an important role in controlling human fibroblast activity by either significantly increasing or decreasing gene expression of over 400 transcripts investigated, including activity within specific cellular signaling pathways such as TGF-b, G-proteins, and inhibition of apoptosis. BIOELECTRICITY OF THE SKIN WOUNDS AND ITS CONNECTION TO SKIN AGING The epidermis generates a TEP of 20 to 50 mV across itself inside positive. Any wound or break in the epidermis creates a low resistance pathway and the TEP at the wound site is 0 mV. However, the TEP of the intact epidermis around the wound is still present, resulting in a lateral voltage gradient or electric field along the skin surrounding the wound. There is evidence that this lateral electric field stimulates keratinocytes in the area to migrate toward the wound with the optimal response occurring at field strength of 100 mV/mm. To determine the actual fields strength at the edge of human wounds, Nuccitelli et al. (27) developed a new instrument that vibrates a small sensor perpendicular to the skin about 100 mm above the surface and uses the oscillating capacitance signal to determine the surface potential of the epidermis just beneath the stratum corneum. By measuring this surface potential in many positions around the wound, a spatial map of the surrounding electric field was generated. On the basis of an ultrasensitive vibrating probe technique for measuring extracellular currents (27), a sensitive Figure 53.4 The effect of electric signal in directing the migration of human keratinocyte cell in wound healing. It shows a promyelocytic cell with its leading edge labeled with a probe that detects PIP3 production. The narrow arrows at the top left show the gradient of electric potential in which the cells are migrating. The wide arrows show the direction of cellular movement. Reversal of the polarity of the electric field is followed by a change in locale of PIP3 to a region that becomes the new leading
noninvasive bioelectric field imager was developed by Nucci et al. (28) as shown in Figure 53.5 and was used to measure the bioelectric wound current in vivo in mice. A more detailed description of the vibrating probe equipment setup and technique was given by Reid et al. (29). A noninvasive instrument based on the principle of vibrating probe (named as bioelectric field imager or BFI) was used for mapping the electric field between the epidermis and the stratum corneum near wounds in both mouse and human skin (28). Rather than touching the skin, the vibrating probe vibrates a small metal probe with a displacement of 180 mm in air above the skin to detect the surface potential of the epidermis through capacitative coupling. The application of the vibrating probe device was demonstrated by measuring the electric field between the stratum corneum and epidermis at the margin of skin wounds in mice (Fig. 53.6). An electric field of 177 14 mV/mm was measured immediately upon wounding and the field lines pointed away from the wound in all directions around it. Because the wound current flows immediately upon wounding, this is the first signal indicating skin damage. This electric field is generated...
at the outer surface of the epidermis by the outward flow of the current of injury. An equal and opposite current must flow within the multilayered epidermis to generate an intraepidermal field with the negative pole at the wound site. Because the current flowing within the multilayered epidermis is spread over a larger area, the current density and subsequent E field generated in that region is expected to be smaller than that measured by the BFI beneath the stratum corneum. The field beneath the stratum corneum typically remained in the 150 to 200 mV/mm range for three days and then began to decline over the next few days, falling to zero once wound healing was complete. Figure 53.7 shows the bioelectric field imager scans of the mouse skin wounds over time. It can be seen that wounding resulted in the development of wound electric potential, which persisted until the wound closed at Day 3. Nuccitelli et al. (28) also demonstrated that the wounding electric field can be modified by topically applied pharmacological
agents. The mean wound field strength decreased by 64.7% following the application of the sodium channel blocker, amiloride, to the skin near the wound and increased by 82.21% following the application of the Cl channel activator, prostaglandin E2. This experimental evidence suggests that both sodium ion influx and chloride ion efflux are maintaining the TEP of the skin and are carrying the wound current. Recently, a similar bioelectric field imager, a commercially available Dermacorder 1 (BioElectroMed, Burlingame, California, U.S.) was used to measure human skin’s wound current in two test subject groups to investigate the role of endogenous electric fields in wound healing of young and old human subjects (30). The lateral surface wound field was measured between the stratum corneum and epidermis near a lancet wound on the arm and leg in 40 adults by Dermacorder as shown in Figure 53.8. Ten women and 10 men in 18 to 29-year old age group exhibited a mean electric field of 163.59 mV/mm. Ten women and 10 men in the 65 to 80 age range exhibited a mean field of 78.15 mV/mm. Therefore, the mean electric field of individuals in the older age group is only half that of the younger group (Fig. 53.9). Since the wound electric potential is linked with the healing, the reduced wound electric potential may be a contributing factor to well-known decreased healing rate associated with wound healing among elderly. On the other hand, it is conceivable that if an external electric potential of physiological magnitude of electric would be applied on the wounds of these elderly to bring it to the level of the wound electric potentials among the younger subjects, the wound healing rates of these elderly might be enhanced. Figure 53.7 Bioelectric field imager (BFI) scans of skin wounds over time. Mouse skin wound scanned before and at the indicated times after wounding. The precise region that was scanned is indicated by the dotted lines on the micrographs. Pink bar on the BFI scan indicates the location of the wound. Source: From Ref. 28.

CELLULAR EFFECTS OF ELECTRICITY OF PHYSIOLOGICAL MAGNITUDE

In a well-cited study, Cheng et al. (10) reported an in vitro study to examine the cellular effects of low-intensity direct electric current on freshly excised rat skin. Direct electric currents
ranging from 10 to 1000 mA increased ATP concentrations about 500% in the tissue and stimulated amino acid incorporation into the proteins of skin tissues. Minimum current intensities of approximately 50 mA were necessary to obtain a maximal stimulatory effect on protein synthesis. The amino acid transport through the cell membrane, followed by the aminoisobutyric acid uptake, was stimulated between 100 and 750 mA. The stimulatory effects on ATP production and on amino acid transport, apparently mediated by different mechanisms, contributed to the final increased protein-synthesizing activity. DNA metabolism followed by thymidine incorporation remained unaffected during the course of current application. The highest stimulatory effects were obtained with 50 to 1000 mA, with glycine incorporation increased by as much as 75% compared with nontreated controls. Higher current intensities, exceeding 1000 mA, inhibited the protein synthesis by as much as 50% with currents of 15,000 mA. Constant currents from 100 to 500 mA increased the transported amino acid analog by 30% to 40% above control levels. Stimulation with higher intensities reduced the aminoisobutyric acid uptake. The effects on ATP production can be explained by proton movements on the basis of the chemiosmotic theory of Mitchell, while the transport functions are controlled by modifications in the electrical gradients across the membranes. During the course of normal wound healing, fibroblasts at the wound edge are exposed to electric fields ranging from 40 to 200 mV/mm. Various forms of electric fields influence fibroblast migration, proliferation, and protein synthesis. Thus, electric fields may contribute to fibroblast activation during wound repair. To elucidate the role of electric fields during the normal progression of healing, Jennings et al. (20) compared gene expression in normal adult dermal fibroblasts exposed to a 100 mV/mm electric field for 1 hour to nonstimulated controls. Significantly increased expression of 162 transcripts and decreased expression of 302 transcripts was detected using microarrays, with 126 transcripts above the level of 1.4-fold increases or decreases compared to the controls. Above the level of twofold, only 11 genes were significantly increased or decreased compared to controls. Many of these significantly regulated genes are associated with wound repair through the processes of matrix production, cellular signaling, and
Activity within specific cellular signaling pathways is noted, including TGF-β, G-proteins, and inhibition of apoptosis. In addition, RT-PCR analysis of the expression of KLF6, FN1, RGS2, and JMJD1C over continued stimulation and at different field strengths suggests that there are specific windows of field characteristics for maximum induction of these genes. Electric fields thus appear to have an important role in controlling fibroblast activity in the process of wound healing. Endogenous electric fields are generated lateral to skin wounds, with the cathodal pole of the field residing in the center of the wound. These fields are thought to be an important mechanism in guiding the migration of keratinocytes and other cells into wounds to effect healing. Sillman et al. (25) studied human dermal fibroblasts exposed to direct current electric fields of physiological strength, and quantified their migrational behavior. It was observed that human dermal fibroblasts moved only randomly, not directionally in direct current electric fields under conditions that support the directional migration of human epidermal keratinocytes. Additionally, neither the presence of the serum nor the serum plus additional Mg²⁺ in the experimental medium supported the directional migration. Migratory rates of fibroblasts varied depending on the experimental medium used: in serum-containing medium the average velocity was as low as 0.23 mm/min, while in serum-free keratinocyte medium the average velocity was as high as 0.36 mm/min. These studies suggest that dermal fibroblasts do not respond to the endogenous electric potential by

Figure 53.8 The DermaCorder™, a commercially available vibrating probe device, was used to measure wound electric potential by Nuccitelli et al. to investigate the effect of age on wound electric potentials in human subjects. Source: From Ref. 30.

Figure 53.9 Ten women and 10 men in the young group (18-29 years) exhibited a mean electric field of 16359 mV/mm, which is twice as much as the mean field of 7815 mV/mm exhibited by the
10 women and 10 men in the old group (65-80 years). Source: From Ref. 30.
INTRODUCTION

Many peeling formulas are actually available, many of them resulting from a more or less adequate combination of chemicals that aim usually to peel the skin and induce a skin rebuilding, an architectural restructuration. Some peelings consist of strongly destructive solutions, able to dissolve the full skin thickness: others are simply stimulating solutions with little destructive power, their application can induce a nearly invisible skin desquamation. The difficulties of peeling procedures, the results, the inconveniences, the side effects are often directly linked to the depth reached by the acids. Not much will be said about prepeel skin conditioning in this chapter, breaking a quasi-dogma. Indeed, there is a possible way to do peelings that make this prepeel strict conditioning not often necessary (1). I just use peeling formulas that usually penetrate evenly and that dramatically slow down the immediate postpeel inflammatory reaction, mainly responsible for post inflammatory hyperpigmentations (PIH). The rest is a question of good indication (do not go too deep if not necessary) and
DEPTHS OF PEELINGS

I usually consider seven depths of peelings, as seen on the following graph (Fig. 54.1).

Depth 1—Exfoliation: Very High Security (VHS)

The most superficial peel consists in a simple exfoliation of stratum corneum dead cells: it gives a good skin cleansing, a touch of better hydration. This hydration results in reality from removing the protective stratum corneum layer and the fingers are directly in contact with superficial keratinocytes. Keratinocytes are living cells (only the most superficial layers are near to the death), containing more water than stratum corneum cells.

Main Type of Peels

α-Hydroxy acids (AHAs) peels are mostly used for exfoliation purpose.

Action Mode

The activity of AHAs on the corneocytes seems to be secondary to an action on ionic charges, through an inhibition of enzymes involved in the formation of ionic links. For example, AHAs could compete with sulfates and phosphates at the level of
sulfotransferases, phosphotransferases, or kinases involved in the formation of sulfated or phosphorylated mucopolysaccharides, glycoproteins, sterols, and lipids. This could produce a lower quantity of electrically negative groups on the surface of keratinocytes and corneocytes and lower the adhesion forces with amines or basic aminated acids (electrically positive). Basically, AHAs penetrate between cells, unsticking the proteins responsible for corneodesmosomes adhesivity (it is a noncovalent, electric link) and allowing the cells to separate from each other, inducing a desquamation. Since there is no strict chemical reaction during this process, AHAs are not much consumed and have to be neutralized. Rinsing with a basic solution stops their action. Clinical Signs Irritative erythema is usually the only visible sign. Desquamation Roughly, no desquamation is clinically seen. Risks and Problems Globally, this is not a risky depth. Main risks are a higher sensitivity to sun during some days and a higher risk of skin infections. Neutralization is the main problem: if too early, it gives no result; if too late, it could induce more side effects. We will see later that this problem can be avoided by using specific slow release and self-neutralizing AHA mixtures (Easy Phytic Solution). Depth 2—Intraepidermic Peel: VHS The peel solution penetrates deeply into the epidermis, removing more cells; nevertheless, it does not touch any part of dermis or even of basal layer. The final touch of the skin is still more hydrated than in the case of a simple exfoliation, depth 1. After peel, living keratinocytes are suddenly directly exposed to air, sun, pollution, and dryness. They react, synthesizing more TNF-a (inducing a faster transformation of keratinocytes into corneocytes) and sending a message to the basal layer to stimulate the basal layer turnover and substitute the removed cells by new ones. At the same time, another message reaches the fibroblasts, responding to a stronger synthesis of all the dermal intercellular matrix. Intraepidermic peels (depth 2) give better results than depth 1 peels and can be used for treating superficial epidermal melasma and many keratinization problems. Main Type of Peels AHA peels, a-keto acids, trichloracetic acid (TCA), resorcin peels, salicylic acid can be used. Action Mode We have roughly seen how AHAs work. TCA is a proteocoagulant chemical. When in contact with proteins, it coagulates them, modifying their tridimensional structures in a way that does not allow their normal function. All
membrane proteins are therefore damaged, making the keratinocytes unable to survive. At the same time, intercellular proteins are also coagulated. Clinical Signs More clearly visible erythema can be seen, but no white pinpoints appear, yet (Fig. 54.2). Desquamation It can look like very thin dandruff. Risks and Problems Intraepidermic peels are usually not dangerous peels. Nevertheless, cases of PIH have been seen, making the prevention of this side effect necessary when the skin is known as sensitive. Neutralization of AHAs remain the main problem since it must be done following difficult rules (neutralization has to be done when an erythema appears—it is always irregular erythema—and in any case, before any sign of protein coagulation that would appear as skin frosting points). It is difficult to foresee the right moment for an ideal neutralization. About TCA, no neutralization can reverse the proteinic coagulation; therefore the total amount of TCA that is applied on the skin has to be perfectly calculated, in relation with the skin permeability. The TCA application technique has to be perfect for an even penetration. Resorcine and salicylic acid are phenol derivatives, not widely used out of United States. Large surfaces treatments using phenol derivatives are suspected to potentially induce toxic reactions. TCA and AHAs, on the opposite, are not toxic products. Depth 3—Basal Layer Peel: High Security (HS) This is a very interesting peeling level, since it is easily reached and gives good results. Stratum corneum cells are completely removed; keratinocytes are largely damaged up to the level of basal layer keratinocytes (depth 3 in the graph) (Fig. 54.3). Epidermis is nevertheless not completely destroyed, since many keratinocytes—less damaged by UVs—are living in deep epidermal papillae; skin regeneration is fast and easy. Basal layer peels can be used, as serial peelings, for treating skin aging (Glogau 1-2), fine lines, epidermal melasma, Figure 54.1 Graph showing the various possible depths of peelings. Figure 54.2 Erythema: intraepidermal peeling. keratoses, and acne (from black dots up to papule-pustule acne). Together with a good control of melanin synthesis (blending bleaching cream—Skin Rebirth 1), a TCA basal layer peel can treat many cases of melasma. If attention is paid to adequately clean the skin (remove black dots, open microcysts, etc.) and if the patient applies disinfecting
creams

and creams limiting the sebum production, then we can treat
active acne, usually without antibiotics (see further Ref.
2 for
peels and treatment tips).

Main Types of Peels

AHAs should not be used at this depth since this is the
border
after which AHAs side effects are prone to appear, are diffi
cult to treat, and give inconveniences to the patient’s
social life. On the contrary, TCA represents the best choice for
this
depth, if the right concentration, formula, and postpeel
care
are selected.

Action Mode

We have seen (see depth 2) the TCA action mode:
Keratinocytes
destruction induces a basal layer strong reaction,
dramatically
stimulating the turnover of basal cells.

Clinical Signs

TCA coagulates proteins, and its entry through the domes of
papillae induces a specific proteinic coagulation; dermal pro
tein coagulation points occur, clinically appearing as
little white
marks (white pinpoints) called “frosting points” (Fig.
54.4). Desquamation It looks like a sunburning
desquamation, allowing a social life in the majority of the
cases. Risks and Problems Basal layer peels are usually not
dangerous. The application technique is important since a
perfect protocol is very secure. If the peeling application
is a little bit too strong, basal layer peeling can
nevertheless give the start to a vicious circle of
inflammation based on free radicals liberation that induces
cell damage, etc. If we allow such a self-stimulation of
this inflammatory vicious circle, melanocytes could react
and give PIH. Cases of PIH have been seen, making the
control of this postpeel inflammatory vicious circle
necessary. No herpes prevention is necessary. Mainly,
problems are linked to too strong melanocytary stimulation,
without adequate treatment, or to an irregular application,
or to a too deep application, or to infectious rebounds in
case of acne. Prepeel skin conditioning can be used from
this point if the peeling used does not penetrate evenly or
does not control the postpeel inflammatory reaction. If
using Easy TCA peel, no prepeel conditioning is necessary.
Except in case of deep scratching and/or strong local
infection, no scar is to be waited for this peel depth.

Depth 4—Grenz Zone Peel: HS This is a very interesting peel
level, which is easy to perform, not very painful for the
patient, has a low level of risk, and gives pretty good
results. Stratum corneum and a large part of keratinocytes
are destroyed. Acids penetrate slightly into the more
superficial layers of papillary dermis, eliminating
abnormal cells from epidermis (treatment of lentigines,
keratoses) and eliminating many keratinocytes excessively
charged in melanin and melanocytes producing the melanine
(melasma). Grenz zone peel also directly stimulates the
superficial coats of papillary dermis, allowing a strong
collagen and elastin deposition into the grenz zone (German
word, meaning border area). These grenz zone peels,
together with basal layer peels, are depths of peel I use
the most.

Figure 54.3 Before and after four sessions of Easy TCA (Skin
Tech), one peel every week, basal layer depths. Figure 54.4
Basal layer peeling: frosting points. Main Types of Peels
TCA is a must for these depths. AHAs are not used because
of their irregular penetration, making risky their use for
grenz zone peels. Resorcine and salicylic acids are
difficult to use for reaching exactly the grenz zone.
Phenol should be kept for other indications. Action Mode We
have seen the TCA action mode. TCA coagulates keratinocytes
proteins and also dermal proteins, inducing a wider skin
“frosting.” Clinical Signs No more pinpoints of frosting,
but “frosting clouds” are seen, together with a diffuse
erythema. Desquamation Desquamation looks like a strong
sunburning, easy to live with if the skin is fair. Nevertheless, dead skin becomes dark brown on darker phototypes (Fig. 54.5). Risks and Problems Patient’s social life, overall of dark phototype patients, can be difficult, during few days. At the same time, the risk of PIH becomes higher, making a “pigment synthesis sedation” quite interesting before and after this peel depth. PIH prevention is mandatory if the patient is phototype Fitzpatrick 4 or more or working outside, in a sunny country. Infections are uncommon at this depth, since immunitary system is still widely valid. Herpes prevention is not yet obligatory, except in special cases of frequent, recurrent herpes attacks. Other problems are the same as for basal layer peels. Depth 5—Papillary Dermis Peeling: S Depth 5 peel is a border between secure and insecure depths. We reach some limits at this depth. Positive limits in the sense that a depth 5 peel is able to treat many skin defects such as lentigines, solar keratoses, melasma, freckles, and fine lines. Negative limits, since a papillary dermis peel is not able to treat real wrinkles or skin sagging, and a good point is that, when strictly respected, this depth is safe about scarring: scars never appear when a peeling is strictly limited at the level of papillary dermis. Main Types of Peels AHAs, salicylic acid peels, a-keto acids, resorcine are not good choices. Phenol sometimes has been used to perform depth 5 peel, but the related (cardiac, renal, hepatic) toxicity makes me deny its use at this depth. TCA peel, if correctly applied, remains the master choice for a safe and efficient papillary dermis peel. Action Mode We saw already the TCA action mode. Clinical Signs After application, frosting clouds progressively or rapidly become pink-white uniform frosting that can progressively or rapidly turn into a pure white frosting (Fig. 54.6). Why is it progressive or rapid? Passing from clouds to even frosting is progressive when we use relatively low concentrations, as Unideep (23% wt/wt—see Ref. 3) (Fig. 54.7). This concentration allows the MD to stop his/her—very safe—application as soon as he/she sees the desired frosting to appear. On the contrary, an even pure white frosting rapidly appears when using higher TCA concentrations, like 35% or 40% (wt/wt). In this case, it is not possible to stop the TCA action. It can be compared to initiating an artificial fire: we know how big the firecracker is, but we are not sure about the final result of the spectacle. Nevertheless, when the fuse is Figure 54.5 Desquamation after Easy TCA up to grenz zone. Figure 54.7 Frosting of Unideep papillary dermis peel. Figure 54.6 “Frosting clouds”: Easy TCA grenz zone peel.
inflamed, it becomes impossible to stop it or to modify the
course of the future events. Identically, to believe that it is
possible to undo (by neutralization) what TCA did is a deep
misunderstanding. Frosting appears as pink-white, as long as
the acids do not coagulate the proteins in blood vessels.
When
acids are strong enough for coagulating the well-defended
perivascular area, blood cannot pass until the top of dermal
papillae, close to epidermis basal layer, and frosting
tonality
passes from pink-white to pure white. At the same time, as
the acids penetrate dermis, they
coagulate proteins sticking epidermis to dermis, and the
sign of
“epidermal sliding” appears. This sign will last for a
while and
disappear when dermal edema is strong enough for tensing
epidermis over it.

Desquamation

It is quite important, looks like a snake changing its
skin; it lasts
from 6 days (Unideep peel, Skin Tech) to 8 to 12 days (usual
TCA in water solution, pharmacy made) (Fig. 54.8). Social
life is
usually possible during the first evening, but not from the
next
morning. Days 2 to 6 are days of reclusion, during which
skin
will largely peel in more or less dark plaques, in relation
with
Risks and Problems

The most immediate risk consists in infections: viruses, bacteria, mycoses find the skin totally open and without defenses.

It is easy for them to penetrate and locally proliferate. It is therefore mandatory to prevent viral infections using herpes prevention (valacyclovir, i.e., 3–4 days before and 4–5 days after peel). Bacterial and mycotic infections can be avoided by a strict control of medical hands and material cleanliness as well as by avoiding any other source of iatrogenic infections. The patient has to be aware to wash his/her hands before any contact with his/her skin (like scratching), to avoid direct contact with mammal or nonmammal pets, and to call the doctor for any question or inconvenience that could occur to him/her.

Scratching the skin after papillary dermis peel usually induces infection. Nontreated or badly treated infections could induce PIH, depigmentations, or scarring. Another risk comes from the fact that not every peeling solution is able to evenly penetrate the skin. Simple TCA in water solutions irregularly penetrate the tissues and can give uneven results: some areas are too deeply treated.
(giving local erythema, pigmentations, depigmentations, infections, scarring, etc.). The real action of TCA is largely hidden during the application itself; damages can occur that the practitioner cannot see immediately and, hence, cannot correct. Therefore, the concentration of the peeling solution and, still more important, the total amount of TCA applied on the skin during a period of time has to be strictly calculated before application. No neutralization of TCA is possible, which is explained later in the text. When using a simple TCA in water solution, skin conditioning is mandatory for four main reasons: to allow a more even penetration, to allow a deeper penetration and hence a better result, to keep melanocytes in rest and limit the occurrence of PIH, and to stimulate the basal layer turnover and facilitate postpeel skin regeneration. Mixtures of AHAs, tretinoine, hydroquinone are often used for this purpose. Depths 6 and 7—Reticulary Dermis Peeling From “QS” to “DD,” meaning that it is always dangerous to perform such a deep peeling, but it can be done in some cases. Reticular dermis peel is a kind of Holy Grail of peeling: this depth of peel allows treating nearly every pigment problems, it tenses the skin and removes wrinkles. Nevertheless, thick and oily skins are not the best candidates for a reticular dermis peel since these skins resist very well to the action of acids. Unfortunately, folds usually resist to the action of deep peelings. Very often, we have to discuss, with the patient, the choice between two therapeutic options: surgical lifting or deep peeling. At Hera Clinic (Empuriabrava, Spain), our first guide is the following simple decision table (Table 54.1). Naturally, this table has to be adapted to every specific skin and situation. The global meaning is that we will not recommend a phenol peel to a patient with thick sagging skin and no sun aging problem. On the contrary, we will not recommend surgery to a patient with thin skin, without sagging but with important pigment or sun aging problems. The quest for Holy Grail is a risky trip, so also is deep reticular peeling. Not only the selected peeling solution has to be perfectly adapted to the doctor’s and the patient’s aims, but also the application technique and postpeel care have to be totally professionally done. Full-face reticular peeling is a very aggressive treatment that lets no place for rough improvisation. Any mistake leads to scarring process, and pigmentary problems are frequent. Nevertheless, reticular peels are pearls in good hands and mind. Main Types of Peels Two main molecules are used for reaching this depth: TCA is one of them and phenol the second one. I really appreciate
Figure 54.8 Desquamation day 4 after Unideep papillary dermis. Table 54.1 Problems and Preferred Treatments

<table>
<thead>
<tr>
<th>Problem</th>
<th>Preferred treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigmentary problems</td>
<td>Peelings</td>
</tr>
<tr>
<td>Sagging skin</td>
<td>Surgery</td>
</tr>
<tr>
<td>Pigmentary and sagging</td>
<td>(1) Surgery, (2) phenol peel</td>
</tr>
<tr>
<td>Thick skin</td>
<td>Surgery</td>
</tr>
<tr>
<td>Thin skin</td>
<td>Peeling concentrated TCA</td>
</tr>
</tbody>
</table>

For deeply treating lentigines and keratoses of diameter less than 1 cm (Only Touch, e.g., is a 45% wt/wt TCA), but I would not be keen to use it for large areas, as a full-face peeling. In this case, phenol seems to me to be better, its activity depth can be better kept under control and the results of phenol are definitely better than TCA, even at similar depth. It seems that phenol has a better "rebuilding effect" on the skin than that by TCA. My best phenol peel is actually “Lip and Eyelid Formula,” Skin Tech, which is an oil of phenol, penetrating slowly into the skin, what limits its general toxicity (giving to the liver, the lungs, and the kidneys more time for detoxifying it), and what allows a longer contact time between phenol and the skin proteins, inducing a potential larger proteins coagulation and hence a better result (Fig. 54.9).

Action Mode

Phenol is proteolytic or proteocoagulant, depending on the concentration. Higher concentrations are proteocoagulant and lower concentrations are proteolytic.

For peeling purposes, the best concentration range is between 40% and 60% (wt/wt). Nevertheless, many substances can interfere with its action and speed up or slow down its penetration. These substances are largely described in my book (2), in which close to 200 pages are specifically available about phenol peels.

Clinical Signs

Acids reach reticular dermis after having largely coagulated papillary dermis, showing a pink or pure white frosting (depending on the concentration, an aggressive peel will develop an immediate pure white frosting, without passing by a pink-white one). Quite fast after the typical papillary dermis frosting, the tonality will shift to a grey-white or to a grey frosting. It is possible to reach this depth by applying various acids concentrations, nevertheless, I always felt more secure by using less concentrated products, but applying more coats. Indeed, when we are using proteocoagulant products, the final result depends on the total amount of active acid molecules that have been able to interact with skin proteins. A very strong and aggressive peeling solution could induce a superficial thick coagulation, only letting pass the acids at the level of higher skin permeability, what could induce irregular results and local overpeelings. When using a progressive application technique, we can always decide to apply no more acid on the higher permeability areas, and keep applying on the areas where we did not see the desired
frosting to appear. Doing this allowed me to have ZERO overpeels during the last 20 years. Desquamation is huge, always forcing to a social retirement of seven to eight days. Dead skin layers should be kept as a natural protection and only extracted at around day 6 or 7, if this extraction is easy, atraumatic. Phenol peel can be used under a complete 24 hours occlusion, inducing a maceration of the upper coats of the skin. During occlusion, skin melts (in open techniques, skin usually dries) and has to be protected by using Bismuth subgallate powder. From day 5 or 6, sterile petrolatum jelly can be applied on the dead skins, it will help in desquamation. Occlusion makes the phenol peel to be deeper, more efficient. TCA occlusion does not have the same result.

Risks and Problems Histologically, there is only one reticular dermis, situated between papillary dermis and subcutaneous tissues. However, speaking about peelings, we have to consider that we face two different depths. Into the more superficial reticular dermis, overall at the face level, we still can find keratinocytes (mainly at the level of hair roots and sebaceous glands: sebocytes are phenotypically differentiated keratinocytes, able to undifferentiate into normal keratinocytes when necessary to repair the skin). Superficial reticular dermis still has material to rebuild the skin. Deep reticular dermis is empty of this reservoir but contains big fibroblasts, also differentiated to be able to synthesize a thick bundle of collagen that will stick to the neighboring fibroblast. Moreover, they are considered as contractile nonmuscular cells, able to contract when necessary. They are mainly responsible for the scarring process: when these cells are strongly stimulated during a self-maintained inflammatory vicious circle, scarring can appear. Problems All possible side effects can appear when using deep peelings. Pigment problems are frequent, since deep TCA kills melanocytes and phenol can make them impotents, unable to synthesize melanin. As a result, many cases of unaesthetic depigmentations have been seen in the past. A new formulation (Lip and Eyelid Formula, Skin Tech) seems to be much safer on this point of view, since it induces mainly PIH, which are easy to treat, whereas “porcelain skins” cannot be treated. The following table gives a relation of many of the possible side effects. Figure 54.9 Frosting of OTP þ desquamation secondary to intraepidermic peel. Abbreviation: OTP, Only Touch Peel.

ABOUT ACIDS NEUTRALIZATION

Acids neutralization is a recurrent problem. Why to neutralize?
What to neutralize? How to do it? When to do it? Together with the dermatological use of AHAs appeared
the notion of neutralization. Indeed, preexisting peelings (phenol derivatives and TCA) had not and could not be
neutralized, since proteocoagulant molecules definitively interact with skin’s proteins, combine with them, forming a kind of con
glomerate that cannot be separated. As a result of this interaction, non-AHAs are largely and automatically neutralized and
trapped into destroyed proteins whose tridimensional structure have changed, inducing the well-known sign of frosting. Neutralization of proteocoagulant acids is therefore impossible after their action began. As a maximum, we could neutralize an
eventual floating excess over the skin, before this excess could penetrate the skin. Is this even really possible? This idea
of neutralizing proteocoagulant acids (as is TCA) is in reality totally tricky since we have to introduce a time scale in our discussion: the appearance of a frosting is a signature of past events. The frosting that we see right now does not represent what is actually hap
pening, but what happened to the skin some time ago. (The frosting we see in T(0) results from a past action of the
acids into the skin. It can be compared to the fact that the star light that we see has been emitted millions of years ago (the age of universe being supposed to be at least 17,300,000,000 years). What we see in the night sky can have been emitted in the past by a star that is now dead and maybe now transformed into black hole after a last fantastic explosion followed by a contraction to infinite levels of energy.] Frosting events have some kind of invisible inertia; these are not immediately appearing phenomenons. Proteocoagulation will continue going on during the neutralization process. It is therefore very risky to apply too much of the (phenol derivative or TCA) acid on the skin, thinking that it will be possible to neutralize it after seeing a frosting to appear. That’s the best way for going to the overpeeling. To try to neutralize TCA after seeing a frosting could be compared to trying to stop an arrow just before it touches the target. Moreover, neutralizing a proteocoagulant acid never means to reverse the potential damages caused to cellular proteins or matrix proteins. When an acid combines with amino acids into a protein, it is transformed into a salt that sticks to this amino acid and modifies the volumetric, tridimensional, proteinic
appearance. This is why a safe behavior is to rub on the skin the right amount of acids to get the desired frosting, without any neutralization. Remember that few seconds only are necessary for proteocoagulant acids to pass through epidermis: that is why phenol induces skin anesthesia 12 seconds only after its application. (At such speed phenol coagulates sensitive nerve sensors, inducing local anesthesia.) On the contrary to proteocoagulating acids, we have seen that AHAs have a very low proteocoagulant power, they do not easily combine with proteins. Their natural neutralization by the skin only could be done by using the skin buffer potential, which acts too slowly. Without neutralization, pure, nonpartially neutralized AHAs would finally burn the skin. We cannot neutralize an acid by adding water to it: When we pour water in a recipient containing an acid solution, we only just dilute this acid; a huge dilution is necessary to lower the resulting pH. Pouring water on the face, after peeling, cannot therefore be considered as neutralization. Pouring a basic solution in a recipient containing acid will induce chemical acid-base reactions: the acid will become a salt that has no more protons to liberate in solution and therefore is no more an acid. Neutralization changes the chemical structure of acids. Simple sodium bicarbonate in a saturated solution can be used to neutralize AHAs. Finally, the answers to the questions in top of this paragraph are simple: we neutralize AHAs, we cannot neutralize proteocoagulant molecules. A slightly basic solution, in good volume, will be poured on the skin until the end of chemical reactions (usually seen as little bubbles). Neutralization of AHAs should begin as soon as an erythema can be seen and before any frosting appears. We touch here the big question: when to neutralize AHAs? A too early neutralization lets not enough time to acids for interacting with skin, and the result will be very poor. A too late neutralization allows acids to burn the skin, and induces many side effects. That is why industry proposes partially neutralized AHAs (pH 2.5, 3, 3.5) that are less dangerous and that can be washed with simple water, since they are between 10 and 1000 times less aggressive (efficient) than pure AHA solution, without partial preneutralization. (There is a logarithmic relation between pH and aggressivity: pH 3 is 10 times less aggressive than pH 2, and 100 times less than pH 1.) There is one exception, called “Easy Phytic Solution” (EPS): in spite of the solution’s very acidic pH (0.5–1) and a total concentration of acids of average 60%, this AHA solution does not need to be neutralized. The time controlled technology permits a slow release, a complete progressive penetration, and a full action of all acids. Absence of neutralization is equal to absence of problems and greater
efficacy. Best indications are acne, photoaging prevention, and treatment. Easy Phytic is made of three AHAs: glycolic acid, lactic acid, and mandelic acid. AHA is adsorbed on the polar groups of keratin chains and inhibits the reactions between these groups. This improves elasticity of the skin and α-hydroxy acids are better than β-hydroxy acids for this because the α position of the hydroxyl group allows a better penetration between keratin chains than the β position. The three AHAs show different velocities of penetration through the skin. The smallest—glycolic acid—penetrates first, followed by the lactic and then the mandelic.

Table 54.2

<table>
<thead>
<tr>
<th>Locoregional side effects</th>
<th>Regional side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient results</td>
<td></td>
</tr>
<tr>
<td>Postinflammatory</td>
<td></td>
</tr>
<tr>
<td>hyperpigmentations</td>
<td></td>
</tr>
<tr>
<td>Melanotoxicity (up to porcelain skin)</td>
<td></td>
</tr>
<tr>
<td>Demarcation line</td>
<td></td>
</tr>
<tr>
<td>Erythema</td>
<td></td>
</tr>
<tr>
<td>Telangiectasias</td>
<td></td>
</tr>
<tr>
<td>Not even complexion</td>
<td></td>
</tr>
<tr>
<td>Scars (ectropion or entropion)</td>
<td></td>
</tr>
<tr>
<td>Prurit</td>
<td></td>
</tr>
<tr>
<td>Scratching lesions</td>
<td></td>
</tr>
<tr>
<td>Bacterial, viral, mycotic</td>
<td></td>
</tr>
<tr>
<td>surinfections</td>
<td></td>
</tr>
<tr>
<td>Acne, milium grains</td>
<td></td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td></td>
</tr>
<tr>
<td>Iritis, opacification of cornea</td>
<td></td>
</tr>
</tbody>
</table>
Postpeel pain

Sun sensibility

Dilation of pores

Petechiae, purpura Larynx edema Long-lasting face edema Dynamic wrinkles resurgence General side effects (phenol)

Symptoms occurring rapidly Neurological problems: headaches, acouphens, hypoacusy, paresthesias, muscle hypotony, stupor Digestive problems: nauseas, vomit, Pain in belly, diarrhea Cardio vascular problems: arrhythmias, asystole Symptoms occurring later Nephropathy Hepatopathy hemoglobinury, methemoglobinury These acids begin their action at the level of the upper layers of the epidermis. Because there is no neutralization, they continue their action, going down inside the epidermis and reaching the dermis, slowly and without ever overpassing the capacity of natural neutralization by the skin itself. So the acids of EPS lose progressively their aggressiveness into the skin, producing their full activity. Phytic acid, is not an AHA, this is a big molecule of inositol hexaphosphoric acid considered as an excellent antioxidant and an antityrosinase. It binds iron. In our point of view, phytic acid is unable to produce any peeling effect, so why can we find phytic acid in this solution? Actually, every peeling produces an inflammation; this inflammation produces free radicals (FR) and vasodilatation. Vasodilatation brings more oxygen in situ allowing the formation of more FR. FR binds immediately with the closest structure, damaging it. So a peeling always promotes the skin regeneration but induces a lot of FR that can damage the structures that are supposed to regenerate the skin during the postpeel period.

The actual scientific understanding of aging processes generally blame FR as one of the major factors responsible for cells degeneration. It is important to fight these FR during the postpeel period. Phytic acid slowly penetrates the skin, after the three AHAs of the EPS solution have opened it, and can be present in the skin when FR are produced in parallel to the inflammation. Scavenging FR cuts the vicious circle of inflammationvasodilatation-FR and scavenges the FR-produced postpeel. It is known that AHAs make a thicker epidermis, produce more mucopolysaccharides in the dermis and a better quality elastin. The density of papillary dermis collagen is better and patients under EPS describe a tightening sensation after peeling and a visible difference of the aspect of the skin. How to use it? Cleanse the skin twice with the Skin Tech’s cleanser foam, rinse, and dry. Apply a maximum total
volume of 2.5 cc of EPS on the face, using a little cotton ball, poured only once into the peeling solution. Apply it in successive coats, massaging the face between every coat for uniformization. When the patient declares that he/she feels a tingling sensation, apply the last coat, using the same cotton ball. No frosting at all should occur. Two or three coats are usually sufficient. In the event of accidental frosting, neutralize immediately (sodium bicarbonate solution). Do not neutralize. For more information about details of the application technique, please refer to the product information sheet or Ref. 4.

ABOUT TCA Many books have been written about TCA in water application techniques and I will not rewrite it. Nevertheless, I would like to point out few important details. The main questions, the more troubling doubts of beginners are the following: What is the best TCA concentration? How many coats? How often? How and when to neutralize? These are not the good questions since the answers would give an appearance of an easy cooking recipe to be inflexibly respected. The easiest of these questions to be answered is about when to neutralize. TCA action cannot really be neutralized (see earlier text). The best TCA concentration is the one we selected. The point is to know how to select a TCA concentration and how to calculate it. I have explained at length (2) why I prefer to use a weight by weight (wt/wt) calculation and not a weight by volume (wt/vol) or a volume by volume (vol/vol) one. (A 40% TCA solution could be calculated in many ways: 40 g TCA þ 60 g water or 40 g TCA þ 100 mL water or 40 g TCA þ the necessary quantity of water for obtaining a final 100 mL solution or even, 100 g—or 100 mL—of any of the above described solutions, diluted with water in wt/wt, wt/vol, or wt þ vol. This makes too many possibilities and too many reasons for making a mistake. For more reproducible peelings, I definitively selected the wt/wt concentration. For me, 40% TCA is always 40 g of fresh TCA crystals mixed with 60 g of water to do a final weight of 100 g. It is a real 40%.) In short, we are using chemical products and we should keep our calculations scientifically reproducible and totally correct. Only the wt/wt calculation has a sense in this point of view, even if the wt/vol or the vol/vol is more common in United States. The second point is to select the right concentration for one patient. Remember two points: first, a thick skin patient will need more acid than a thin skin patient; second, the most important is the total quantity of acid that is able to interact with proteins. Too concentrated acid applied on a thin skin will burn it immediately but will do a great job on a thick oily skin. Looking at the thickness of the skin fold on the area of malar bone gives us a simple clinical appreciation of
skin thickness: if the fold is 1-cm thick, the skin should be “normal”; less than 1 cm, the skin is thin; and more than 1 cm, the skin is thick. Thin skin being more sensitive to acids than thick skin, this can help us to select the concentration. Nevertheless, transepidermal acid penetration does not only depend on the skin thickness but also on the type of acid (a little acid will penetrate faster than a big one—long fatty acids, e.g., penetrate more slowly through the skin than the little lactic acid). Transepidermal penetration also depends on the skin permeability and the prepeel skin conditioning. A thick oily skin (one with a fold of more than 1 cm) after skin conditioning and acetone degreasing can become as permeable as a thin skin. Glycolic acid reduces stratum corneum thickness, with tretinoin for stimulating basal layer turnover and regeneration and for reducing the stratum corneum permeability: this kind of prepeel conditioning makes the skin much more permeable. Acetone not only degreases skin but also begins a protein denaturation that makes the skin more permeable. A skin dermabrasion (preferentially using 3M wet or dry sandpaper 200) easily removes the stratum corneum and largely deepens the action of the acids. I use this quite difficult technique that I called “anterior chemabrasion,” together with Easy TCA peeling in the treatment of acne scars and old atrophic and deep stretch marks, with splendid results. We can see that many events are able to modify the skin permeability: did the patient do a scrubbing for having a clean skin before seeing you? The skin will be more permeable. Did the patient wax the face before peeling for depilation? More permeability! Did the patient apply an oily moisturizing, a sun screen, a gel containing hyaluronic acid before coming? It will reduce skin permeability. How many coats to apply? Every peeler would like to have a clear and simple answer to this question. Unfortunately, the number of coats depends on what is described above about skin permeability. It also depends on the TCA concentration of the solution. Note also that thinking about concentration only is tricky because there are so many variants that the problem of concentration is only a little part of the global decision. Globally, we can take two different ways. The first one consists in guessing what will be the right concentration for a single patient’s skin, and praying during some days, hoping that there was no mistake and that the acid will stop its action at the right depth. The second one, that I naturally
prefer, is to

use very few different concentrations (3 different concentra-
tions) but to apply progressively several coats until I see the
desired kind of frosting to appear. This way always brings my
peel exactly to the desired level, without possibility of mistake.

Let’s Take an Example

Patient with a normal thickness and permeability skin, photo-
type 2, prepeel classical conditioning, and we would like to
reach the grenz zone: the very good and easy case! I can
decide to apply a 30% TCA (yes, but wt/wt? wt/vol? etc.). What I cannot decide is about how deep this
acid will penetrate by itself: I just can rub the product on the skin
and see the result at the end, knowing that more than one coat of
a 30% wt/wt TCA solution on such a skin can be dangerous, or
on the contrary can be insufficient. We will see the action of the
acid solution, but only when the eventual damage is done and is
irreversible. This is why there are so many reports of skin
damages after TCA peel; this is why some authors erroneously
claim that TCA is not adapted to melasma treatment. It is
nevertheless only a question of application technique and pre
peel decisions. A 30% wt/wt TCA solution rubbed once on a
normal thickness skin after prepeel conditioning usually
gives a
pink-white uniform frosting, showing a papillary dermis pene-
tration. We overpassed our target that was grenz zone. An-
other possibility for the same patient is to use a lower
concentration TCA solution, let’s say a 15% wt/wt solution. A
first coat induced only erythema: we understand from it that
the skin was less permeable than guessed and that we reached
the epidermal level only. When the skin will be dried by
evaporation, we will apply another coat of the same acid
solution: the skin will show little frosting points and we will
deduce that it reached the basal layer depth. A next coat
would
induce a cloudy frosting, sign of the penetration of the acids
into the grenz zone. When we see these frosting clouds, we
stop
the TCA solution application and we know that the peel
reached exactly the desired depth. Usually, peelers focus
their attention on a good prepeel
conditioning for a better and more even penetration and a
greater regeneration. Nevertheless, a better attention
should be
paid to the immediate postpeel events, to the inflammatory
reaction that began immediately after the first contact
with the
first drop of acid applied on the skin. This inflammatory
reaction is necessary but dangerous in
the same time. A peel that would induce no inflammatory
reaction would also not be efficient at all, since inflammation is the real skin rebuilding source. At the same time, if this inflammation is uncontrolled, if it is self-maintained, it enters into a vicious circle in which the free radicals and the proinflammatory components liberated from cell destruction induce more cell damage and more inflammation. This inflammatory vicious circle is responsible for a long stimulation of melanocytes that will respond by synthesizing more melanin and inducing PIH. It is easily understandable that a peel can be a booby trap: you think that your chemist prepared a 30% mass by volume but he did it wt/wt (what is stronger), your patient made a virtual mesotherapy (a slight abrasion using sandpaper, application of specific vitamins, and other elements on the skin, or use of nonthermogenic radiofrequencies for inducing an intracellular penetration) or a depilation face wax the day before peel: the patient’s skin will be permeabilized, acids will penetrate faster and deeper and you will get (surprisingly?) an overpeel and side effects. I progressively solved this problem by using a safer and easier formula: Easy TCA peel (1,3). This formula allows us to avoid the long and uncomfortable prepeel conditioning phase in the huge majority of the cases as it can be applied using the progressive technique explained above, as it uses a specific postpeel mask, able to control the postpeel inflammatory reaction, and as it will be repeated once a week during four weeks. Every peel, done up to frosting points or maximum local frosting clouds, treating an eventual pigment rebound induced by the preceding peel. I would use a prepeel conditioning only in specific cases, such as in a phototype 4 or 5 patient with a long history.
of familial melasma. The Easy TCA postpeel mask is a quite complex formula, containing vitamins, trace elements, a lot of strong antioxidants, tretinoine precursors, selenio-methionine, anti-tyrosinases, etc. This cream is applied once by the practitioner, immediately after the desired frosting has been seen. It immediately scavenges free radicals, stopping the excess of immediate inflammatory reaction in the same time as the burning sensation induced by the easy TCA peel solution. It brings into the skin elements that can help the skin to regenerate faster and lowers the tyrosinase activity. Postpeel penetration of ingredients is dramatically modified by the previous application of the peeling solution. The postpeel rate of penetration is much higher than the normal skin rate. The skin is much more permeable during the close postpeel period: sebum and corneocytes do not act any more as a barrier and purely water soluble ingredients can rapidly pass through this modified epidermis. So, high quantities of stimulating factors and antioxidants can reach the dermis. It is clinically evident that the residual inflammatory reaction is strong enough for stimulating the skin architectural rebuilding, but not strong and long enough for stimulating melanocytes or for slowing down the basal layer sequences of regenerative events. Colleagues often asked me how and why this cream can immediately stop the burning sensation, even if it is not a neutralizer (this cream is not a basic one), and if the frosting signs continue to appear normal, even after having applied the postpeel mask. I unfortunately cannot scientifically answer to this question but have a theory: my understanding is that the postpeel mask antioxidant properties are such that they break the proinflammatory immediate postpeel reaction. It is well known that inflammatory reaction represents a big part of pain, usually. To summarize: After having used many different peeling formulas and spent postpeel nights of insomnia, I decided that it should be possible to use TCA without posttherapeutic nightmare. This is what brought me this Easy TCA formula: Easy to do (10 minutes as a maximum for face and neck), not expensive, not painful (never needs any kind of anesthesia or painkiller), no skin conditioning (peeling solution and postpeel mask have this role), patient’s social life is possible (desquamation looking like a sunburn), no phototype limitation (phototype allowed: from 1–6), very little percentage of side effect (average 1.7% of transitory side effects, duration less than 8 days—unpublished statistic established on a total amount of 5000 peeling sessions in Clinica Hera, Empuriabrava, Spain: 28 transitory easy to treat side effects; no definitive side effect). This peeling, applied
according to different protocols, allows for a wide spectrum of depths of action and therapeutic indications from active acne to pigmentation and acne scars, photodaging, and deep old stretch marks. See further Ref. 3, left column, treatment tips, peeling for a complete description of active acne, stretch marks, melasma treatments, together with the protocol for local phenol peel around eyes and lips. It can be applied to both face and body. Moreover, it can be associated, during the same session, to laser, Intense Pulsed Light (IPL), mesotherapy, radiofrequencies, depilation, botulinum toxin, surgery, telangiectasias treatment. Easy TCA (as a basal layer peel) can be performed 10 minutes after botulinum toxin injection; we have not seen migration or shorter results after this combination treatment. Even hyaluronic acid injections for wrinkle treatment are allowed, immediately before Easy TCA peel. The hyaluronic acid notice for injection instructs not to perform peeling after hyaluronic acid injections. Nevertheless, this recommendation is valid only because of the huge release of free radicals after usual peeling. Free radicals rapidly damage the hyaluronic acid polymer, breaking it and making its life shorter. Easy TCA postpeel mask scavenges free radicals at the same time they are produced, which can stop selfmaintained free radical reactions, able to damage hyaluronic acid polymer. At the same time, I decided to stop trying to guess what would be the best concentration of TCA for a patient, but only use the Easy TCA solution of which I progressively apply the necessary number of coats to get the desired frosting. In the preceding paragraphs, I told that I was only using three different concentrations and now to bring light on this. The main peeling I use, on maybe 80% to 85% of my patients is Easy TCA: solution containing vitamins, antioxidants, AHAs, and saponins, together with 15% wt/wt TCA. This peel benefits from the important postpeel mask protection against postpeel inflammatory reactions, immediately stopping the postpeel burning. Depending on the number of coats I pass on the skin, I drive my peel into epidermis, basal layer, grenz zone, or even papillary dermis. Nevertheless, papillary dermis peel needs many coats of Easy TCA, and this is uncomfortable for the patient. This is why I use a derivative of Easy TCA when I want to reach papillary dermis: Unideep (a formulation developed by Skin Tech) has the same structure as Easy TCA—it is a peeling solution containing 23% wt/wt TCA and an adapted postpeel mask with the same aim as Easy TCA. Sometimes, I even need to go very deep into the skin for treating focal old lentigine or solar keratoses: naturally, we often can do it using successive focal coats of Easy TCA or Unideep, but the work
is easier when using Only Touch Peel (OTP)—same qualitative base solution than Unideep, but containing 45% wt/wt TCA. OTP (a formulation developed by Skin Tech) has no postpeel mask and has to be used in combination with Easy TCA for avoiding the postpeel inflammation. Indeed, OTP without Easy TCA induces PIH in more than 60% of the cases. When done immediately before Easy TCA, the percentage of PIH is much less important: a maximum of 10%, if the protocol is respected, even less if the patient does not scratch the scabs. OTP can be used on little surfaces only: it is always a focal peeling for treating lesions of diameter 1 cm. OTP is applied, avoiding excess product, with a fine cotton bud or a wooden toothpick or skewer. Touch the lesion to be treated quickly, precisely, and once only with the chosen applicator and wait until the acid solution has dried completely. A significant frosting will be seen to appear quickly on the face, slowly on the body. If no such frosting occurs, however, repeat the application cautiously a few minutes after the solution has dried. Immediately after the frosting occurs, apply the first of the four basic protocols of Easy TCA on the entire treated area, including the one where OTP has just been applied, to obtain an even result and limit the risk of side effects.

PEELINGS AND FIBROBLASTS Dermal fibroblasts represent a major cell, not only in the understanding of peelings: their correct stimulation by any mean would be able to lead to a good skin rejuvenation. Fibroblasts have a dendritic appearance, like Langerhans cells, but have no immunitary known function. Fibroblasts synthesize all the intercellular matrix components and play a vital role during the formation and the contraction of the granulation tissues that appear during the wound healing processes and postpeel regeneration events. Huge morphological variations exist within this cellular population: papillary dermis shows little horizontal fibroblasts (4–7 mm), their dendrites have contact with several collagen fibers. Stimulation of these fibroblasts is responsible for a dense deposit of horizontal neo-collagen, in the top of papillary dermis. Medium depth dermis and deep dermis show bigger fibroblasts, with a variable orientation. Dendrites have contact with one big bundle of collagen only. The very deep dermis, at the limit of hypodermis, contains very big fibroblasts (16 mm) with long dendrites (up to 180 mm), forming a continuous net. Inflammatory reactions and healing processes induce the appearance of many hybrid cells, called myofibroblasts. These are phenotypically modified fibroblasts having some characteristics of muscle cells and are responsible for the retraction processes during skin healing. Cytoplasms of myofibroblasts contain myofilaments connected with cell membranes, responsible for
cell contraction and eventual scarring processes. “Normal depth” peeling will stimulate the full population of fibroblasts, without overstimulating myofibroblasts: they give a better skin tension, without scarring (up to papillary dermis peels). Too superficial peels only are able to slightly stimulate fibroblasts synthesis: the result on skin tension is weak (intraepidermal peels). Deep peeling will strongly stimulate fibroblasts and myofibroblasts, inducing a tridimensional tensing effect on facial tissues; that is what gives a well-done phenol peeling. Too deep peeling, locally hypodermal peeling, focal overpeeling let the skin without any other regeneration possibility than the strong myofibroblastic contraction, bringing about unaesthetic scarring processes. We can therefore easily understand that scars only happen when something wrong happened to the skin: it can be a problem induced by the physician having applied a too concentrated solution or a too strong prepeel conditioning or by a patient having scratched and infected a newly peeled skin. Some genetic disorders make the skin prone for postpeel scarring, like Ehler-Danlos syndromes. Insulin-dependent diabetes is also a risk factor for deep peels, and there are other side effects (2). Nevertheless, it is largely admitted that papillary dermis is the limit from which scarring process can be switched on. It means that as long as a peeling does not enter into reticular dermis, there is no danger of scarring. The problem here is how to strictly limit the penetration of acids until the desired depth? One of the possible answers has been described in the TCA paragraph.
REFERENCES

INTRODUCTION
The success of retinoids and hydroxy acids as active ingredients in skin care products designed to improve the appearance of aging skin has stimulated the search for additional compounds. The use of both retinoids and hydroxy acids may be associated with skin irritation further encouraging interest in alternatives. A possible addition to this armamentarium is kinetin (N6-furfuryladine). Kinetin is a plant hormone known for growth-promoting and antiaging effects in plants. Pyratine-6 (furfurylaminotetrahydropyranyladenine) has been more recently introduced as an antiaging ingredient. The incorporation of these materials into cosmeceuticals has prompted a more detailed review.

CHEMISTRY
Kinetin was first isolated from autoclaved herring sperm DNA in 1955 (1,2). It is a derivative of one of the nucleic acid purine bases, adenine. Kinetin has been reported to be present in various plants (3,4) and human cell extracts (5). It has been identified as a naturally occurring base modification of DNA (6). The chemical structure of kinetin suggests that it can be formed from adenine and furfuryl (Fig. 16.1). The latter is a primary oxidation product of the deoxyribose moiety of DNA (7). It is not known if DNA repair enzymes remove this modified base from the DNA and make it available as free kinetin. Pyratine-6 is structurally similar to kinetin except for the addition of a tetrahydropyranyl group.

BIOLOGY
Kinetin was the first cytokinin identified (1,2). Cytokinins are plant growth substances that promote cell division and may play roles in cell differentiation. Most of the data for the biological properties of kinetin come from plant studies. Kinetin has been shown in plant systems to stimulate tRNA synthesis (8) and cell cycle progression (9). Calcium influx through the plasma membrane calcium channel in plant cells is stimulated by low levels of kinetin (10). More directly linked or related to antiaging, kinetin is known to prevent yellowing and senescence of leaves and slow down over ripening and degeneration of fruits (11).

Rattan and Clark (12) have reported the antiaging effect of kinetin on human skin cells and fruit flies. As little as 10 to 20 ppm of kinetin delay the onset of some biochemical and cellular changes associated with cellular aging in cell culture. Human skin fibroblast cell cultures of both young cells that had completed less than 20% of their life span and older cells that had completed 90% or more of their life span were studied. Results were compared with cell cultures receiving no treatment (Table 16.1). Cytological manifestations of in vitro aging including cell enlargement, presence of multinucleated giant cells, accumulation of cellular debris and lipofuscin, and changes in actin filaments and microtubules were attenuated by the addition of kinetin. The number of cells per unit area in a confluent layer also markedly diminishes as a function of age. Kinetin treatment significantly diminished the age-associated reduction in cell yield (Fig. 16.2). Kinetin did not affect the longevity of culture cells or their ability to multiply. A diet containing 20 to 50 ppm kinetin fed to fruit flies slowed down aging and development and prolonged average and maximum life span by 65% and 35%, respectively (13). The increase in life span was accompanied by a 55% to 60% increase in the antioxidant enzyme catalase (14). Catalase breaks down hydrogen peroxide associated with cell toxicity.

Kinetin has been demonstrated to have inhibitory activity on free radical formation of active platelets in vitro and thrombus formation in vivo (15). Kinetin may therefore be a potential therapeutic agent for arterial thrombosis. A cytokinin nucleoside, N6-furfuryladenosine, has been shown to have antiproliferative and apoptogenic activity against various human cancer cell lines, suggesting potential anticancer activity (16). This activity has not been shown with kinetin.

MECHANISM OF ACTION
The exact mechanism by which kinetin acts to exert its effects is unknown. Kinetin may act directly as a signaling molecule, involved in signal transduction, stimulating defense pathways such as DNA repair (17). Kinetin modulates and promotes calcium-induced differentiation of normal human keratinocytes that becomes progressively delayed during aging (18,19). Kinetin may also act indirectly as a natural antioxidant (20), preventing the formation of reactive oxygen species or as a direct free radical scavenger (21). Oxygen radicals could abstract hydrogen from the -carbon of the amine bond N6-furfuryladenine (22). Oxygen radicals undergo a faster dismutation reaction when kinetin is complexed with copper. A direct effect of kinetin on superoxide dismutase activity has been observed in plants (20). Kinetin has also been shown to protect against oxidative and glycoxidative protein damage generated in vitro by sugars and an iron/ascorbate system (21).

The biological significance of kinetin’s interaction with DNA or its antioxidant properties is unknown. However, pluripotency may be a necessary prerequisite for effective antiaging activity (23). A multistep protocol utilizing in vitro and in vivo studies designed to compare the oxidative stress capacity or various antioxidants demonstrated that kinetin performed favorably relative to other known antioxidants including tocopherol, ascorbic acid, and lipoic acid (24).
CLINICAL STUDIES

Percutaneous absorption studies of kinetin with human cadaver skin demonstrate significant skin penetration (McCullough, unpublished study). A dose-response was shown with 0.01% versus 0.05% kinetin with tissue levels for both serum and lotion formulations. There was no significant difference in transdermal absorption with the two test formulations. Topical treatment with low-concentration kinetin normalized hyperpigmentation and improved age-related skin structure changes in hairless dogs (25).

Thirty subjects with mild to moderate photodamaged facial skin were treated with topical kinetin 0.1% twice daily for 24 weeks (26). Significant improvements were seen in tactile roughness, mottled hyperpigmentation, and fine wrinkling at both 12 and 24 weeks. Overall photodamage was reported improved by both self-assessment and dermatologist grading. Transepidermal water loss decreased after 24 weeks consistent with skin barrier function improvement. Other than some initial contact folliculitis, no significant skin irritation was seen.

Ninety-eight subjects with mild to moderate photodamaged facial skin each applied a kinetin-containing lotion and creams for 10 weeks (Revlon Research Center, unpublished studies). All subjects were assessed at baseline 4, 8, and 10 weeks for photodamage parameters. Statistically significant improvements were noted in all attributes, greatest with texture, skin clarity, discrete and mottled pigmentation, fine wrinkling, and global appearance. No significant irritation was noted.

Forty female subjects, ages 22 to 57, having mild to moderate facial skin photodamage, underwent a 12-week split face, double-blind, controlled and randomized study comparing a topically applied kinetin-containing lotion twice daily on one side and retinol containing lotion on the other (Almay Research—poster exhibit American Academy of Dermatology meeting, New Orleans, Louisiana, February 2002). Evaluations at four-week intervals demonstrated significant improvements for all attributes graded including discrete and mottled pigmentation, fine wrinkling, and overall photodamage. The kinetin lotion produced greater improvements in texture and clarity.

Another nonplacebo-controlled trial demonstrated a beneficial effect of topical kinetin 0.1% lotion in reducing erythema and overall clinical scores in 17 subjects with mild to moderate rosacea (27). A study of topical kinetin 0.03% with niacinamide 4% in 52 Asian subjects over a 12-week period suggested some synergistic cosmetic benefits to the combination (28).

Nine kinetin-containing products in 200 subjects each were subject to modified Draize repeat insult patch tests. No instances of sensitization were seen in the challenge phase. In addition, controlled use testing for up to six weeks demonstrated no significant irritation (Almay research, unpublished studies). Six kinetin-containing products were tested in 10 subjects each with skin phototypes I–III for UV sensitivity with a solar simulator (Ivy Research Laboratory Inc., Philadelphia, Pennsylvania, unpublished study). Panelists were treated with once daily applications of 2 mg/cm² to the mid-back for two weeks at six sites. After the final applications, no difference in minimal erythema dose was noted between untreated control and treated sites. The above studies and clinical experience to date would suggest that kinetin has minimal or no potential to cause irritation, allergy, or photosensitization.

Pyratine-6, a kinetin analogue, was utilized as a topical agent in a single 12-week open label photaging study. Improvement in skin roughness, moisturization, hyperpigmentation, and fine wrinkling was noted (29).

Table 16.1 Kinetin’s Effects on the Cytological Manifestations of In Vitro Aging

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Untreated</th>
<th>Old</th>
<th>Kinetin</th>
<th>Young</th>
<th>Old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell enlargement</td>
<td>None</td>
<td>Significant</td>
<td>None</td>
<td>Insignificant</td>
<td></td>
</tr>
<tr>
<td>Multinucleate cells</td>
<td>None</td>
<td>Present</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cellular debris</td>
<td>Minimal</td>
<td>Significant</td>
<td>Minimal</td>
<td>Minimal</td>
<td>Minimal</td>
</tr>
<tr>
<td>Lipofuscin</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Actin filaments</td>
<td>Low</td>
<td>Highly polymerized</td>
<td>Diffuse</td>
<td>Less polymerized</td>
<td></td>
</tr>
<tr>
<td>Microtubules</td>
<td>Orderly</td>
<td>Disorganized</td>
<td>Orderly</td>
<td>Orderly</td>
<td></td>
</tr>
</tbody>
</table>

Source: From Ref. 12.
REFERENCES

INTRODUCTION

Urokinase or urokinase-type plasminogen activator belongs to the trypsin-like serine protease family and activates inactive plasminogen to active plasmin. Because plasmin degrades fibrin clots, urokinase and plasmin are called fibrinolytic enzymes. These fibrinolytic enzymes function not only in blood but also in other organs, including the epidermis. They function in wound repair and also in many disease states such as psoriasis and pemphigus. Recently, urokinase and plasmin were found to function in dry skin as secondary exacerbating factors. Inhibitors of these enzymes were found to be effective in preventing dry skin.

This chapter reviews the functions of fibrinolytic enzymes, including urokinase, in dry skin. A new approach to skin care cosmetics for the prevention of dry skin is also described.

DRY SKIN

Dry skin is visually characterized by dryness, scaling, and a rough texture (1,2). This condition is not a disease specific to certain people, but can be experienced by any healthy person, especially in a dry, cold season. Its effects are not limited to the impairment of beauty, but can include itching and even pain in severe cases. Moreover, chronic dryness is thought to accelerate skin aging. For these reasons, the prevention of dry skin is one of the most important functions of skin care cosmetics.

There are many external and internal primary factors that change the skin surface morphology and cause dry skin. The external factors include exposure to extremes of climate (cold, wind, dryness), chemicals (detergents, solvents), and ultraviolet radiation. The internal factors include various abnormalities in physiologic functions, illness, and mental stress. The change in dry skin is not restricted to appearance. The barrier function of the stratum corneum decreases and water is lost more easily. Furthermore, proliferation of keratinocytes is accelerated, and turnover of the epidermis is increased. The epidermis becomes hypertrophic. The differentiation of keratinocytes is also abnormal in dry skin, leading to the incomplete formation of the stratum corneum.

For these reasons, to prevent and improve dry skin, it is not sufficient to supply moisture to the stratum corneum. Applying creams topically for the purpose of occluding the skin surface is effective in improving the damaged barrier function, but this is not a fundamental treatment. To maintain the skin in a healthy state, it is essential to protect the epidermis from the inside. Maintaining the normal proliferation of keratinocytes and keeping epidermal differentiation normal are important requirements for preventing dry skin.

APPROACH TO FINDING INTRAEPIDERMAL SECONDARY FACTORS THAT CAUSE DRY SKIN

To elucidate the mechanism of dry skin occurrence and develop effective compounds for preventing the appearance of dry skin, attempts have been made to identify intraepidermal secondary factors that cause and accelerate dry skin formation (1,3,4). These putative secondary factors are thought to respond to primary factors, such as a dry environment, and cause further changes in dry skin. We have identified plasmin as one of the secondary factors by means of the following approach.

We created an experimental dry skin model by applying detergent to skin (1,3). Detergent is a well-known cause of dry skin and has often been used for artificially inducing dry skin. After applying 5% sodium lauryl sulfonate (SLS) once a day for four days continuously, we visually observed the condition of the skin on the fifth day. The features of dry skin, such as dryness, scaling, and a rough texture, were observed. At the same time, some physiologic values related to dry skin were measured. The water content of the stratum corneum of the SLS-treated area was reduced. The transepidermal water loss (TEWL) value of the area was increased, thus the barrier function of the stratum corneum was decreased. These physiologic features of the model resemble those of naturally occurring dry skin.

The barrier recovery test was also used, because the decrease of barrier function is one of the most important phenomena associated with dry skin (4). First, the barrier function of the stratum corneum was destroyed with a detergent or a solvent, then the time course of TEWL was measured. Activity of compounds to restore the barrier could be assessed by means of this test.

We assayed many kinds of compounds in the experimental dry skin model and the barrier recovery test (Table 17.1). Nonsteroidal anti-inflammatory agents such as acetylsalicylic acid, indomethacin, mefenamic acid, ibuprofen, and sodium diclofenac were tested first, but these compounds did not exhibit a suppressive effect on experimental induction of dry skin. The calcium channel inhibitors nifedipine and verapamil hydrochloride, and the calmodulin inhibitors N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and trifluoperazine were also ineffective. Then protease inhibitors were tested, and we found that trans-4-(aminomethyl)cyclohexane carboxylic acid (t-AMCHA) prevented epidermal hypertrophy and suppressed the appearance of dry skin. This compound is an inhibitor of plasmin, which belongs to the trypsin-type serine protease family. Tosyl-lysine chloromethyl ketone (TLCK, t-1-chloro-3-(4-tosylamido)-7-amino-2-heptane hydrochloride), a nonspecific inhibitor of trypsin-type proteases, was also effective. In contrast, other protease inhibitors such as ethylenediaminetetraacetic acid (EDTA) (a metalloprotease inhibitor), pepstatin (an aspartate protease inhibitor), and Trypsin inhibitor ser.9 (a serine protease inhibitor) were also ineffective.
trans-epoxysuccinyl-leucylamide-(4-guanidino)butane (E64) (a cysteine protease inhibitor), and chymostatin (a chymotrypsin-like serine protease inhibitor) had no beneficial effect. Effectiveness of \(\text{t-AMCHA} \) was shown not only in experimentally induced dry skin but also in naturally occurring dry skin. A double-masked clinical test was carried out in the dry, cold winter season in Japan. One side of the face of the trial subjects was treated with cream containing \(\text{t-AMCHA} \) for one month and the other side was treated with a placebo cream. The skin texture of the \(\text{t-AMCHA} \)-treated side was significantly improved. Some existing skin care products contain \(\text{t-AMCHA} \) as an effective ingredient.

POSSIBLE INVOLVEMENT OF PLASMIN IN SKIN DISEASES

As described earlier, plasmin was found to be a secondary factor that causes and accelerates dry skin formation. This enzyme is a trypsin-like serine protease that is distributed mainly in plasma. Although its main function is lysis of fibrin in coagulated blood clots, plasmin also exists in adrenal, kidney, brain, testis, heart, lung, uterus, spleen, thymus, and gut (5).

Plasmin exists in the epidermis as well. It is known to be expressed in diseases such as psoriasis (6). The epidermis of psoriatic skin is extremely hypertrophic, and the proliferation of keratinocytes is rapid. The expression of plasmin is confined to the basal cell layer of the normal epidermis, whereas in lesional psoriatic skin it is scattered throughout the epidermis. The increased plasmin activity may contribute to the disease manifestations.

Wounding the epidermis also increases plasmin (7). At the wound edge, keratinocytes proliferate and migrate rapidly to cover the wounded area. Plasmin degrades the extracellular matrix at the wound edge to aid proliferation and migration of keratinocytes.

Plasmin may contribute to dry skin formation as well, because plasmin inhibitors were effective in ameliorating dry skin (1,3). To confirm this, we tried to detect plasmin in dry skin. We induced dry skin on the inner forearm of healthy male volunteers by repeated SLS application and then biopsied the treated area. Immunohistologic staining with antiplasmin monoclonal antibody was performed. As shown in Figure 17.1,
plasmin was localized throughout the epidermis of experimentally induced dry skin, but it was restricted to the basal layer in intact skin. Treatment with t-AMCHA was extremely effective in preventing changes in the intraepidermal distribution of plasmin associated with dry skin as well as in suppressing epidermal hypertrophy.

Epidermal hypertrophy is common in psoriasis, wound- ing, and dry skin. Plasmin may be involved in promoting the proliferation and migration of keratinocytes in these skin states, resulting in epidermal hypertrophy; that is, it may stimulate keratinocyte proliferation in response to primary factors such as detergents.

PLASMINOGEN ACTIVATOR (UROKINASE) IN DRY SKIN

Plasmin is biosynthesized as an inactive precursor called plasminogen. The cleavage of Arg560-Val561 of plasminogen activates this precursor molecule. Two major proteases are involved in plasminogen activation. One of them is urokinase-type plasminogen activator (u-PA) and the other is tissue-type plasminogen activator (t-PA). These plasminogen activators, like plasmin, belong to the trypsin-like serine protease family.

Aberrant plasmin activity in the epidermis may require increased levels of plasminogen activators. Indeed, the lesional epidermis from patients with psoriasis contains elevated levels of plasminogen activators compared with nonlesional epidermis or epidermis from normal individuals (8,9). Plasminogen activators are also increased at the wound edge (10,11). In psoriasis, t-PA is thought to be the major plasminogen activator, whereas urokinase may be predominant in wounding. Plasminogen activators may also have a role in dry skin formation.

Plasminogen activator activity was detected in dry skin. Stratum corneum obtained from dry skin by tape stripping had the activity of lysing fibrin in vitro. Because this lysis was completely inhibited when antibody against urokinase was added, the major plasminogen activator in dry skin might be urokinase. In situ zymography was carried out to confirm the presence of plasminogen activator activity in vivo. In the SLS-treated skin, plasminogen was activated in the epidermis, whereas little activity was seen in the control skin (4).

Plasmin is thus an important secondary factor that induces and accelerates dry skin formation. Urokinase in the epidermis may be another secondary factor that activates plasminogen.

UROKINASE ACTIVATION IN THE STRATUM CORNEUM OF DRY SKIN

Urokinase belongs to the trypsin-like serine protease family, like its substrate plasmin. It is also produced and secreted by cells as an inactive single-chain precursor called pro-uPA (Fig. 17.2). Cleavage of Lys158-Ile159 of pro-uPA is essential for its activation.

Recently, it was found that urokinase was activated in the stratum corneum after barrier disruption (12). As a result of in situ zymography, plasminogen activator activity was detected in the stratum corneum only one hour after barrier destruction (Fig. 17.3). This indicated that urokinase is activated in the stratum corneum at an early stage of dry skin formation. The stratum corneum forms the surface layer of our bodies and is always exposed to the environment. This activation of urokinase in the stratum corneum might be the trigger process in forming dry skin.

Urokinase activation in the stratum corneum was also tested by means of an in vitro assay. Human stratum corneum was collected by peeling and homogenized in a glass homogenizer. The homogenate was washed with glycine buffer to remove endogenous urokinase. We incubated pro-uPA with the insoluble components of the stratum corneum homogenate. Activity of urokinase was detected after the incubation, but neither the insoluble components of the stratum corneum homogenate nor pro-uPA had any significant urokinase activity. This activation was confirmed by means of Western blotting analysis. After the incubation, pro-uPA had been converted into a two-chain active form.

PHYSICAL INTERACTION BETWEEN UROKINASE AND THE STRATUM CORNEUM

Pro-uPA activation must have taken place on the surface of solid stratum corneum, because only the insoluble components were used in the in vitro urokinase activation assay. To estimate the physical interaction between urokinase and the insoluble components of the stratum corneum homogenate, a binding assay was conducted. After incubation of urokinase and the insoluble components of the stratum corneum homogenate, the mixture was filtered to separate the soluble and insoluble components. Amounts of urokinase in both components were determined. Pro-uPA was found to bind to the insoluble components of the stratum corneum homogenate in this assay. This physical interaction is likely to be important for the activation.

The single-chain pro-uPA turns into a two-chain molecule when activated (Fig. 17.2). The N-terminal chain of active urokinase is called the A chain, and contains one growth factor domain and one kringle domain. The C-terminal chain (B chain) includes the catalytic domain. The growth factor domain binds to the urokinase receptor, which exists on the cell surface. The kringle domain is thought to be involved in binding to other molecules, such as insoluble fibrin clot. These regulatory domains in the N-terminal region are thought to function in binding of secreted urokinase to specific molecules.

Urokinase has two active two-chain forms: high molecular weight urokinase (HMW-uPA) and low molecular weight urokinase (LMW-uPA). LMW-uPA lacks the N-terminal 135 residues of HMW-uPA. The growth factor domain and the kringle domain are in this N-terminal region. These two active forms were subjected to the binding assay to estimate the importance of the N-terminal region. HMW-uPA could bind to the stratum corneum homogenate, whereas LMW-uPA could not. Thus, the first 135 residues of urokinase are important for the physical interaction. In the process of dry skin formation, the N-terminal regulatory region of urokinase might bind to some components of the stratum corneum and thereby modulate the enzyme activity.

T-AMCHA METHYLMIDE

We hypothesized that inhibiting the physical interaction between urokinase and the stratum corneum might be a good way to inhibit activation of urokinase in the stratum corneum. The methylamide derivative of t-AMCHA (Fig. 17.4) was used to test this hypothesis. This derivative has less inhibitory
activity against fibrinolysis than the plasmin inhibitor t-AMCHA (Fig. 17.5A). Nevertheless, t-AMCHA methylamide strongly inhibited the physical interaction between urokinase and the insoluble components of the stratum corneum homogenate in vitro (Fig. 17.5B). It also inhibited activation of urokinase in the stratum corneum in vitro. Addition of t-AMCHA methylamide suppressed in vitro pro-uPA activation induced by incubation with the insoluble components of the stratum corneum homogenate.

The effects of t-AMCHA and the methylamide derivative in preventing dry skin were compared in experimentally induced dry skin (Fig. 17.5C). We found that 1% t-AMCHA methylamide suppressed dry skin more potently than t-AMCHA at the same concentration. This result suggested that inhibiting the physical interaction between urokinase and the stratum corneum was more effective in preventing dry skin formation than was inhibiting the activity of plasmin. Inhibition of urokinase activation in the stratum corneum by t-AMCHA methylamide in vivo was confirmed by using in situ zymography. The mechanism of suppression of the dry skin formation by t-AMCHA methylamide in vivo may be inhibition of the urokinase activation in the stratum corneum.

The effectiveness of t-AMCHA methylamide in ameliorating naturally occurring dry skin was demonstrated in a...
Figure 17.4 Molecular structures of \(t \)-AMCHA (A) and \(t \)-AMCHA methylamide (B).

Figure 17.3 Detection of plasminogen-activator activity in intact skin (A) and skin after barrier disruption (B). Loss of fluorescence indicates plasminogen activator activity. Plasminogen activator activity was detected in the stratum corneum after barrier disruption (arrow).

Figure 17.5 Comparison of the inhibitory effects of \(t \)-AMCHA and \(t \)-AMCHA methylamide on fibrinolysis (A), the physical interaction between urokinase and the stratum corneum (B), and experimentally induced dry skin formation (C). \(t \)-AMCHA methylamide (1 mmol/L) had less inhibitory effect on fibrinolysis in vitro than did the same concentration of \(t \)-AMCHA. However, 1% \(t \)-AMCHA methylamide inhibited the attachment of high molecular weight urokinase plasminogen activator to the insoluble components of the stratum corneum homogenate more potently than did \(t \)-AMCHA. Furthermore, 1% \(t \)-AMCHA methylamide was more effective than \(t \)-AMCHA on experimental dry skin induced by repeated application of sodium lauryl sulfate. The compound suppressed the increase of transepidermal water loss (TEWL). Whiskers show standard deviations (A, B) and standard errors (C).
double-masked clinical test. After one month’s use in winter, lotion containing t-AMCHA methylamide significantly improved the skin, compared with the lotion without this compound. The skin surface texture of two cases before and after the treatment is shown in Figure 17.6. It is clear that inhibiting the physical interaction between urokinase and the stratum corneum is an effective method of inhibiting activation of urokinase in the stratum corneum and is a potentially useful approach for preventing dry skin formation (13).

SUMMARY
As described, dry skin is an important target of skin care. Plasmin is a key intraepidermal secondary factor that induces and accelerates dry skin formation. Urokinase, the enzyme that activates plasminogen in the epidermis of dry skin, is activated in the stratum corneum at an early stage of dry skin formation, and this activation is thought to be the key trigger. Physical interaction between urokinase and the stratum corneum may be important for the activation. Inhibiting this physical interaction to suppress the plasmin system activation in the epidermis is proposed as an effective approach in preventing dry skin formation.

REFERENCES

Figure 17.6 The improvement of skin surface texture after one month’s treatment with lotion containing 0.7% t-AMCHA methylamide in two cases. (Left) Skin surface texture before the treatment; (right) after the treatment.
Ceramides and the skin

Clive R. Harding, David J. Moore, and Anthony V. Rawlings

INTRODUCTION

Prevention of desiccation is the major function of the skin. This function is performed for the most part by skin’s epidermis, with a particularly crucial contribution by the outer most layers, the stratum corneum (SC). At the skin’s surface there is a delicate balance between the water content of the SC and the environment, and although the SC contains relatively little water, a critical level of moisturization is essential for the normal barrier function and health of the skin. To maintain the proper level of moisturization, the skin’s epidermis has evolved a finely tuned differentiation program which generates and maintains a SC composed of cellular and macromolecular components that provide the required structure, humectancy and barrier to water loss (1). The SC consists of three basic components; corneocytes (terminally differentiated keratinocytes), corneodesmosomes (proteinaceous rivets holding corneocytes together) and lipids. A widely employed, if oversimplified analogy of SC structural organization is a brick wall (2,3). This analogy provides an image of a heterogeneous structure of two major components: bricks and mortar (Fig. 18.1). In this model, the corneocyte “bricks” occupy most of the volume of the SC wall and are surrounded by a lipid “mortar.” It is now recognized that the corneodesmosomes are a vital element of the mortar ensuring structural integrity. Equally, the size and shape of the corneocytes influence skin barrier function as well as the total thickness of the SC. One must also not forget the role of filaggrin and its degraded components (major components of the natural moisturising factor) in SC functioning (1).

The lipid matrix constitutes approximately 20% of the SC volume (about 15% of the dry weight) and is the continuous phase of the skin barrier (4,5). The lamellar bilayer organization of this lipid matrix was first observed clearly using electron microscopy to examine ruthenium tetroxide (RuO4) fixed samples (Fig. 18.2A) (6). It has now been well established, using a variety of tape stripping and lipid extraction experiments that the hydrophobic epidermal permeability barrier resides primarily in the lipid bilayers of the SC with the corneocytes and thickness of the SC dictating the tortuosity and thereby increased path length for the diffusion of water through the SC. Consistent with the mortar analogy, however, there is good evidence to indicate that the lipids also contribute to the intercellular cement, which helps to maintain the integrity of the tissue (7,8).

The SC lipid bilayers are unique among biological membranes in terms of composition, organization, and physical properties. The major lipid species of the SC are ceramides (about 50% by mass), fatty acids (10–20% by mass), and cholesterol (25% by mass) (4,5,9). In addition, there are small amounts of cholesterol esters and cholesterol sulfate which, in particular, seems to play a critical role in normal barrier function (10). There are no phospholipids in healthy SC (5). Many of the lipids of the SC are derived from the contents of the membrane-coating granules (MCG) (also called lamellar bodies or keratinosomes) formed in the keratinocytes of the stratum granulosum, the uppermost layer of the viable epidermis. At the interface between the stratum granulosum and SC the extruded phospholipids, sphingolipids, and plasma membrane constituents are enzymatically cleaved as they enter the SC to generate free fatty acids and ceramides (11). These components then fuse together to form the continuous lamellar bilayers characteristic of the SC (Fig. 18.2B). It is estimated that the skin must synthesize approximately 100 to 150 mg of lipid/day to replace that lost in normal desquamation. The skin, therefore, is one of the most active sites of lipid synthesis in the body (9,12).

This chapter will review recent developments in our understanding of the biological functions of ceramides, the major polar species from which the extracellular lipids of the SC are organized.

THE STRUCTURE OF SC CERAMIDES

In recent years our understanding of the heterogeneity of SC ceramides has increased in parallel with the development of new, highly sensitive methodology for their detection and measurement (13,14) and even visualization using specific antilipid antibodies (15). Most notably studies by Masukawa and colleagues employing normal-phase liquid chromatography (NPLC) connected to electrospray ionization mass spectrometry (ESI-MS) have provided new quantitative insights on ceramide classes and species in human SC (16,17).

To date eleven classes of free ceramides (non-corneocyte-bound) have been identified. Their relative abundance in the SC is shown in Table 18.1 (18–20). Collectively these ceramides are derived from three distinct lipid precursor pools synthesized in the underlying epidermis: epidermosides, glucosylceramides, and sphingomyelin. Epidermosides are glycated precursors of α-hydroxy-containing ceramides (21). Studies have shown that both glucosylceramides (MCG content derived) and sphingomyelin (plasma membrane and MCG membrane derived) can contribute to the formation of SC ceramides (22) although evidence suggests that glucosylceramides may represent the major source of ceramide synthesis (23). The epidermosides are precursors to the covalently bound ceramides together with α-hydroxy-containing ceramides (21). The general pathway of ceramide synthesis is illustrated in Figure 18.3. At an initial glance the pathways of ceramide synthesis, transportation and metabolism appears unduly complex and heavily dependent on metabolic resources and energy. However, the intrinsic insolubility of crystalline, high–melting point ceramides, critical for barrier integrity dictates their initial
modification to facilitate transport and delivery to the stratum granulosum: SC interface. This is achieved through their glycosylation (glucosylceramide synthetase), or conversion into sphingomyelin (sphingolipid synthetase) and subsequent transportation within MCGs. Once extruded into the intercorneocyte space the mature ceramides must subsequently be "regenerated" through a number of enzymatic processes. The integrity of the barrier function of the SC is therefore critically dependent on glucosylceramide and sphingomyelin synthesis (24).

The chemical structures of the fatty acid and base chains comprising the SC ceramides currently resolved are illustrated in Figure 18.4, where they are shown in table form following the work of Masukawa and colleagues. The confusion regarding ceramide nomenclature discussed in the earlier edition of this chapter has now largely been eliminated by the general adoption of a nomenclature based on actual chemical structure rather than on a nomenclature derived from the relative rate of flow (rf) of ceramides measured by thin layer chromatography plates, which has become increasingly meaningless, as it is no longer based on polarity alone. The new nomenclature was first suggested some years ago (19,25) and is gradually becoming more widely adopted in the skin barrier...
literature. We will use the chemical nomenclature throughout this chapter. This nomenclature is based on the molecular structures corresponding to the four sphingoid base chains and three fatty acid chains: sphingosine (S), 6-hydroxy sphingosine (H), dihydrosphingosine (DS), phytosphingosine (P), α-hydroxy acid (A), nonhydroxy fatty acid (N), and esterified ω-hydroxy fatty acid (EO). The complete molecule is designated by “ceramide (CER)-acid-base,” that is, the acid chain abbreviation precedes the base chain (in the case of an ester link in the acid chain, this is noted first). For example, a 6-hydroxy sphingosine with an α-hydroxy fatty acid chain would be denoted as CER[AH]. The 12 ceramide classes possible from these combinations of acid and bases are listed in Figure 18.4, the relative concentration of each class is listed in Figure 18.1. However, it should be noted that CER[EODS] has yet to be identified within the SC lipids.

Human SC ceramide base chains range from 18 to 22 carbons in length (12,18,26). For the nonhydroxy fatty acid ceramides the amide linked fatty acid chains range from 16 to 32 carbons in length with the major chain species being either 24 or 26 carbons (18,25). For the ω-hydroxy ceramides (CER[EOS] and CER[EOH]) the fatty acid chains range from 30 to 34 carbons in length with linoleic acid (C18:2) esterified to the ω-hydroxy group (19,27). The ongoing analytical work of Masukawa and colleagues evaluating SC ceramides is refining the above values although these new results appear to be in general agreement (16,17). One point of interest is the identification of several odd-numbered fatty acid chains in SC ceramides and the suggestion of branch chained; these initial studies await further confirmation. Using NPLC-ESI-MS methods over 300 distinct ceramide species have been identified across the classes illustrated in Figure 18.4 (17). Further improvements in these techniques appear set to herald in the dawn of ceramide lipidomics; enabling precise changes in these species associated with body site, increasing age, gender, ethnic differences and varying skin conditions to be elucidated through minimally invasive procedures (adhesive tape stripping).

Table 18.1 Approximate Percentage of Major Free Ceramide Species to Total Ceramide Pool in the Stratum Corneum

<table>
<thead>
<tr>
<th>Ceramide nomenclature</th>
<th>Percentage of total ceramide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramide (NDS)</td>
<td>6.1</td>
</tr>
<tr>
<td>Ceramide (NS)</td>
<td>6.4</td>
</tr>
<tr>
<td>Ceramide (NP)</td>
<td>22</td>
</tr>
<tr>
<td>Ceramide (NH)</td>
<td>22.5</td>
</tr>
<tr>
<td>Ceramide (ADS)</td>
<td>0.8</td>
</tr>
<tr>
<td>Ceramide (AS)</td>
<td>3.4</td>
</tr>
<tr>
<td>Ceramide (AP)</td>
<td>15.6</td>
</tr>
<tr>
<td>Ceramide (AH)</td>
<td>15.4</td>
</tr>
<tr>
<td>Ceramide (EOS)</td>
<td>4.2</td>
</tr>
<tr>
<td>Ceramide (EOP)</td>
<td>1</td>
</tr>
<tr>
<td>Ceramide (EOH)</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Figure 18.3 Summary of the proposed pathways leading to synthesis of stratum corneum ceramides. Enzymes are shown in bold italics. Abbreviations: PC, phosphatidylcholine; DG, diacylglycerol; UDP, uridine diphosphate; SPC, sphingosylphosphorylcholine; SPT, serine palmitoyl transferase; CER, ceramide.
Although not the focus of this chapter it is worth noting the chain length of SC free fatty acids are approximately C22 (11%), C24 (39%), C26 (23%), and C28 (8%) (28). The unusual physical properties of the SC lipid bilayers, compared with other biological membranes, are in large part due to these long, primarily unsaturated, hydrocarbon chains that characterize both the ceramides and the fatty acids. The critical importance of very long-chain fatty acids (VLCFA) is emphasized by mutations in the enzymes (elongases) responsible for their synthesis. Mutations in the elongase, ELOVL4, are associated with the Stargardt-like macular degeneration. Deliberate deletion of ELOVL4 in murine models lead to profound barrier defects characterized by a global decrease in VLCFA in the free fatty acid, ceramide, and glucosylceramide fractions (29,30).

Strikingly, the SC is devoid of CER[EOS] and CER[EOH]. Similarly, synthetic short-chain ceramides (based on CER[NS]) with a four- to eight-carbon acyl chain have been shown to dramatically increase SC permeability. The disruption to barrier was maximal with a C6 acyl chain, whereas C2 and C12 ceramides did not increase permeability (31). In contrast, others have demonstrated that short-chain ceramides, including those with a C6 acyl chain, increase keratinocyte differentiation (32,33).

Certain ceramides are covalently bonded to the outside aspect of the corneocyte protein envelope via the formation of ester linkages between hydroxyl groups on the ceramides and carbonyls of the β-sheet proteins of the cornified cell envelope (34,35). This process appears to be catalysed by transglutaminase 1 (36), a calcium-requiring enzyme previously thought to be involved solely with protein crosslinking within the cornified envelope. The lipid envelope consists primarily of CER[OS] (ceramide A) the derivative of CER[EOS] and CER[OH] (ceramide B) the derivative of CER[EOH], see below and Figure 18.4 for ceramide structures. Two novel species of covalently bound ceramides have been identified one consisting of a sphinganine base (C17-C22), the other displaying a phytosphingosine base and both linked to ω-hydroxy acid; designated CER[OSP] and CER[OP], respectively (20). Downing suggests that all the ω-hydroxy ceramides of corneocyte lipid envelopes are attached to proteins through their ω-hydroxyl groups (37).

It has been determined that there is enough lipid covalently attached to the corneocyte protein envelope to form a complete lipid monolayer over the surface of each cell (5,34). The very long chains of the envelope ceramides lipids will be conformationally ordered thereby forming a water barrier around each corneocyte (34), and studies in mice suggest that the amount of covalently bound ceramide is highly correlated with the barrier function of the skin (38). A critical function of this layer, is to cover the corneocytes with a lipophilic coating and thereby act as a template or scaffold to direct the assembly of the extruded lamellar body lipids into lamellar bilayers (4,5).

Severe abnormalities to MCG formation, lipid organization and barrier function result from the topical application of a specific inhibitor of ω-hydroxylation emphasizing the important role
this class of ceramides plays in barrier formation and integrity (39).

Although the majority of ceramides with the SC remain intact during SC maturation, ceramide-hydrolyzing enzymes have been identified in the SC, and these may be responsible for the formation of ceramide degradation products readily identified within the tissue (40). A lipid species called acyl acid, which appears to be the α-esterified N-acyl fatty acid portion of CER[EOS], and free sphingoid bases were shown to be present in human epidermis (41,42). It is possible that both of these lipid species could be derived from hydrolysis of CER[EOS] or acylglucosylceramides. Although the role of these degradation products is uncertain, sphingosine and other sphingoid bases may be involved in a SC-epidermis signaling function as these have been reported to inhibit keratinocyte proliferation (43). It has been reported that phytosphingosine has both antimicrobial and anti-inflammatory properties and has demonstrated potential to enhance existing antiacne therapies (45).

LIPID ORGANIZATION IN THE SC

The lamellar bilayer of most biological membranes consists of lipids in the liquid crystalline state. In this state the lipid chains have considerable intramolecular conformational disorder. Aliphatic liquid crystal forming lipids can undergo reversible transitions between the lamellar gel phase (Lα) and the lamellar Lαβ phase. In the Lα phase, hydrocarbon chains are in a fully extended trans conformation and the chains are packed in a hexagonal array. Long-chain lipids can also pack lamellar bilayers where the chains are packed in an orthorhombic array. In this phase the chains are conformationally ordered and packed in a very tight crystalline array (46).

Our understanding of lipid organization in biological membranes has advanced significantly in the last two decades as a variety of biophysical techniques have shed light on the molecular details of membrane lipid organization and dynamics. A consequence of this research has been the considerable modification of the original fluid mosaic model of cell membrane organization as the paradigm for membrane lipid organization (47). Thus lipid domains across cell membrane bilayers as well as within the plane of membrane leaflets have been observed in a variety of biological membranes (48–50). The complexity of the lipid composition of the SC, as well as its unusual physical properties clearly indicates a unique molecular organization. The very long carbon chain lengths of SC ceramides and free fatty acids are, no doubt, the primary determinant of the unusual (for a biological membrane) physical properties of the SC lipid bilayers. In recent years a variety of biophysical studies utilizing techniques such as nuclear magnetic resonance (NMR), X-ray spectroscopy, differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy have presented a detailed molecular level picture of lipid organization in the SC.

A variety of published reports have established that the hydrocarbon chains of SC lipids are highly ordered. McIntosh and coworkers, in X-ray studies of mixtures containing ceramides, fatty acids, and cholesterol, observed ordered gel phase lipids at 25 mol percent cholesterol, which did not depend on the amount of water present, or on the presence of protein (51). The repeat unit of 13 nm in these studies was postulated to arise from two bilayers. In earlier wide-angle X-ray studies of murine SC, White and colleagues reported the presence of some crystalline orthorhombic lipids at physiological temperature (52). Orthorhombic phase lipids have also been observed by Bouwstra and coworkers in X-ray studies of isolated human SC as well as in recent electron diffraction studies of ceramide/cholesterol/fatty acid models of SC (53–55). In addition, Bouwstra and colleagues have demonstrated the importance of CER[EOS] in producing the intermembrane organization necessary for healthy skin barrier function (56).

In one of the authors laboratory (DJM) experimental infrared spectroscopy techniques have been developed to measure lipid organization in lipid bilayers, cell membranes, and living cells (57–59) to explore the molecular behavior of diverse ceramide species, both alone and in lipid models of the SC (60–63). This work has demonstrated that each ceramide species organizes somewhat differently, reflecting distinct intermolecular interactions between their hydrocarbon chains as well as significant headgroup hydrogen bonding interactions. It is quite feasible that good overall cohesion in the SC, and therefore good barrier function, is provided by the diverse physical properties of these heterogeneous species.

CER[EOS] is worthy of particular mention. This is the predominant ceramide containing unsaturated fatty acids in the SC and it is remarkably enriched in linoleic acid, which comprises a minimum of 20% to 30% of the α-esterified fatty acid. The epidermis has an absolute requirement for linoleic acid to maintain a correctly functioning barrier and its absence leads directly to the dramatically perturbed barrier found in EFAD animals. The characteristic hyperproliferation seen in this condition may also reflect further perturbation in linoleic acid metabolism (64).

As the work of Bouwstra and coworkers, and others has suggested this particular ceramide species provides unique physical properties to the SC (56,65) that simply cannot be compensated for by the esterification of other unsaturated fatty acids within the CER[EOS] fraction. As we will discuss later in this chapter reduced levels of CER[EOS] containing linoleic acid is a feature common to many skin disorders including acne, atopic dermatitis and winter xerosis.

In contrast, increases in CER[EOS] are a feature of the response of skin to repeated surfactant challenge (the so-called "hardening phenomenon") again emphasizing the key role this ceramide plays in skin protection (66).

The careful interpretation of many in vitro and in vivo investigations on lipid behavior in the SC has led to several models being proposed to describe lipid organization in this structure. Some models are more theoretical/hypothetical, such as Forslind’s domain mosaic model (67) and Norlen’s related single gel phase model (68), whereas others are based on selected empirical data, such as Bouwstra’s sandwich model that relies primarily on X-ray diffraction data (69). A detailed analysis and discussion on the relative merits of each model is beyond the scope of this review. Since the last edition of this chapter there has been no new models proposed for SC lipid organization. The continued observation of orthorhombic lipid organization from both ex vivo and in vivo SC measurements (70,71) are consistent with many model SC studies, and suggest the single gel phase model is not an adequate description of barrier lipid organization.

Although the prime function of lipids in the SC is that of providing the water barrier, lipid abnormalities associated with altered cornification have been reported in many common
dermatological disorders (psoriasis and atopic dermatitis). Structural abnormalities in SC lipid lamellae also occur in the outer layers of the SC in dry skin. However, at present there is not a detailed understanding of how changes in the lipid composition, or specifically the ceramide composition, influence corneocyte cohesion and ultimately desquamation. There is indirect evidence for SC lipids being involved in cell cohesion from corneocyte reaggregation studies in vitro. Numerous workers have reaggregated previously dispersed corneocytes in the presence of SC lipids and found the physical properties of the reconstituted SC lipid cell films to be similar to the intact tissue (72,73). In marked contrast, Chapman et al. (74) suggested intercellular lipids might actually have an anticohesive role preventing close opposition of adjacent corneocytes. In those particular studies, when SC lipids were completely extracted, the intercorneocyte forces were dramatically increased, primarily because of the juxtaposition of the covalently bound lipids and corneocytes became tightly cohesive. Taken together these observations indicate that both the intercellular and covalently bound lipids may have a role in SC integrity.

Changes in physical properties of the SC ceramide lipids may also be important in promoting cell desquamation toward the skin surface. It is known that the fine ultrastructure of the ceramide bilayers is disturbed in the superficial layers in normal skin (75). This loss of structure, critical for normal desquamation, may reflect hydrolysis by ceramidases (40). Alternatively there is evidence that surfactant-like sebaceous fatty acids may lead to bilayer disruption (76) and the induction of an orthorhombic to hexagonal structure transition at the surface of the SC (77).

Ultimately, however, it is the corneodesmosome, which is primarily responsible for intercorneocyte cohesion (75,78,79), and it is this structure which must be effectively hydrolyzed to ensure desquamation. Ceramides, together with other lipid species, may play an important role in this process. Although the precise mechanism is far from understood, the phase behavior and organization of the intercellular lipids controls the water content in the SC, and may influence the activity of the hydrolytic enzymes (80) present within the intercellular space which are responsible for corneodesmosomal degradation. In this respect it is of interest to note that the action of ceramidase in releasing free fatty acids may also contribute to the acidification of the SC that is critical for enzymatic regulation, normal desquamation and barrier function (81).

VARIATIONS IN SC CERAMIDE LEVELS

The total amount of ceramides in SC, as well as individual ceramide species, are influenced by disease and hormonal status, diet, age, race, external environment, and by circannual variation. Ultimately, it is the ratio of the different lipid classes as well as the levels of individual lipids in the SC that influence barrier function, water content, and skin condition. These differences can be subtle, that is, changes in the crucial ceramide:cholesterol ratio may explain the altered barrier characteristics in axillary skin (82). In this section we review specifically the changes in ceramide composition characteristic of various skin disorders.

Psoriasis and Lamellar Ichthyosis

Of the genetic diseases impacting skin condition, only lamellar ichthyosis and psoriasis have been investigated in any detail in relation to the levels of SC ceramides. In both of these conditions dramatic changes in SC lipid structure is observed reflecting changes in lipid composition (83–85). These changes include increases in CER[NS], CER[EOH], and decreases in CER[AS]. Together with the altered cholesterol and fatty acids levels, these alterations contribute toward some of the aberrations in SC function which are characteristic of these conditions, including corneocyte cohesion and faulty desquamation. Individuals suffering from lamellar ichthyosis have a defective gene for trans-glutaminase 1. As we have seen earlier the inability to link ceramides to the cornified envelope has dramatic consequences for the skin and the loss of this enzymatic function explains in part the dramatic skin phenotype seen in ichthyotic individuals. It has also been reported that the composition of the covalently bound lipids differs in psoriatic SC compared with healthy SC. In psoriatic skin, CER[OH] decreases, while other components such as ω-hydroxy acids and fatty acids, particularly the covalently bound oleate and linoleate, are seen to increase (27). Recent focused studies on the discrete enzymes involved in the synthesis and degradation of ceramide have suggested that serine palmitoyl transferase (SPT), the rate-limiting enzyme in ceramide biosynthesis is significantly decreased in lesional and nonlesional sites (86). The same authors also report on a negative correlation between the levels of this enzyme and the PASI score.

Over the past five years the genetic basis of the congenital scaling syndrome harlequin ichthyosis has pointed to the importance of mutations in a member of the ABCA transporter family, ABCA12. Mutations in this gene lead to an abnormality in lamellar body formation, perturbed lamellar lipid organization in the SC and loss of barrier function (87). These barrier perturbations are associated with profound decreases in the long-chain ω-hydroxyl ceramides (CER[EOS]) and a corresponding increase in glucosylceramides (88). Understanding of molecular mechanisms indicates that epidermal ceramides may regulate ABCA12 gene expression through a peroxisome proliferators–activated receptor (PPAR)-α-mediated signaling pathway (89). Although the SC lipid profiles in other ichthyotic diseases have not been fully determined, reduced levels of sphingosine have been found in a variety of subjects with various ichthyoses (90). This decrease in sphingosine may, in part, explain the cellular hyperproliferation observed in these conditions as sphingosine, has been proposed to feedback to the epidermis and downregulate keratinocyte turnover (43).

Atopic Dermatitis

Atopic dermatitis is characterized by xerosis and reduced barrier function as measured by transepidermal water loss (TEWL) and corneosurfametry. This condition is also associated with a significant decrease in SC ceramide levels (91,92), particularly, CER[EOS] containing linoleic acid (93), and the presence of unusual, possibly diagnostic ceramide species (94). Research over the past 15 years has emphasized that many aspects of lipid metabolism are deranged in this condition; atopics has significantly depleted covalently ω-hydroxy ceramides (95), and reduced levels of prosaposin, an important regulator of sphingolipid metabolism (96).

The lowered level of ceramides in atopics has been linked to reduced activity of sphingomyelinase (97) and an altered (increased) expression of the enzyme sphingomyelin decacylase (98,99). This enzyme competes with sphingomyelinase for the ceramide precursor sphingomyelin. Although sphingomyelinsa remains active in atopics (100) significant levels, of sphingomyelin are hydrolyzed by this alternative pathway to release.
free fatty acid and sphingosyl phosphoryl choline (SPC). The same enzyme can also degrade glucosylceramides to release glucosylsphingosine (GS), that is, it also possess glucosylceramide deacylase activity (101).

The presence of SPC may partially explain the inflammation associated with this disorder as it is a potent modulator of epidermal function, stimulating proliferation and upregulating plasminogen activator (102). The vulnerability of the SC of atopic patients to colonization by *Staphylococcus aureus* may reflect the reduced levels of sphingosine present in the tissue in turn reflecting the decreased levels of ceramide (substrate) and the diminished activity of its metabolic enzyme acid ceramidase (103).

Acne

Alterations in lipid species are evident in acne. Downing et al. (104) found reduced proportions of linoleate bound to CER [EOS] in acne patients and postulated that this reflected a localized decrease in the bioavailability of the essential fatty acid due to a dilution effect of increased sebum production. Yamamoto (105) has shown that the general decreases in both ceramides and free sphingosine in acne patients correlates to diminished water barrier function. Therefore, altered barrier functionality leading to epidermal hyperkeratinization and poor desquamation within the follicular epithelium may be responsible for comedone formation in susceptible individuals.

Dandruff

Studies in one of the author’s laboratory (CRH) (106) have demonstrated that in dandruff suffersers the intercellular lipid content of scalp SC, including ceramides, is dramatically reduced compared with healthy subjects. This depletion is associated with reduced barrier function, which may leave dandruff suffersers more prone to the adverse irritant effects of microbial metabolites, surfactants or pollutants present on the scalp surface. These observations are consistent with recent studies that indicate the presence of a perturbed lipid ultrastructure in dandruff sufferers (107). Effective use of antidantruff treatments is accompanied by increased lipid levels including ceramides (108).

Senile Xerosis

It is widely experienced that as we age we suffer from more skin problems. Although these problems arise from a combination of many factors, an age-related reduction in the levels of SC ceramides may contribute to senile xerosis and other skin conditions. Age-related declines in SC ceramide have been reported in both Japanese (109) and Caucasian subjects (110,111). In the latter study, although the relative levels of the main ceramide subtypes did not change, overall SC lipid levels diminished with increasing age on face, leg and hand skin. In addition, the same group reported an age-related decline in CER[EOS] linolate levels, which may have a dramatic effect on SC barrier function (112). In another study with French Caucasians, a selective depletion of sterol esters and triglycerides, but not ceramides, was reported in ageing leg SC (113). Researchers, at L’Oreal have used high-performance liquid chromatography coupled with ESI-MS to elucidate ceramide change in dry skin. They report that phytosphingosine-containing ceramides are particularly depleted in dry skin compared with sphingosine-containing ceramide species (114).

Moreover shortening and lengthening of the acyl sphingoid bases sphingosine and 6-hydroxy sphingosine have been reported in dry skin (114).

Ceramide subtypes have also been reported to change with age in Japanese women (109). Surprisingly, increases in CER [EOS] but decreases in CER[NP] and CER[AP] were found going from prepuberty to adulthood. These studies and others suggest that the impact of age on ceramide levels is likely to be influenced by ethnic background. For instance, in comparing SC lipid levels in several racial groups, Sugino and coworkers (115) reported that SC ceramide levels were lowest in African Americans compared with other racial types. Paradoxically African American skin is often viewed as being relatively resistant to damage, emphasizing the fact that the resilience of the skin barrier is determined by many factors including the size of the corneocytes and the thickness and integrity of the SC although these factors were not discussed by these authors. For a more detailed consideration of ethnic skin differences see (116).

The most likely cause of an age-related decline in lipid levels is a reduced epidermal lipid biosynthesis capability as reported by Ghadially et al. (117). The increased activity of ceramidase reported by Akimoto may also contribute to declining ceramide levels (118). Studies in aged mice have shown reduced levels of epidermal acid sphingomyelinase and ceramide synthase consistent with a reduced age-related capacity to repair the barrier. In this study ceramidase did not show any age-related change (119). Further work is needed to extend and confirm these changes in man.

Although considerable progress has been made, our understanding of the influences of race, gender, and age on SC lipids remains incomplete. There is a large intrapatient difference in lipid levels without obvious physical manifestations of dryness (120). Similarly in aged dry skin the demonstration of an altered lipid composition or differing molecular organization is not always apparent. Clearly, clinical dry skin is not monocausal and many other factors contribute to the phenotype (1). Nevertheless, and once again emphasizing the importance of the ω-hydroxy fatty acids, a deficiency of CER [EOS] and CER[EOH] is frequently correlated with an absence of the long-periodicity phase (LPP) as examined by X-ray diffraction in the dry skin disorder (65).

Effects of Environmental Factors on the Expression of Winter Xerosis

It has become apparent that many factors influence the levels and types of SC lipids, and it is possible that their reduction leads directly to poor skin condition. Levels of lipids differ on different body sites, which may make those sites more or less prone to environmental damage (121). For instance, lower levels of SC lipids will be more susceptible to extraction (e.g., during hand washing) or perturbation of their structural organization which could lead to abnormalities in SC function and overall skin condition leading to a visibly dry and flaky skin surface. Indeed, a picture is emerging that lipids influence the expression of this common problem. Lipids are easily extracted from the SC by solvents (122) and surfactants (123), leading to their depletion from the intercellular spaces of the SC, and resulting in skin scaling. In studies employing aggressive acute treatment regimes, solvents and surfactants extraction leads to changes in the relative amounts of the different lipid species in the outer layers of the skin, due to selective removal of lipids. However, during chronic treatments, particularly
with surfactants, differences in SC lipid composition, but not total lipid levels, have been reported (124). Following chronic exposure to surfactants, increases in CER[EOS] and CER[NS] and cholesterol were observed, whereas remaining ceramides, cholesterol esters, long-chain fatty acids all decreased in concentration. Similar changes in SC ceramide profiles have been reported in other experimental models for scaly skin (e.g., tape stripping), indicating that the changes in SC lipid composition are related to changes in epidermal lipid biosynthesis rather than lipid extraction from the SC (125). In skin suffering from soap-induced winter xerosis, the total levels of SC ceramides are decreased (110,126), and the levels of fatty acids are increased (126,127).

Although the effects of climate on skin condition are well known, there have been very few studies examining circannual variation in SC lipids. An early study has shown a general decrease in epidermal cerebrosides in winter compared with summer (128). Following the analysis of SC lipids from the face, hand and leg skin of female Caucasians in the winter, summer and spring months of the year Rogers et al., reported decreases in all major lipid classes on all body sites during the winter months (111). Although the levels of ceramide subtypes were unchanged, the amount of lineolate esterified to CER[EOS] was reduced. These changes are likely to result in reduced barrier function. For instance, an increased susceptibility to treatment with SLS has been reported for the winter months of the year (129), and an inverse correlation has been shown between ceramide levels and TEWL following an SLS patch (130).

Xerosis is not confined to winter and studies conducted almost 20 years ago reported that there were changes in ceramides associated with UV damage. Recently murine studies have indicated that there are dramatic differences in ceramide-relevant enzymatic activity during the early response to UVB. Glucosylceramides accumulate in the SC, because of attenuated activity of β-glucocerebrosidase (131), and decreased levels of covalently bound lipids are measured potentially because of downregulation of transglutaminase 1 (132). These and changes in other enzymes associated with lamellar body formation and organization will contribute to the reduced barrier function and scaly skin characteristically seen post UV irradiation.

During the past 15 years the pioneering studies by Denda and coworkers have begun to elucidate just how seasonal low humidity can influence epidermal processes and lead to disturbances in barrier function. The observation that low environmental humidity stimulates epidermal DNA synthesis, and amplifies the hyperplasia associated with barrier damage (133) has helped to rationalize the characteristic seasonal exacerbation of inflammatory dermatoses. Perturbations to mast cell physiology have suggested the use of H1 and H2 histamine receptor antagonists to improve overall skin condition (134). The reader is referred to a recent review by Denda that explores several new strategies to improve barrier homeostasis (135).

BIOSYNTHESIS OF SC CERAMIDES AND BARRIER REPAIR

Endogenous Regulation of Ceramide Synthesis and Barrier Function

Elías and coworkers developed several models of barrier repair to decipher the biochemical control mechanisms of barrier homeostasis (136). When the SC barrier is damaged, a series of homeostatic processes are immediately accelerated and, in the absence of further damage, the barrier recovers to its original level. These processes include lipid biosynthesis, lipid processing and the acceleration of the exocytosis of lamellar bodies. Although altered water flux is a key factor in initiating barrier repair following SC perturbation (137) the precise signal is not understood. Moreover, it should be noted that many of these studies were conducted on murine models and may not necessarily reflect the situation in human skin (138).

Studies using inhibitors to the key rate-limiting enzymes have indicated that all major species of SC lipids are synthesized during barrier repair and all are required for full barrier homeostasis. In contrast to the synthesis of cholesterol and fatty acids, which increase almost immediately after barrier disruption, synthesis of glucosylceramides, the precursors of the SC ceramides, is delayed until approximately seven hours later (139). It is possible that the synthesis of the other lipids occurs more quickly as the rate-limiting enzymes (hydroxy methyl-glutaryl CoA reductase and fatty acid synthetase) involved in their synthesis are subjected to acute metabolic control mechanisms, such as phosphorylation. SPT, (see previous section) is not subjected to such control and requires the transcription and translation of further enzyme (140). Furthermore, recent studies on transcriptional control of lipid synthesis in mammalian cells has shown that the expression of genes involved in cholesterol and fatty acid synthesis and uptake is regulated by the sterol regulatory binding proteins (SREBP 1 and 2). In contrast ceramide synthetic machinery does not appear to be regulated by this system (141).

Studies on animal models (39) have emphasized that hydrolysis of the glycosylated ceramide precursors by β-glucocerebrosidase is a critical step in correct barrier formation and repair, and once again activity of this enzyme is regulated by barrier permeability (142). Although factors controlling the synthesis and activity of this enzyme are poorly understood, there is evidence emerging that the saposins (sphingolipid activator proteins) are intimately involved. This class of proteins stimulates enzymatic hydrolysis of sphingolipids including glucosylceramide and is essential for epidermal barrier permeability barrier formation and maintenance (143). Prosaposin is reported to be depleted in certain skin disorders (96,144). Many studies have indicated that ion flux plays a critical role in barrier homeostasis, and there is a drastic alteration of calcium gradient following barrier insult (145). It is possible that regulation of calcium ion dynamics after the barrier damage might control the skin barrier homeostasis (146). Mixtures of magnesium and calcium salts have been shown to accelerate skin barrier recovery and improve surfacetant- or tape stripping-induced dry skin (147). Although such studies indicate the importance of these ions for epidermal barrier permeability more work is needed with cosmetic formulations. Nevertheless, on the basis of these observations recent work has demonstrated that manipulation of ligand-gated ion channels can influence barrier recovery. γ-Aminobutyric (GABA) type A receptor agonists, musimol and isoguvacine; accelerate barrier recovery following barrier disruption (148). Conversely, ATP (purinergic) receptor (P2X) agonists delay barrier recovery whereas P2Y antagonists accelerate it (149). These molecules also reduced the epidermal hyperproliferative response induced by acetone treatment under low environmental humidity.

Importantly, a variety of cytokines are released/secreted by the epidermis during barrier repair and they equally may contribute as key lipid biosynthetic switches in barrier development and barrier homeostasis (150–152).
hyperkeratotic skin or mottled pigmentation with freckling may be less pleasing with their use.

Dermatologists regularly recommend these products for tanning as a safe alternative to UV exposure. They may be used to camouflage some skin irregularities such as leg spider veins. Light to medium complexioned patients with vitiligo who show increased contrast with the vitiliginous areas with natural or unavoidable tanning in their normal skin may also benefit (29,30). They may even provide some protection for individuals with certain photosensitivity disorders (31). Protection of uninvolved skin by DHA during psoralen-UVA treatment (PUVA) allows higher UVA exposures to be tolerated, with fewer treatments resulting in faster clearing known as Turbo-PUVA (32).

SAFETY

The visible color change associated with the use of artificial tanning products might suggest to some users that these products are hazardous. On the basis of the chemistry of DHA and its toxicological profile, it can be considered nontoxic. It reacts quickly in the stratum corneum minimizing systemic absorption. The acute toxicity of DHA was investigated for diabetics in the 1920s with oral intake well tolerated (24). The phosphate of DHA is found naturally as one of the intermediates in the Kreb’s cycle. Toxicity based on inhalation in closed spray-on tanning booths is unknown.

Contact dermatitis to DHA has only rarely been reported (33,34). As with other topical products with active ingredients, such as sunscreens, much of the reported sensitivity is secondary to other ingredients in the vehicle (35). Adverse reactions are more likely to occur on the basis of irritation and not true allergy. Ultimately, all claims related to product safety are based on testing the final formulation.

Although not approved by regulatory agencies, some of the alternative agents for increasing skin pigmentation (Table 23.1) are available to individuals. Tanning pills containing carotenoids such as canthaxanthin have been reported to cause retinopathy, urticaria, hepatitis, and aplastic anemia (36). More recently, injections of analogues of melanocyte-stimulating hormone may be gaining in popularity (37). Of potential benefit to individuals with photosensitive disorders (38), synthetic analogues of α-MSH may drive proliferation of neoplastic melanocytic cells in the nevi of predisposed individuals (39).

CONCLUSION

Increasing awareness as to the hazards of ultraviolet light should fuel ongoing interest in self-tanning products. It is incumbent on dermatologists to be familiar with this category. The benign toxicologic profile of DHA reinforces the notion that these products represent a safe alternative to a UV-induced tan. The results obtained are dependent on the final formulation, individual application technique, and the consumers’ skin type. Greater experience in formulation combined with increasing sophistication on the part of the consumers has led to increasing satisfaction with the use of these products.

Users need to be clearly informed that these products do not offer significant protection against UVB. If the products are formulated with standard sunscreens, individuals should be cautioned that the duration of UV protection is more short-lived than the color change.

REFERENCES

Astringents, masks, and ancillary skin care products

Zoe Diana Draelos

INTRODUCTION
Ancillary skin care encompasses products designed to supplement basic cleansing and moisturizing of the skin. Frequently, these products are recommended as part of a skin care routine designed to impart benefits above and beyond basic hygiene needs or maintenance of the skin barrier. Ancillary skin care products include astringents, exfoliants, facial scrubs, epidermabrasion, textured cloths, mechanized skin care devices, and face masks. This chapter discusses these ancillary skin care products and their dermatologic value.

ASTRINGENTS
Astringents are liquids applied to the face following cleansing. They comprise a broad category of formulations known by many terms: toners, clarifying lotions, controlling lotions, protection lotions, skin fresheners, toning lotions, T-zone tonics, etc. Originally, astringents were developed to remove alkaline soap scum from the face following cleansing with lye-based soaps and high-mineral content well water. The development of synthetic detergents (syndets) and public softened water systems greatly decreased the amount of post-washing residue. A new use for astringents was found when cleansing cream became a preferred method of removing facial cosmetics and environmental dirt. The astringent then became an effective product for removing the oily residue left behind following cleansing cream use.

Astringent formulations are presently available for all skin types (oily, normal, dry, sensitive, photoaged, etc.), with a variety of uses (1). Oily skin astringents contain a high concentration of alcohols, water, and fragrance functioning to remove any sebum left behind following cleansing to produce a clean feel and to possibly deliver some treatment product to the face. For example, 2% salicylic acid or witch hazel may be added for a keratolytic and drying effect on the facial skin of acne patients. Clays, starches, or synthetic polymers may be added to absorb sebum and minimize the appearance of facial oil. Astringents for normal skin are generally formulated to give the skin a clean, fresh feeling without much dryness. They may contain propylene glycol to function as a humectant, a water-attracting mild moisturizing agent.

Products formulated for dry or sensitive skin are alcohol-free and are based on light-weight occlusive moisturizers, such as silicone (dimethicone, cyclomethicone). In addition, soothing agents such as allantoin, guaiazulene, and quaternium-19 may be added. The newest type of astringent are those designed for photoaged skin that contain salicylic acid (β-hydroxy acid) or glycolic acid (α-hydroxy acid) to aid in keratinocyte exfoliation and achieve smoother, more evenly pigmented skin.

EXFOLIANTS
Exfoliants are solutions, lotions, or creams applied to the face following cleansing designed to hasten stratum corneum exfoliation. They are similar in function to the antiaging astringents previously discussed. Their exfoliant effect is based on the use of α-, poly-, or β-hydroxy acids, thus inducing chemical exfoliation.

Exfoliants containing hydroxy acids produce both epidermal and dermal changes. The epidermal changes are immediate and occur at the junction of the stratum corneum and stratum granulosum. They consist of a reduction in the thickness of the hyperkeratotic stratum corneum due to decreased cornocyte adhesion (2). The dermal effects, which are delayed, consist of increased glycosaminoglycan synthesis (3). These effects are most pronounced with the α-hydroxy acids (glycolic acid, lactic acid, malic acid), which rapidly penetrate the epidermis to enter the dermis. Individuals with sensitive skin may not be able to tolerate the low pH of 3 required to cause this epidermal renewal (4). This has led to development of polyhydroxy acids (gluconolactone, lactobionic acid, ferulic acid), which are larger molecular weight hydroxy acids that do not penetrate as rapidly to the dermis. This produces less irritation allowing polyhydroxy acid use by persons with sensitive skin, eczema, and atopic dermatitis.

Another mechanism for reducing the irritation of chemical exfoliants is through neutralization or buffering. Irritation can also be minimized by raising the exfoliant pH through sodium hydroxide neutralization; however this also reduces the exfoliation produced. The use of buffering agents, such as phosphoric acid or monosodium phosphate, is preferable since the buffer maintains the product at a desired pH (5). Ideally, the pH of an exfoliant solution should not be lower than 3. More exfoliation is induced with lower pH, since the hydroxy acid concentration is increased, but more irritation in the form of stinging and burning is also expected.

β-Hydroxy acids, such as salicylic acid, may also be used, but do not produce dermal penetration. Salicylic acid is technically not a β-hydroxy acid, but rather a phenolic compound, but the marketing nomenclature has popularized this terminology. Salicylic acid is an oil-soluble acid, as compared to the α-hydroxy acids that are mainly water soluble, and remains on the skin surface. Since exfoliation occurs on the skin surface, this is a desirable characteristic that minimizes irritation. Salicylic acid is also able to exfoliate within the follicular ostia, making it the exfoliant of choice in acne patients as well as sensitive skin patients. Salicylic acid is listed on the acne monograph and functions as a keratolytic in many over-the-counter acne preparations.
was introduced to the antiaging marketplace, can contain both chemical and physical exfoliating ingredients to enhance desquamation of the stratum corneum. Physical exfoliating agents are commonly packaged as particulate facial scrubs, woven sponges, or textured cloths. Textured cloths are the newest introduction and can function like disposable washcloths or may leave behind ingredients on the skin surface. Mechanized skin care devices attempt to deliver at home microdermabrasion with rotary, vibrating, or sonicating motors. Finally, face masks deliver both esthetic and skin care benefits in a professional or home environment.

Ancillary skin care is an interesting area that combines devices and products to offer innovative solutions to skin care. These products can be used alone or in combination to deliver exfoliant, antiaging, moisturizing, astringent, or aesthetic benefits. Most of the new introductions in the commercial skin care market have occurred in this arena, since the profit margin is high and consumers are now focusing on cleansing as a way of enhancing the skin appearance. While cleansing has traditionally been a method to obtain good skin hygiene and minimize infection, a new concept in skin care is the expansion of cleansing beyond soap and water to include astringents, exfoliants, facial scrubs, epidermabrasion, textured cloths, mechanized skin care devices, and face masks.

REFERENCES
Cosmeceuticals
Marianne Nelson O'Donoghue

INTRODUCTION
Cosmeceuticals as defined by Albert Kligman, MD (1), are products which are promoted with aggressive claims to have a favorable impact on the condition of the skin. They have revolutionized skin care because of their ability to improve the appearance and function of skin without cosmetic surgery. They are between drugs and cosmetics, and thus they are not regulated by most governments.

The categories usually include antioxidants, α-hydroxy acids, antiperspirants, sunscreens, and self-tanners.

This chapter will deal with an overview of these categories, since some of these categories will be discussed in greater detail by other authors.

ANTIOXIDANTS
In 1984 L.H. Kligman demonstrated that connective tissue could be repaired in the rhino mouse with tretinoin (2). Subsequently this was established in humans with multicenter, double-blind study over a 48-week period (3). This ushered a new method of skin care for photoaging, cancer, and cosmetic reasons. The gold standard for the reversal of photoaging is tretinoin, but because of its irritant potential, other products have been studied.

Antioxidants are products that quench or offset free radicals. These occur because of sunlight, pollution, stress, heavy metals, drugs, and normal metabolism. Free radicals have a role in skin carcinogenesis, inflammation, and aging. The mechanism by which they disturb the homeostasis is that the oxygen molecules combine with the other molecules and are left with an odd number of electrons. Oxygen with an unpaired electron is reactive, because it takes electrons from vital components leaving them damaged. DNA, cytoskeletal elements, and cellular membranes may all be adversely affected.

Antioxidants couple with unpaired electrons to disarm or offset the free radicals.

Naturally occurring antioxidants include the following:

- Vitamins
 - A, B3 (niacinamide), B5 (panthenol), C, E
- Other natural-occurring antioxidants
 - α-Lipoic acid, β-carotene, catalase, glutathione
 - Superoxide dismutase, ubiquinone (CoQ 10)
- Plant antioxidants
 - Green tea polyphenols
 - Silymarin
 - Soy isoflavones
 - Furfuryladenine (kinerase)
- Additional antioxidants and cosmeceuticals
 - Rosemary
 - Oatmeal
 - Olive oil
 - Grape seed extract
 - Tea tree oil
 - Coffeeberry extract
 - Idebenone

These ingredients have been incorporated in many products over the past 15 years. Their success at performing at a cellular level to improve the quality of the skin will be covered extensively elsewhere in this text.

It is important to realize that these different antioxidants network together to stop cellular damage. They are capable of recycling each other.

Vitamin E is recycled by vitamin C or CoQ 10. α-Lipoic acid can recycle vitamins C, glutathione, and vitamin E (4). The model for testing most of the antioxidants is the use of these products before, during, and after sun exposure (5–7). The results were a lack of erythema, sunburn cell production, or other signs of ultraviolet (UV) damage. These scientists also tested the ability of the skin to keep its immunity. Sun can cause immunosuppression. This can stop cancer surveillance. These antioxidants can prevent the immunosuppression from occurring (8).

The Plant antioxidants synergize with vitamins C and E. They also help in recycling. These products have been demonstrated to act as photoprotectant network antioxidants. They also help with dispigmentation. The major ones are green tea polyphenols, silymarin, soy isoflavonones, and furfuryladenine. The difficult problem with the green tea polyphenols is keeping the products fresh.

Furfuryladenine has been added to cell cultures of human fibroblasts and has allowed them to be assayed many times (9). This substance stimulates plant growth, retard leaf senescence, and modulates the plant to resist environmental stresses. In a study performed at the University of California, Irvine, clinical trials for N6-furfuryladenine (kinerase) compared this substance with 0.05% tretinoin emollient cream. ICN Pharmaceuticals sponsored these studies. At 24 weeks, physicians determined that there was overall improvement in the parameters of wrinkling, dispigmentation, and erythema with the furfuryladenine product compared with the tretinoin product, but there was less irritation. This product is helpful, but would be used only if a patient could not tolerate tretinoin products or some of the other antioxidants.

β-Hydroxyacids (usually salicylic acid) have been used as keratolytics for acne-prone skin and as exfoliants for normal
skin. If a facial-colored cosmetic is labeled “For Acne,” it usually contains 2% salicylic acid.

β-Hydroxyacids have been used most recently in normal patients for gentle face peels. These acids can penetrate the oily milieu of the sebaceous units. By dissolving the intercellular cement, salicylic acid may induce corneocytes separation and desquamation in the oily areas of the face (10). These can stimulate exfoliation, which is another tool for facial rejuvenation.

ADDITIONAL ANTIOXIDANTS AND COSMECEUTICALS

Rosemary as a substance is better known as a spice, but it is a potent antioxidant because of its phenolic deterpines. It has been shown to suppress tumorogenesis in the two-stage skin cancer model in mice. It also exhibits photoprotection in mice.

Oatmeal has always been soothing and anti-inflammatory. It can repair skin and hair damage from UV radiation, smoke, bacteria, and free radicals.

Olive oil contains polyphenolic compounds with protect against inflammation. It is found in soaps, lip balms, shampoos and moisturizers. Extravirgin olive oil has protected mice after UV exposure.

Grape seed extract is an antioxidant because of its oligomeric proanthocyanidins (OPC). These compounds are in the flavinoid family which is most famous for green and black tea. This extract helps vascular endothelial growth factor expressed in keratinocytes which fosters wound healing. It also scavenges free radicals for vitamins C and E.

Tea tree oil has been used widely in hair and skin products because of its activity against *Propionibacterium acnes* and trichophyton dermatophytes. It is very popular in beauty salon products. It has the highest rate of contact dermatitis of the cosmeceuticals. Many reports have come from Great Britain. Its efficacy in antidiandruptcy shampoos needs to be proven.

Coffeeberry is a proprietary name for antioxidants harvested from the fruit of the coffee plant—*Coffea arabica*. The fruit is harvested in a subprimen state because that is the peak of antioxidant activity. Coffeeberry contains potent polyphenols including chlorogenic acid and ferrulic acid among others. The plant is used for celluolite.

Idebenone is a synthetic analog of coenzyme Q10. As such it is a powerful antioxidant. Clinically it has been demonstrated to improve fine lines and wrinkles in the periorbital area and a lightening of facial dyscromia in concentrations of both 0.05% and 1%.

All of these antioxidants have been put into formulation to help fine and coarse wrinkling, dyspigmentation, and erythema. The new technology of consistent positioning of the patient for fine and coarse wrinkling, dyspigmentation, and erythema. The gold standard of improving skin quality is still tretinoin, in whatever formulation it occurs. Some patients cannot tolerate the irritation from tretinoin; for those people the antioxidant cosmetics are appropriate. Some patients can combine tretinoin with antioxidants successfully.

α-HYDROXY ACIDS

Before the tretinoin products were introduced, α-hydroxy acids went from medical uses for ichthyosis vulgaris, lamellar ichthyosis, and many other hyperkeratotic diseases to some cosmetic uses. They became incorporated in shampoos, mois-
There are two major types of sunblocks—physical and chemical.

Physical Sunblocks
The major ingredients of these products are zinc oxide and titanium dioxide.

The older formulations of zinc oxide and titanium dioxide were thick, messy, and unattractive. The advantages of these products however, are that they reflected sun off of the skin, were good against UVB and UVA, and were not allergenic. They still have a place below the eyes, on the nose, and on the shoulders of young children.

With the advent of pulverization of these molecules, more elegant preparations are available which are the microfine zinc, and microfine titanium dioxide. These must be combined with a waterproof vehicle to give substantivity to these products. The advantages of physical sunscreens are: good coverage, no allergic or photoallergic reactions, waterproof, chemical free, superior coverage for UVA, good coverage for UVB.

The disadvantages are: a mask-like or opaque appearance, a violet color may be imparted to the skin, and some claim the TiO₂ can break down with UV exposure.

Chemical Sunblocks

UVB Absorbers (All Are 290–310)

- Benzophenones. Octyl methoxycinnamate and cinoxate are the most common UVB sunscreen ingredients at this time. These ingredients are easily incorporated in skin and hair cosmetics, rarely cause allergic reactions, and do not stain clothing. They are in most products throughout the world, and they are often used in combination with other ingredients.

- Salicylates. Homomenthyl, octyl, and triethanolamine salicylates are often used to Elevate the SPF level in sunblocks. By themselves they are only an SPF of 3.5 to 4.5, but with other ingredients they are very effective.

- Cinnamates. Octyl methoxycinnamate and cinoxate are often added for protection. Cinnamates were not commonly used more recently. They are used in many elegant products.

UVA Absorbers

- Benzophenones. As our knowledge of the damage to the dermis, melanocytes, and Immunity grows, we are more aware that UVA contributes more than we realized (15).

- UVA can pass through window glass, is present evenly all year long, and has been determined to have a severe effect in the skin. The major chemical ingredient for protection has been benzophenone (oxybenzone 270–390) and dioxybenzone (200–390). This still does not protect the skin from wavelengths 390 to 400.

- The benzophenones are incorporated easily into cosmetic ingredients and usually do not cause contact dermatitis. When they are used in intense sun, however, such as near the Equator, high temperatures, and in desert type exposure, they can often cause a photoallergic reaction. These ingredients throughout the world have the highest incidence of a phototoxic or photoallergic reaction.

The spectrum usually peaks around UVA 284 or 327. This is not always adequate for good protection. These ingredients continue to be a major source of UVA block in sunscreens, moisturizers, and hair products.

Parsol 1789 (Avobenzone)

This ingredient is the best chemical UVB block because of its range of It peaks at 358. This chemical mixes well cosmetically, is fairly hypoallergenic, and is in most of the broad-spectrum sunblocks. Because the UVB protection is weak, it must be combined with other ingredients. Many good products today combine octocrylene, benzophenone, and Parsol 1789.

The Parsol 1789 appears to prevent the phototoxic reactions associated with the benzophenones. Titanium dioxide is also often added for protection. Cinnamates were not compatible with Parsol 1789.

The most effective chemical UVB blockers in recent years have been Mexoryl and Helioplex. These products have been synthesized to allow Parsol 1789 to remain stable. Dr Henry Lim addresses these in detail in Chapter 26.

When an individual selects a sunblock, there are three characteristics that are important. The first is the SPF and broad-spectrum number. The second is whether the product is waterproof. This is measured by lap swimming for 80 minutes. The third important characteristic for the face is whether the product is noncomedogenic or not. Most of the physical and chemical sunscreens are labeled with this information. Many of the cosmetic sunscreens are not.

SELF-TANNERS

Self-tanning lotions consist primarily of dihydroxyacetone (DHA). These have a protein-staining effect from the DHA in the stratum corneum of the skin. These products used to be orange and streaky but have been perfected to an even-colored tone by the addition of silicone to the vehicle. Although these are nontoxic, they may accentuate freckles and seborrheic keratoses and may therefore not be desirable. These products are discussed in greater detail in Chapter 23.

Bronzing gels consist of henna, walnut, juglone, and lawson. These are water-soluble dyes to stain the skin. They can be messy to clothes and have the stickiness of a gel. They are usually not comedogenic.

Tanning promoters, such as 5-methoxypsoralen, have been well documented to be highly phototoxic and carcinogenic. 5-Methoxypsoralen is used primarily in PUVA therapy and not for cosmetic reasons.

Tanning pills consist of Canthaxanthin and are toxic to both skin and eyes. These are not used in most countries today (16).

REFERENCES

FURTHER READING
Photodamage: prevention
Camile L. Hexsel and Henry W. Lim

INTRODUCTION
Knowledge is expanding about the effects of electromagnetic radiation, which includes ultraviolet (UVB), UVA, visible and infrared radiation. In the past few years, significant effort has been put into the development of sunscreens and other photoprotective methods with broad-spectrum UVA coverage; however, especially in the United States, debate still exists on how to objectively report the level of UVA protection of sunscreens to consumers.

Given the need of ideal protection against the full UVB and UVA spectrum, and given the recent evidence that both visible light and infrared radiation also have biologic effects on the skin, prevention of photodamage should be undertaken not only by proper application of sunscreens, but also by a combination of measures, including seeking shade during the peak UV hours of 10 AM to 4 PM, and the adjunctive use of physical barriers, such as wide-brimmed hat, tightly woven or specifically designed UV-protective clothing, and sunglasses. Because of the known physical and psychologic benefits of outdoor activities, it is not realistic or appropriate to advise patients to stay entirely indoor. Thus, proper education of photoprevention, as outlined above is essential (1).

Vitamin D is synthesized in the skin following exposure to UVB. It is long known to be associated with bone health; in the past few years, inadequate levels of vitamin D has been associated with other conditions, including heart and neurologic diseases, certain cancers, and mortality from all causes (2). Therefore, photoprotection message should be combined with advice for appropriate vitamin D supplementation. In mid-2009, several professional organizations, including American Academy of Dermatology, National Council for Skin Cancer Prevention, and Skin Cancer Foundation released position statements suggesting an intake of 1000 IU of vitamin D₃ for adults who practice regular photoprotection (3).

SUNScreens
Currently, the use of sunscreens with broad-spectrum UVB and UVA coverage with minimum sun protection factor (SPF) 30 is recommended, with reapplication at least every two hours and after swimming, perspiring and towel drying. The use of physical measures (shade, clothing, hat) is recommended in all, especially in children younger than six months of age, because of the higher skin surface to body weight ratio and their underdeveloped metabolism. In children younger than six months of age, if absolutely necessary, limited and infrequent use of sunscreen on exposed areas may be done (1).

Correct use, appropriate amount of sunscreen applied and reapplication frequency are important factors for the effectiveness of sunscreens. Concentrations of sunscreen used by consumers (0.5–1 mg/cm²), compared with that used in testing (2 mg/cm²) is the reason that in-use SPF frequently is only 20% to 50% of the labeled SPF value. To achieve a 2 mg/cm² concentration, the average adult should apply the equivalent of a full 1 oz (30 mL) evenly and liberally to the body (1). Otherwise, two applications of sunscreen, the first 15 to 30 minutes before sun exposure, followed by another application 15 to 30 minutes later, is recommended to obtain adequate amounts of sunscreen on the skin, and to minimize “skip” areas.

Sunscreens are categorized as organic or inorganic, previously also known as chemical or physical, respectively. Organic sunscreens act by absorbing UV radiation, in the UVB, UVA range, or across both spectra. Inorganic filters act by either reflecting or absorbing UV radiation and visible light, depending on the particle size (1).

ORGANIC UVB FILTERS
SPF is the ratio of the dose of UV radiation (290–400 nm) needed to produce one minimal erythema dose (MED) on sunscreen-protected skin over the dose to needed to produce one MED on unprotected skin, with the concentration of sunscreen used being 2 mg/cm² (1,4). Thus, SPF is a reflection of the erythemogenic effect of UV, with is predominantly the biologic effect of UVB, and to a lesser extend, UVA2. To clearly distinguish this protective effect against erythema from the protective effect against the effect of UVA, in August 2007, the FDA proposed to change the acronym SPF to UVB sunburn protection factor (5).

FDA approved UVB sunscreen drugs include paraaminobenzoic acid (PABA), padimate O, octinoxate, cinoxate, octisalate, homosalate, trolamine salycilate, octocrylene and enzulizole.

PABA, was previously the most commonly reported contact and photoallergen in sunscreens. Although PABA is an effective sunscreen with maximum peak absorption at 283 nm, concerns of in vitro carcinogenicity with unclear biologic or clinical significance, and the inconvenience of staining of clothes have limited its use. Padimate O, the most commonly used PABA derivate, has a good safety profile and maximum peak absorption at 311 nm.

Octinoxate has maximum peak absorption at 311 nm as well, and it is less potent and more photolabile than padimate O. It is the most widely used UVB sunscreen drug in the United States. However, it is photolabile, therefore, the final product requires additional photostable UVB drugs, or stabilizers, to achieve a high SPF value. Its combined use with avobenzone, an excellent but photolabile UVA1 filter, would enhance the photodegradation of both filters.

Cinoxate is a less commonly used cinnamate derivative with maximum peak absorption at 289 nm.

Salicylates are weak UVB absorbers, therefore, are used in relatively high concentrations to augment the effects of other
UVB absorbers, and to minimize the photodegradation of other sunscreen active ingredients. Oxtisolate has a maximum peak absorption at 307 nm, and homosalate has a maximum peak absorption at 306 nm. Trolamine salicylate has an absorption range from 260 to 355 nm. While most sunscreen drugs are oil soluble, trolamine salicylate is water soluble; when combined with other sunscreen drugs, it may improve the cosmetic acceptability of the final product by contributing to a lighter, less oily feel. It is frequently used in hair preparations as a photoprotective agent.

Octocrylene is a photostable UVB sunscreen drug with maximum peak absorption at 303 nm. It is often combined with other sunscreen drugs to improve photostability of the final product.

Ensulizole is a water-soluble sunscreen drug with maximum peak absorption at 310 nm. It is used to enhance the SPF (1), and to improve the cosmetic acceptability of the final product (6).

Other UVB sunscreen actives approved for use in Europe and other countries but not currently approved by the FDA include discussed next.

Camphor derivatives are moderately effective UVB absorbers with a maximum peak absorption at 300 nm (1).

Univinil T 150 (ethylhexyl triazine), is a UVB sunscreen active with peak absorption at 314 nm. It is composed of a chromophore of PABA linked to a triazine ring. It was considered to be the best UVB sunscreen active before the introduction of Tinosorb HEB (diethylhexyl butamido triazine), which has maximum peak absorption at 312 nm, slight improvement in efficacy and increased solubility compared with Univinil T 150. Parsol SLX (benzyloxyedene malonate polyisoxsane) is a UVB sunscreen active with maximum peak absorption at 312 nm and very large molecular weight (7) (more than 6000 d) (8). Parsol SLX does not penetrate the skin surface, resulting in improved safety; however, it has very low UV absorbing properties. It is generally used in combination with other products, resulting in a broad-spectrum photostable sunscreen (7).

ORGANIC UVA FILTERS

FDA approved organic UVA sunscreen drugs listed in the 1999 sunscreen monograph include oxybenzone, sulizobenzone, dioxybenzone, avobenzone and meradimate. In addition, the FDA recently approved sunscreen products containing ecamuls (tereophytlyedine dicamphor sulfonic acid, Mexoryl SX).

Oxybenzone, sulizobenzone, and dioxybenzone have two maximum absorption (the UVB and UVA2) ranges, respectively: oxybenzone at 288 and 325 nm, sulizobenzone at 286 and 324 nm, and dioxybenzone at 284 and 327 nm, respectively (8). Avobenzone has strong absorption in the UVA1 range, with maximum peak absorbance at 357 nm (8). Meradimate absorbs primarily in the UVA2 range, with maximum peak absorption at 340 nm (1). Ecamusle is an intrinsically photostable sunscreen drug that absorbs UV radiation between 290 and 390 nm with a maximum peak absorption at 345 nm (7).

While avobenzone is currently considered the best long-wavelength UVA1 sunscreen drug product available in the United States, it is photolabile, therefore, it is frequently combined with other sunscreens or stabilizers to increase its photostability (1). In fact, photostable and broad-spectrum UVB/UVA coverage, is achieved by combining avobenzone (long UVA sunscreen drug) with photostable UVB sunscreen drugs (such as homosalate, octisalate, and octocrylene) and photostable short UVA sunscreen drugs (such as oxybenzone and ecamuslate). In some products, non-UV-filter stabilizers, such as diethylhexyl 2,6-naphthalate (DEHN) are also used.

Other broad-spectrum and intrinsically photostable UVB and UVA sunscreen actives, not yet available in the United States, are described next.

Silatrizole (drometiriazole trisiloxane, Mexoryl XL) (7) is a photostable UVB and UVA sunscreen active with two absorption spectra in the UVB and UVA range (290-320 nm, maximum absorption peak at 303 nm; and 320-360 nm, maximum absorption peak at 344 nm, respectively) (1,16).

Bisocristole (methylene-bis-benzotriazoyl tetramethylbutylphenol, Tinosorb M) is a photostable UVB and UVA sunscreen active with two maximum absorption peaks at 305 and 360 nm. It is the first class of sunscreens with both organic and inorganic properties; it consists of microfine particles that not only absorb UV but also scatter and reflect it. The particles are dispersed in water phase allowing for synergistic effect with oil-soluble sunscreen actives (7).

Bemotrizinol (anizotriazine, bis-ethylhexyloxyphenylmethoxyphenyl triazine, Tinosorb S) (7) is a photostable UVA and UVB sunscreen active with maximum peak absorption at 310 and 343 nm. Both bisocristole and bemotrizinol are undergoing the FDA TEA approval process (1,16).

Bisdilisazole diisodium (disodium phenyl dibenzimidazol tetrasulfonate, DPDT, Neo Heliopan AT) is a water-soluble UVA sunscreen active with maximum peak absorption at 334 nm. Diethylamino hydroxybenzoyl hexyl benzote (DHHB, Univinil A plus) has maximum peak absorption at 354 nm and was launched as a successor of avobenzone because of its similar absorptive properties but superior photostability (7).

With the exception of Univinil A plus, all these new generation sunscreen products have molecular weight over 500 d, hence minimizing the possibility of percutaneous absorption.

A study by Vielhaber et al. assessed the efficacy of five different filters with different absorption maxima in the UVA1 range on their capacity to protect against UVA1-induced matrix metalloproteinase-1 expression on primary human fibroblasts cultures. The efficacy to protect against UVA1-induced matrix metalloproteinase-1 expression was wavelength dependent. UVA filters with maximum absorption at or more than 360 nm were most effective in preventing UVA1-induced matrix metalloproteinase-1 expression, IL-1α and IL-6 expression, illustrating the critical role of effective UVA1 filtering for protection against photoaging and collagen degradation. The best protection was achieved by experimental filters HRH22127, followed by experimental filter HRH21328, diethylamino hydroxybenzoyl hexyl benzoate, avobenzone and anizotriazine (22).

Currently, there is no uniform method of UVA rating in the United States. For the first time, the 2007 amendment to the 1999 FDA sunscreen monograph proposes a new grading system of the level of UVA protection, comprised of a four-star rating system that ranges from low, medium, high to highest UVA protection. The rating system is based on both in vivo and in vitro testing procedures.

The persistent pigment darkening test is proposed by the FDA as the standard method of in vivo UVA testing, defined as the ratio of the minimal pigmentation dose in sunscreen-protected skin to the minimal pigmentation dose in unprotected skin, evaluated between 3 and 24 hours after the irradiation (5).

Since UVA2 is the portion of UVA mostly represented in the PPD testing (9), the FDA proposed an in vitro testing that...
provides a measure of UVA1 protection, specifically, the ratio of UVA1 absorbance to total UV (290–400 nm) absorbance.

When discordances between in vitro and in vivo test results occur, the final rating will be the lowest rating determined by either of these two methods.

A recent study evaluated the degree of UVA protection provided by 13 popular sunscreen products that are commercially available in the United States, in vitro, using the new method proposed by FDA on the 2007 amendment to the sunscreen monograph, as well as using two European/U.K. standardized indices of UVA protection for comparison. On the basis of the new FDA-proposed guidelines, eight products achieved the medium protection category, and five products achieved high protection; nine products achieved the desired critical wavelength value of 370 or higher. No products achieved highest protection. A higher degree of UVA protection was provided by sunscreens with avobenzone photostabilized with octocrylene. This study demonstrates the importance of a grading system and the need to photostabilize avobenzone (10).

INORGANIC FILTERS

Although inorganic filters act by reflection and absorption, they are less efficient UV absorbers than organic UV filters. Furthermore, thick coating is required to achieve a satisfactory degree of reflection. Decreasing the particle size results in less scattering of visible light, and shifts the protection toward shorter wavelengths and toward absorbency function while improving cosmetic acceptability.

Microfine titanium dioxide has better protection in the UVB and UVA2 range, compared with the UVA1 spectrum. Microfine zinc oxide protects from the UVB to the UVA1 range (1,4).

Protection against visible light, which may be of value in certain photosensitivity conditions, patients undergoing photodynamic therapy and patients with undesired pigmentation, is challenging. Opaque inorganic sunscreens may protect against visible light. Iron oxide is a third physical blocker, not approved in the United States that has shown to confer protection in the visible light range at different concentrations (11).

Shade

Shade reduces solar irradiation by 50% to 95% (4).

Clothing

Recent advances in clothing photoprotection have included specifically designed clothing with UV protection factor (UPF), the measurement of UV photoprotection of fabrics, measured in vitro with a spectrophotometer that determines the transmission of UVA and UVB through fabrics (4). UPF is regulated by standards, such as the Australian/New Zealand, U.K., European, and U.S. standards (12).

Several factors affect the UPF of fabrics, such as the construction and the color of fabrics, hydration, washing and wearing, chemical treatments, stretching and distance of the fabric from the skin (1,12).

Construction of fabrics, or in other words, how close together the fibers are, is an important factor. Clothing with tightly woven fibers (wool and synthetic materials such as polyester) and thick fibers have higher UPF. Therefore, photo-protective clothing with specific UPF is ideal, since typical summer clothing with loosely woven and thin fabrics provide low UPF. For example, cotton T-shirts provide UPF of 5 to 9, and when wet, the UPF decreases to only 3 to 4.

The UPF decreases considerably when fabrics are stretched. On the other hand, washing shrinks the fabrics and reduces the gaps between fibers. Optical brightening agents are compounds which absorb the incoming visible light photons and convert them into fluorescence, leading to reduced UV transmission and the appearance of being bright. Furthermore, dark-colored fabrics have greater UPF and visible light absorption than light colored fabrics. The laundry additive containing UV absorber Tinosorb FD has been shown to result in significantly increased UPF than fabrics exposed regular washing.

Another factor that affects the UPF of fabrics is the distance of the fabric from the skin. The closer to the skin, the less photoprotection the fabric provides because there is less diffusion of the UV beam reaching the skin (1).

Hats

Photoprotection of hats varies with the brim width, material and weaving. Narrow-brimmed hats (<2.5 cm) provide SPF 1.5 for nose, and little protection for chin and neck; medium-brimmed hats (2.5–7.5 cm) provide SPF 3 for nose, 2 for cheek and neck, and none for chin. A wide-brimmed hat (>7.5 cm) has SPF 7 for nose, 3 for cheek, 5 for neck, and 2 for chin (1).

Sunglasses

The cornea absorbs wavelengths below 295 nm, the crystalline lens between 295 and 400 nm and the retina between 400 and 1400 nm, thus visible and infrared light are transmitted to the retina. The ideal sunglass should substantially reduce UV transmission to cornea and lens, including that from lateral directions (thus should wrap around the eyes maximizing eye and eyelid protection). Additional retinal protection can be accomplished with lenses that reduce the transmission of short-wavelength violet/blue light since this portion of visible light is considered to be hazardous to the retina. For added photoprotection, a wide-brimmed hat is recommended to reduce the level of radiation reaching the eyes. Polarizing lenses reduce glare but do not add UV-blocking properties.

Excessively dark tinted sunglasses can cause pupillary dilatation and increase lid opening, thus resulting in increased UV exposure to the lens of the eye. Clear glasses, on the other hand, absorb the vast majority of UVB radiation but no UVA radiation. Therefore, for UVA protection, a plastic film containing zinc, chrome, nickel or other metals with broad-spectrum UV coverage is typically obtained.

Sunglasses standards have been developed to ensure quality, performance and adequate protection to consumers. While in Australia and Europe, standards are mandatory, the U.S. standard is voluntary and not followed by all manufacturers. The U.S. standard (ANZI Z80.3) requires less than 1% of the wavelengths below 310 nm to be transmitted.

Sunglasses have been classified in three categories: special purpose sunglasses (which are indicated for specific activities such as skiing and going to the beach), general purpose (which reduce the glare of bright light) and cosmetic (which provide minimal UV protection) (13).

Makeup

Foundation makeup without sunscreen provides SPF of 3 to 4 because of its pigment content for up to four hours after application. For better protection, foundations containing UV filters with high SPF (1) and adequate UVA coverage are of greater value.
Table 26.1 Types of Window Glasses

<table>
<thead>
<tr>
<th>Type of glass</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear glass</td>
<td>Transparent, Transmits 90% of visible light, 72% UV (300–380 nm), and up to 83% of solar</td>
</tr>
<tr>
<td></td>
<td>infrared irradiation.</td>
</tr>
<tr>
<td>Tinted or heat-absorbing glass</td>
<td>Reduces unwanted heat gain and UV and visible light transmission in comparison with clear</td>
</tr>
<tr>
<td></td>
<td>glass.</td>
</tr>
<tr>
<td>Reflective glass</td>
<td>Reduces solar heat gain, UV radiation, and visible light transmission to less than 20%.</td>
</tr>
<tr>
<td>Low-emissivity glass</td>
<td>Often used in commercial buildings.</td>
</tr>
<tr>
<td>Laminated glass</td>
<td>Filters 99% of UV and 70% solar heat gain, maintains 70% visible light transmission.</td>
</tr>
<tr>
<td>UV-blocking-coated glass</td>
<td>Contains a very thin invisible surface, looks indistinguishable from standard clear glass.</td>
</tr>
<tr>
<td>Combined spectrally selective low-emissivity</td>
<td>Monolithic form blocks >98% of UV (≤380 nm) while transmitting visible light.</td>
</tr>
<tr>
<td>and UV-blocking-coated</td>
<td>Appears very close to standard clear glass.</td>
</tr>
</tbody>
</table>

Source: Adapted from Ref. 15.

Sunless Tanning Agents
Although not usually recommended as a photoprotective method, dihydroxy acetone, the active ingredient of sunless tanning preparations has an SPF of 2, and interestingly, has protective properties against UVA and the low end of visible light for approximately five to six days (1,4).

Window Glass
While standard glass filters out UVB but not UVA, visible light and infrared radiation, several types of glass are now available, in which the use of additional filters for UVA and infrared radiation are incorporated, without the historically associated loss of visible light transmission. Different types of specialty glasses are described in Table 26.1.

Automobile Glass
All car windshields are made of laminated glass, which blocks the vast portion of UVA radiation. Conversely, rear and side windows are usually made from nonlaminated glass that transmits a significant amount of UVA. To reduce the transmission of UVA radiation, visible and infrared light, tints to rear and side windows or complete laminated window glass packages can be added, especially for photosensitive patients (13).

PUBLIC EDUCATION ON PHOTOPROTECTION
Campaigns educating the public about photoprotective measures have been in place for several years in the United States and different countries. Australia has a well established population-based skin cancer prevention program called SunSmart since 1988, incorporating substantial public education efforts and environmental change strategies. A population-based study indicates that, in nine cross-sectional surveys from 1987 to 2002, in which 11,589 adults were interviewed, and trends over 15 years in behavioral risk factors for skin cancer were examined, there was an increase in use of sunscreen and hats, decreased sunburn incidence, increased preference for no tan, and higher proportion of body surface protected from the sun. Such study highlights that photoprotective programs can be effective in improving a population’s photoprotective behaviors (14).

SKIN CANCER PREVENTION
Cancer chemoprevention is defined as the use of synthetic, natural or biologic chemical agents to prevent, suppress or reverse carcinogenic properties, which thus include the photoprotection measures aforementioned. There have been non-randomized studies and case reports of the use of systemic retinoids, primarily acitretin and isotretinoin in low doses, for the prevention of nonmelanoma skin cancers (NMSCs) development, particularly patients with high risk of skin cancer development. Evidence at this time indicates preventive effect is more pronounced at squamous cell carcinoma (SCC) development, compared with basal cell carcinoma (BCC) development. Because of the known toxicity of retinoids, patient selection for systemic retinoid therapy is essential.

Indications for the use of systemic retinoid therapy are divided into general and specific indications. General indications include patients developing greater than five NMSCs per year; those with multiple NMSCs and actinic keratoses, especially of the head and neck area; patients with aggressive subtypes of NMSCs, and patients with metastatic NMSCs and patients with eruptive keratoacanthomas. Specific indications include solid organ transplant recipients, chronically immuno-suppressed patients with NMSCs; psoriasis patients treated with PUVA who developed NMSCs, especially SCCs; patients with radiation induced BCCs; human immunodeficiency virus-positive patients with multiple NMSCs; patients with non-Hodgkin’s lymphoma or chronic lymphocytic leukemia with NMSCs, patients with xeroderma pigmentosum, nevoid BCC syndrome, Basex’s syndrome and Rombo syndrome, and patients with epidermodysplasia verruciformis.

In general, acitretin is considered the first line agent for skin cancer prophylaxis in men and in women not of childbearing potential, low dose therapy is associated with low incidence of adverse effects compared with isotretinoin. On the other hand, isotretinoin is the drug of choice in female patients of childbearing potential, such as patients with XP and nevoid BCC syndrome.

Although the optimal treatment protocol is not clear, gradual escalation dose pattern, starting from a low dose and increasing as tolerated, is the regimen mostly studied. Therefore, acitretin 10 mg/day for four weeks, followed by increase to 20 mg/day for four weeks as tolerated to maintenance dose of 25 mg/day is recommended. For isotretinoin, 0.25 mg/kg/day
for two months, followed by final dose of 0.5 mg/kg/day, is recommended. Ideal duration of therapy is unfortunately not completely clear, it varied between six months to two years in different studies with variable follow up period. Clinical and laboratory monitoring for adverse effects is recommended, as with any other indication of systemic retinoid use (15). It would be interesting to find out if topical retinoid therapy has a chemopreventive effect, as it has been used as an adjuvant for photoaging and actinic keratoses (16).

Photodynamic therapy has also been reported as a means of managing actinic keratoses, BCCs and SCCs in immunosuppressed patients (17).

Considering the morbidity of skin cancer, particularly in high risk groups, chemoprevention with therapeutic agents should be considered. Needless to say, dermatologists do a superb job at proper treatment of actinic keratosis for cancer prevention. Perhaps clinicians, in the proper clinical setting, should have a low threshold for the use of field treatments for actinic keratoses, such as 5-fluoracil, photodynamic therapy, imiquimod and retinoids, which may address clinically unapparent actinic damage.

PHOTODAMAGE PREVENTION AND TREATMENT WITH ANTIOXIDANTS AND DIETARY AGENTS

UVB can induce DNA damage directly via the formation of cyclobutane pyrimidine dimers (CPDs). Furthermore, UV irradiation triggers the production of short DNA fragments during the course of excision repair process.

One small single stranded DNA fragment, thymidine dinucleotide, mimics cellular responses to UV radiation, via activation of p53 and increased messenger RNA levels for the responsible proteins, as demonstrated in human fibroblasts. This results in enhanced melanogenesis, tumor necrosis factor α expression and secretion, induction of IL-10 expression and increased DNA repair and reversible cell growth arrest (1). Therefore, thymidine dinucleotides may play a role in photoprotection.

T4 endonuclease V is a bacterial DNA excision repair enzyme that repairs CPDs in DNA. Both animal and human studies demonstrated removal of CPDs with topical treatment with its liposome form. In addition, its application immediately after UV exposure partially protects against sunburn cell formation, UVB can induce DNA damage directly via the formation of cyclobutane pyrimidine dimers (CPDs). Furthermore, UV irradiation triggers the production of short DNA fragments during the course of excision repair process.

One small single stranded DNA fragment, thymidine dinucleotide, mimics cellular responses to UV radiation, via activation of p53 and increased messenger RNA levels for the responsible proteins, as demonstrated in human fibroblasts. This results in enhanced melanogenesis, tumor necrosis factor α expression and secretion, induction of IL-10 expression and increased DNA repair and reversible cell growth arrest (1). Therefore, thymidine dinucleotides may play a role in photoprotection.

T4 endonuclease V is a bacterial DNA excision repair enzyme that repairs CPDs in DNA. Both animal and human studies demonstrated removal of CPDs with topical treatment with its liposome form. In addition, its application immediately after UV exposure partially protects against sunburn cell formation, local suppression of contact hypersensitivity, suppression of delayed-type hypersensitivity, and nearly completely prevented UV-induced upregulation of IL-10 and tumor necrosis factor α messenger RNAs (1). Topical application of T4 endonuclease V for one year also lowered the rate of development of actinic keratoses and BCCs in patients with xeroderma pigmentosum (1,18).

Photolyase is another DNA repair enzyme that has been reported to decrease the number of UVB-induced dimers by 40% to 45% in human skin when applied immediately after UVB exposure (1), as well as preventing immunosuppression, erythema and sunburn formation (18).

Antioxidants can be used adjunctively with other methods in photoprotection, both orally and topically. Many agents continue to be reported in the literature to have photoprotective properties, usually on a molecular basis. Commonly used antioxidants in sunscreen products include vitamin E and vitamin C. Vitamin D (calcitriol or 1,25-dihydroxyvitamin D3), carotenoids, zinc and selenium also have photoprotective properties. The list of antioxidant agents with reported photoprotective properties includes, the daily worldwide used and flavor admired caffeine, polyphenolic compounds present in green tea, flavonoid cocoa, which are present in beverages; in addition to the antioxidant genistein, present in spices and foods (such as soybean, Greek oregano, Greek sage, Ginkgo biloba), caffeic acid and ferulic acid, present in vegetables, as well as ε-3 polyunsaturated fatty acid, the commercialized plant extract Polypodium leucotomos, N-acetylcysteine (a synthetic antioxidant), pomegranate extract, aloe plant poly/oligosaccharide, among many others.

Green tea contains four main polyphenolic compounds, (−)-epicatechin (EC), (−)-epicatechin gallate (ECG), (−)-epigallocatechin (EGC), and (−)-epigallocatechin-3-gallate (EGCG). EGCG is considered the main polyphenol responsible for the antioxidant effects. These compounds exhibit anti-inflammatory activity, suppression of contact hypersensitivity (19), as well as effects on photocarcinogenesis, including a decrease tumor burden, inhibition on the formation and size of malignant and nonmalignant tumors and regression of these tumors in mice with established tumors. Effects of green tea polyphenols in photaging include the inhibition of UVB-induced expression of matrix metalloproteinases and reduction of UVB-induced collagen cross-linking (1).

The antioxidant plant extract P. leucotomos is used as a photoprotective agent in patients with photodermatosis, 240 mg twice daily, started 15 days prior to sun exposure (20). Proposed mechanisms include prevention of UV-induced photodimerization of trans-urocanic acid (21), anti-inflammatory properties, prevention of UV-induced apoptosis in human keratinocytes and fibroblasts (22), prevention of photodecomposition of both endogenous photoprotective molecules and DNA, and prevention of UV-induced cell death (23). After topical and oral administration, P. leucotomos was reported to increase the UV dose required for IPD, MED, minimal melanogenic dose and minimal phototoxic dose (1).

SUMMARY

In the past 10 years, significant advances have been made in the understanding of the prevention of photodamage. Behavioral modification in seeking shade, the use of SPF 30 or above sunscreens, the use of photoprotective clothing, wide-brimmed hats and sunglasses are proven to minimize photodamage. Photoprotection should be accompanied by appropriate intake of vitamin D3 (total of 1000 IU daily). Public education is essential to get the message across to the general population.

ACKNOWLEDGMENT

Dr Lim and Dr Hexsel have participated in the conception and design, drafting, and critical revision of the chapter for important intellectual content. Conflict of Interest: Dr Lim is a consultant for La Roche-Posay, Orfagen, Johnson and Johnson, and Dow Pharmaceuticals; and he has received research grant support from Johnson and Johnson. Dr Hexsel has no conflicts of interest to declare.

REFERENCES

Photodamage: protection and reversal with topical antioxidants

Karen E Burke

INTRODUCTION

More than ever before, our generation enjoys the luxury of travel and leisure time for outdoor sports, markedly increasing our exposure to solar ultraviolet (UV) radiation. Exposure is increased at high altitudes and with reflection from surfaces covered with snow, sand, water or concrete. Our skin suffers the greatest damage—both acutely, with erythema and sunburn, and chronically, resulting in photoaging with mottled pigmentation, wrinkling, dryness, and keratoses as well as the severe consequence of skin cancer.

Certainly, sunscreens are essential for protection, but they are not enough. The most significant inherent limitations are inadequate application (too little, too infrequently) and incomplete spectral protection from both UVA and UVB radiations. The skin naturally uses nutritional antioxidants to protect itself from photodamage, and when effective formulations are applied topically, sun protection is enhanced.

Topical application of these antioxidants can give far higher concentrations in the skin than even maximal oral intake. The challenge is to make formulations that are stable and that give effective transcutaneous absorption to deliver effectively high concentrations of the active forms to the dermis as well as the epidermis.

This chapter describes the necessary concentrations, molecular forms, and requirements for stability and topical delivery of several antioxidants that have been proven to be effective: vitamin C, vitamin E, and selenium. New research on topical application of genistein (a soy isoflavone) is also presented.

VITAMIN C

Vitamin C (l-ascorbic acid) is the body’s major aqueous-phase antioxidant and is vital for life. All animals make their own vitamin C, except for humans and other primates, one species of Indian fruit-eating bat, and the guinea pig. In fact, a 59-kg goat synthesizes 13 g of vitamin C per day, almost 200 times the American Food and Drug Administration (FDA) requirement (1). Not only do other animals make hundreds of times the vitamin C we ingest, but also, when under stress, they can make more than 10 times their normal amount of vitamin C. Unfortunately, we humans do not have that capability (1).

Our skin is the organ that suffers most from environmental free-radical stress from exposure to sunlight, pollution, and smoking. This contact, furthermore, depletes the level of vitamin C in the skin. Even minimal UV exposure of 1.6 minimal erythema dose (MED) decreases the level of vitamin C to 70% of the normal level, and exposure to 10 MED decreases the vitamin C to only 54% (2). Exposure to 10 parts per million of ozone in city pollution decreases the level of epidermal vitamin C by 35% (3).

That was the bad news. The good news is that the most effective way to increase the skin level of vitamin C significantly is by topical application. Topical absorption was proven to be effective by radioactive labeling studies in pigs. After treatment with 10% vitamin C cream, 8.2% was found in the dermis, and 0.7% was in the blood (4). Formulations containing 5%, 10%, 15%, 20%, or 25% vitamin C were tested. After 24 hours, 20% resulted in the highest skin levels, with maximized concentration in the skin after three days (5). Topical vitamin C protects against solar damage primarily as an antioxidant that deactivates the UV-induced free radicals. Vitamin C is itself not at all a sunscreen, although applying vitamin C decreases the degree of redness and sunburn suffered even when applied after sun exposure. Protection is confirmed by histologic examination. Treatment with topical 10% vitamin C decreases the number of abnormal “sunburn cells” by 40% to 60% (4) and reduces the UV damage to DNA by 62% (4).

Topical vitamin C is also directly anti-inflammatory. Laser resurfacing causes redness for at least three to four months. With vitamin C applied before and after laser surgery, redness is decreased after only two months (6). Topical vitamin C can also be used effectively to treat the inflammation of rosacea (7).

The main action of vitamin C on the skin is direct stimulation of collagen synthesis. Vitamin C is an essential cofactor for the two enzymes required for collagen synthesis: prolyl hydroxylase (which makes the collagen molecule stable) and lysyl hydroxylase (which cross-links the collagen to give structural strength) (8). Recent research has further demonstrated that vitamin C acts directly on DNA to increase the transcription rate and to stabilize the procollagen mRNA, thus regulating and maintaining the intercellular amount of collagen (9).

Exciting experiments have demonstrated that vitamin C also has antiaging effects. Studies in vitro compared newborn with elderly (80-95 year old) fibroblasts (10). Elderly cells proliferate in vitro at only one-fifth of the rate of newborn cells. However, when vitamin C is added to the culture medium, the elderly cells proliferate better than normal newborn fibroblasts. Even the newborn fibroblasts proliferate almost four times better when exposed to vitamin C (10).

Not only do fibroblasts increase proliferation in the presence of vitamin C, but they also synthesize more collagen. Newborn fibroblasts synthesize a larger percentage of collagen than elderly cells, but again, when elderly cells are exposed to vitamin C in vitro, they produce more collagen than the normal newborn fibroblasts (10). Surprisingly, even the newborn cells double the amount of collagen synthesized (10).
Vitamin C further reverses the adverse appearance of photoaging by inhibiting tyrosinase (11), thereby fading unattractive solar lentigines. Because L-ascorbic acid may inhibit elastin biosynthesis (12), it may reduce the solar elastosis of photoaged skin.

The remarkable reversal of photoaging can be appreciated in Figure 27.1. After one year of once-daily treatment with 15% topical vitamin C, wrinkles were clearly reduced and mottled pigmentation resolved in both of the subjects shown. The skin acquired a healthy, more youthful glow.

Another important action of vitamin C on the skin is that topical vitamin C increases the synthesis of several specific lipids of the skin surface (13). This means that not only does vitamin C help the natural moisturization of the skin but also enhances the protective barrier function of the skin (14).

To optimize percutaneous absorption and full activity of vitamin C, the precise formulation is of the utmost importance (15). Since L-ascorbic acid is an inherently unstable molecule—making it an excellent antioxidant—creation of an effective topical delivery system is crucial. Many products contain stable derivatives that are not metabolized by the skin (such as ascorbyl-6-palmitate or magnesium ascorbyl phosphate) and therefore have no activity (5). Other formulations do not result in measurable absorption of vitamin C because they are not at the correct pH. Delivery of L-ascorbic acid (pKₐ = 4.2) depends on removing the ionic charge—achieved optimally at a pH of 3.5 (5). As stated above, the most effective concentration for topical delivery is 20%, giving maximal skin levels after three days.

VITAMIN E

Natural vitamin E is the most important lipid-soluble, membrane-bound antioxidant in the body. Vitamin E is especially abundant in the stratum corneum, delivered there by sebum (16,17). Its concentration is highest at the lower levels of the stratum corneum, with a decreasing gradient outward. As the outermost defense of the body, the stratum corneum is first to absorb the oxidative stress of sunlight and pollution. Vitamin E is depleted in the process, so topical application can be particularly advantageous, especially since the lipophilic structure makes it cosmetically attractive for application and absorption.

Several forms of vitamin E exist in natural dietary sources. The form that is found in mammalian tissues and which has by far the greatest biologic activity is pure, nonesterified RRR-α-tocopherol (or d-α-tocopherol) (18,19), which has three methyl groups on the 6-chromal ring (Fig. 27.2). Humans use predominantly α-tocopherol because a specific α-tocopherol transfer protein selectively transfers α-tocopherol into lipoproteins (20). The other natural forms are β, γ, and δ RRR-tocopherols give only 42%, 72%, and 40%, respectively, of the protection against post-UV edema (21). The synthetic form is “dl” or “all-rac,” a mixture of eight stereoisomers. The synthetic isomers are esterified (to acetates and succinates) for use in commercial vitamins and some topical formulations because the esters are far more stable. This ester must be hydrolyzed before there is any biologic activity, a reaction that readily occurs in the stomach after oral ingestion or in cell and organ culture, but is very slow after topical application.
The skin has only a limited capacity to cleave the esterified forms of vitamin E to the active free tocopherol form, so the antioxidant potential of the esters is minimal (22,23). Furthermore, the all-rrac form of vitamin E has been reported to cause allergic contact dermatitis (24) and erythema multiforme (25) when applied topically. No such adverse reaction has been reported with D-\(a\)-tocopherol.

Previous studies have demonstrated protection from the acute (26–32) UV-induced damage of inflammation (erythema, “sunburn”) and hyperpigmentation (tanning) as well as protection from the chronic UV-induced damage of skin cancer (31–36) even by the various forms of vitamin E that are less metabolically potent when applied topically than the nesterified EoL. Topical D-\(a\)-tocopherol was shown to be far more effective in protecting against all acute and chronic UV-induced damage than topical D-\(a\)-tocopheryl succinate in mice (37). In other mouse studies, topical \(a\)-tocopheryl succinate and \(a\)-tocopheryl acetate not only failed to inhibit UVB-induced immunosuppression and carcinogenesis but also appeared to enhance carcinogenesis (22). Topical \(a\)-tocopheryl acetate was less effective than \(a\)-tocopherol in protecting against UV-induced erythema in rabbits (22,38) and against UV-induced photoaging in mice (39).

Vitamin E has been demonstrated to reverse photoaging dramatically. Figure 27.3 shows the impressive decrease in periorbital rhytides in a 48-year-old woman after four months of daily application of D-\(a\)-tocopherol (5%). This correction of UV-induced damage was confirmed by histologic examination. Mice were exposed to UVB for six weeks, after which epidermal hypertrophy with thickened stratum corneum, an increased incidence of damaged “sunburn cells” in the basal layer, disruption of dermal collagen and degradation of dermal elastin, and dermal inflammation were noted, as shown in Figure 27.4. Each group was then treated for eight weeks with vehicle cream, 0.05% retinoic acid, 5% D-\(a\)-tocopherol cream, or 0.05% l-selenomethionine cream (see following

Figure 27.2 Molecular structures of tocopherols.

Figure 27.3 Correction of periorbital wrinkles after four months of once-daily treatment with 0.05% D-\(a\)-tocopherol cream.
section), after which multiple biopsies from each mouse were evaluated (blind) by two experienced dermatopathologists. The histologic improvement in all parameters of photoaging can be appreciated in Figure 27.4, with a marked decrease in hyperkeratosis and epidermal hypertrophy, repair of damaged dermal collagen and elastin, and no dermal inflammation. After treatment for six weeks with (C) topical 0.05% retinoic acid or (D) topical 5.0% D-α-tocopherol, there is reversal of hyperkeratosis and epidermal hypertrophy and repair of damaged dermal collagen and elastin with clearing of dermal inflammation. (Special stains for collagen and elastin are not shown.)

VITAMIN C WITH VITAMIN E

As presented earlier, the skin uses predominantly vitamin C to protect the aqueous environment and vitamin E to protect membranes from lipid peroxidation. Since vitamin C is naturally present intracellularly in relatively high concentrations, L-ascorbic acid not only acts directly as an antioxidant and as an essential cofactor in the synthesis of collagen, but also regenerates oxidized membrane vitamin E, so that the vitamin E need not be replaced (40). Oral vitamin C with E in high doses protects against UV-induced erythema in humans (41,42), whereas either vitamin alone is ineffective (42). Topical L-ascorbic acid (15%) with D-α-tocopherol (1%) gives four-fold protection against UV-induced erythema and thiamine dimer formation in porcine skin (43). This protection from UV-induced erythema (44) and tanning (45) by vitamins C and E combined with melatonin was further demonstrated in...
The gradation of histologic correction of photodamage by topical antioxidants. Each of four histological parameters for photodamage (hyperkeratosis, collagen disruption, and solar elastosis) was graded on a scale of 0 (no damage) to 4 (maximal damage) and evaluated before exposure to UVB, after exposure to UVB, and after treatment for eight weeks with vehicle (veh), 0.05% retinoic acid (RA), 0.05% L-selenomethionine (SeMet), or 5.0% d-alpha-tocopherol (vit E). The average gradation of all parameters of damage is shown. Source: From Ref. 83.

Figure 27.5

Photoprotection by topical antioxidant formulations. Skin was (i) untreated or pretreated with (ii) vehicle, (iii) 0.5% ferulic acid, (iv) 15% vitamin C + 1% vitamin E, or (v) 15% vitamin C + 1% vitamin E + 0.5% ferulic acid and irradiated with solar-simulated radiation [2x to 10x minimal erythema dose (MED)]. Visual erythema one day later is shown. Source: From Ref. 52.

Figure 27.6

TEXTBOOK OF COSMETIC DERMATOLOGY

Humans. Fortunately, mixing these hydrophilic and lipophilic antioxidants in a topical formulation stabilizes each (43) for a cosmetically attractive application.

VITAMIN C WITH VITAMIN E AND FERULIC ACID

Ferulic acid is found ubiquitously and at high concentrations in plants (46-48) where it cross-links polysaccharides and proteins during lignin cell wall synthesis (49). A potent antioxidant, ferulic acid protects membranes from lipid peroxidation and neutralizes alkoxyl and peroxyl radicals. It has also been shown to have synergistic interactions with ascorbic acid (50). Furthermore, ferulic acid itself minimally blocks UBV to give some sunscreen protection (Fig. 27.6).

After testing the effectiveness of a series of low molecular weight antioxidants that are available in chemically pure form, Zielinski and Pinnell et al. (51) demonstrated that ferulic acid provides stability of more than 90% for L-ascorbic acid and 100% for L-tocopherol. Addition of ferulic acid (optimally 0.5%) to the formulation of vitamin C (15%) + vitamin E (1%) doubles photoprotection to solar-simulated irradiation of skin from fourfold to approximately eightfold as measured by both erythema (as shown in Fig. 27.6) and sunburn cell formation (52,53). Enhanced photoprotection was further demonstrated immunohistochemically by inhibition of UV-induced formation of thymine dimer mutations and of UV-induced p53, both of which are associated with skin cancer. Evaluation by real-time polymerase chain reaction demonstrated suppression of UV-induced cytokine mRNA formation (for inflammatory cytokines interleukin (IL)-1, IL-6, IL-8, and tumor necrosis factor (TNF)-α, as well as for the immunosuppressive cytokine IL-10) (53).

VITAMIN C WITH FERULIC ACID AND PHLORETIN

Phloretin is another potent plant-derived phenolic antioxidant (found in both the flesh and peel of apples) that can be absorbed by the skin. When combined with vitamin C and ferulic acid, phloretin enhances photoprotection to UVA-induced erythema and pigmentation (54). Biopsies from human volunteers after UV exposure (89% UVA and 11% UVB) and treatment with a formulation containing vitamin C (10%), ferulic acid (0.5%), and phloretin (2.0%) at pH 2.5, demonstrated significant photoprotection as measured by decreased thymine dimer formation, decreased matrix metalloproteinase-9 expression, and decreased p53 expression (54). This topical serum also protected against UV-induced immunosuppression: There was no UV-induced decrease in CD1a-expressing Langerhans cells when skin was pretreated with vitamin C + ferulic acid + phloretin (54).

SELENIUM

Selenium, an essential trace element in humans and animals, is required by the intracellular antioxidant enzymes glutathione peroxidase and thioredoxin reductase (55,56). Selenium has been shown to have other protective effects that may not involve selenium-dependent glutathione peroxidase activity (57), such as protecting (58) and repairing DNA (59,60), reducing the DNA binding of carcinogens (61), inhibiting neoplastic transformation (62), and suppressing gene mutations at the lysine and histidine loci (63). Selenium has been implicated in reducing carcinogenesis.

In animal tumor models, moderate selenium supplementation at levels above the dietary requirements decreases the number of tumors induced by several chemical carcinogens (64) and viruses (65), and reduces the incidence of spontaneous mammary tumors (66). In addition, selenium supplements inhibit the growth of human tumor cell lines in vitro (67) as well as the growth of transplanted tumors in mice (68,69), and decrease the mutagenic activity of several known carcinogens (70,71).

Some, but not all, epidemiological studies have found a reduced risk for several kinds of cancers associated with a higher blood concentration of selenium (72-74). A decreased selenium concentration and glutathione peroxidase activity...
in blood and, interestingly, an increase of these parameters in malignant tissue was found in lung cancer patients (74). A study of 240 nonmelanoma skin cancer patients in good general health demonstrated a significantly lower mean plasma selenium concentration than control subjects without skin cancer (75). In fact, those patients whose blood concentrations were in the lower decile had 4.4 times the incidence of skin cancer as those in the highest decile (75).

In a 10-year prospective study of 1312 patients with a history of basal cell or squamous cell carcinomas of the skin, selenium treatment did not protect against further development of such skin cancers; however, it did reduce total cancer incidence and the incidence of lung, colorectal, and prostate cancer as well as lung cancer mortality (76). The lack of protection against skin cancer may indicate that selenium cannot enhance rates of repair of previously incurred damage, so it cannot protect patients whose skin is already severely oncogenically damaged from prior UVB exposure.

Topical preparations containing selenium sulfide are frequently used for the treatment of tinea versicolor (77), seborrheic dermatitis (78), and dandruff (79). However, the selenium from these preparations is not absorbed by the skin (79). Selenium can be absorbed transdermally in guinea pigs when applied as selenomethionine (80), giving increased skin and liver levels of selenium after topical application of 0.02% selenomethionine to mice (81). This formulation increased the MED in humans (82) and decreased UV-induced skin damage, as demonstrated by a decrease in post-UV tanning and skin cancer in Skh:2 mice (81).

Topical L-selenomethionine is highly effective not only in preventing but also in reversing photoaging (83). The significant decrease in periorbital rhytides in a 56-year-old woman after four months of daily application of L-selenomethionine (0.05%) is seen in Figure 27.7.

This correction of UV-induced damage was similar to that of topical vitamin E as discussed previously and confirmed by histologic examination as shown (for topical vitamin E) in Figure 27.4. All histologic parameters of photodamage demonstrated reversal after treatment with topical L-selenomethionine (83). Transmission electron microscopy further confirmed repair of dermal photodamage, as shown in Figure 27.8 (83).

Normal, non-UV-damaged dermis (Fig. 27.8A) consists of dense collagen with homogeneous bundles of uniformly dispersed fibers aligned parallel to the basal lamina above. The dermal-epidermal junction shows anchoring fibrils of dense collagen. After exposure to UV (Fig. 27.8B), the dermal collagen is sparse; bundles are not uniform and are irregularly
dispersed; fibers are disoriented and fragmented. There is an increase in extracellular mucopolysaccharide matrix. The dermal-epidermal junction has sparse collagen with a decrease in anchoring fibrils. Treatment with topical \(\beta\)-selenomethionine did indeed reverse this UV-induced damage (Fig. 27.8C): Dermal collagen was repaired and fibers became oriented and more regular. As collagen became denser, the increase in extracellular mucopolysaccharide matrix resolved. Collagen was replaced in the dermal-epidermal junction with repair of the anchoring fibrils. Clearly topical \(\beta\)-selenomethionine is effective in reversing photodamage of the skin (83).

SELENIUM WITH VITAMIN E

In many biologic systems, vitamin E and selenium often act synergistically. Borek et al. (84) demonstrated that selenium and \(\alpha\)-tocopherol succinate (natural vitamin E succinate) act alone by different mechanisms to prevent radiogenic and chemically induced transformation in vivo. They further showed that there was additive protection when both were used together (84).

In experiments in mice comparing and combining topical \(\beta\)-selenomethionine with topical \(\alpha\)-tocopherol (85), the topical combination was less effective than topical vitamin E alone—both in prolonging the onset and in decreasing the incidence of UV-induced skin cancers (85).

However, topical \(\beta\)-selenomethionine with oral vitamin E was more effective than either alone. Both forms of vitamin E alone were equally effective and more effective than topical \(\beta\)-selenomethionine alone (85).

Topical \(\beta\)-selenomethionine (alone or in combination with each form of vitamin E) was most effective in preventing UV-induced inflammation (100% effective!) (85). In reducing UV-induced pigmentation, topical \(\beta\)-selenomethionine with topical or with oral vitamin E was more effective than any one of these antioxidants alone, particularly during the first eight weeks of UV exposure.

GENISTEIN

Recent epidemiologic analysis comparing Asian diets high in soy (average daily intakes of 20–150 mg) (86) with American diets (average daily intake of only 1–3 mg) (86) indicate that soy confers major health benefits by decreasing the incidence of cancer (86–89) and reducing cardiovascular disease (87). Since genistein is the most plentiful isoflavone in soy, this molecule has been the most extensively studied component for its chemopreventive and anticancer effects.

Extensive experimental evidence documents the direct anticarcinogenic action of genistein. Animal studies demonstrate protection against bladder, breast, colon, liver, lung, prostate, and skin cancer (86,89) with oral genistein. Growth of many in vitro cancer cell lines is inhibited by genistein (90). Dietary soy inhibits chemically induced skin cancer in mice (91). Exciting research demonstrates that genistein arrests the growth and induces the differentiation of malignant melanoma in vitro (92) and inhibits pulmonary metastases of melanoma in vivo (93,94).

The mechanism by which genistein inhibits carcinogenesis may be through its proven inhibition of tyrosine protein kinases (TPKs), the enzymes that phosphorylate proteins necessary for regulation of cell division and transformation (95). Of particular importance is phosphorylation of TPK-dependent epidermal growth factor receptors (EGF-R) that are related to tumor promotion, including initiation of transcription factors, release of inflammatory mediators (such as prostaglandins), and stimulation of cell proliferation (96). Genistein was found to downregulate both UVA- and UVB-induced EGF-R phosphorylation in human epidermoid carcinoma cells in vitro (97). By similar enzymic inhibition, genistein retard UV-induced apoptotic changes, including caspase-3 and p21-activated kinase 2 activation of human epidermal carcinoma cells (98) and phoshokinase C\(_5\) in human keratinocytes (99).

Genistein is also a potent antioxidant. Genistein scavenges peroxyl free radicals, thereby protecting against lipid peroxidation in vitro (100) and in vivo (101). The decreased incidence of cardiovascular disease with high soy diets may be due to genistein’s inhibiting the oxidation of low-density lipoprotein (LDL) cholesterol in both aqueous and lipopilic environments.

Of direct importance in protection of the skin from UV-induced damage, genistein has been shown to inhibit in vitro UV-induced DNA oxidation (102) and cellular DNA oxidation induced by benzopyrene and UVA (103) and by phorbol ester stimulation (104), as well as by psoralen plus UVA (PUVA) therapy (105). The fact that genistein also reduces erythema and histologic inflammation induced by PUVA in mouse skin (106) may have important implications for PUVA therapy, by reducing possible short- and long-term adverse reactions.

The use of topical genistein to prevent and reverse photodaging has recently been intensively investigated, with promising results. In animal studies, Wei et al. (97) demonstrated that topical genistein (10 \(\mu\)mol/cm\(^2\)) protects against acute and chronic UV damage to the skin. After exposure of Skh:1 hairless mice to UVB, topical genistein completely blocked acute skin burns and inhibited UVB-induced cutaneous wrinkling (as seen clinically in Fig. 27.9) (97). This protection from UV-induced erythema with topical genistein (0.5%) was further confirmed in pig skin by an increase in MED and a decrease in number of sunburn cells after pretreatment with topical genistein (107). Histologic analysis in mice showed that topical genistein substantially blocked the signs of chronic photodamage: epidermal hyperplasia and reactive acanthosis with nuclear atypia (97). At a molecular level, UV-induced damage to DNA as measured by the biomarker 8-hydroxy-2'-deoxyguanosine was markedly reduced (108). Protection was also demonstrated by decreased expression of proliferating cell nuclear antigen (PCNA) (a marker of DNA repair that indirectly indicates degree of UV damage) as well as by decreased Cox-2 expression and by increased catalase concentration in mice treated with topical genistein (1–3 mg/mL) prior to UVB exposure (109). Inhibition of acute UV-induced erythema with topical genistein was also demonstrated in humans. Topical genistein (5 \(\mu\)mol/cm\(^2\)) (applied 30 minutes before UVB radiation) inhibited, by one MED, the UVB-induced erythema (97). Further recent immunohistologic studies on human reconstructed skin demonstrated that pretreatment with genistein (10–50 \(\mu\)M) inhibits UV-induced DNA damage, as measured by inhibition of pyrimidine dimer formation and of expression of PCNA (110). The degree of protection is dose dependent, increasing with increasing concentrations of genistein (110).

Equally impressive is the fact that topical genistein also inhibits the most serious consequence of chronic UVB damage: skin cancer. Both the incidence and the multiplicity of UVB-induced skin tumors in Skh2 hairless mice were reduced by about 90% after 25 weeks of UVB exposure (97). Furthermore, after induction of skin tumors in mice by
7,12-dimethylbenzanthracene (DMBA) and promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA), topical genistein (10 μM) inhibited tumor numbers by 60% to 75% (108). To investigate the mechanism of inhibition of UV-induced skin cancer, the effect of genistein on the expression of the photo-oncogenes c-fos and c-jun on mRNA was investigated in mouse skin (111). Expression of these proteins induces matrix metalloproteinases that degrade dermal connective tissue, causing the wrinkles and laxity of photoaging (112). Overexpression of these photo-oncogenes is related to promotion of cell proliferation in oncogenesis. At low-dose UVB, genistein (20 μM) substantially inhibited both; at high dose, genistein blocked c-fos but had little effect on c-jun (111). Treatment of mouse skin immediately after UVB irradiation also inhibited the expression of both (111). In human skin, topical genistein (1%) did prevent UV-induced c-jun, thereby preventing photoaging and oncogenesis (112).

Another possible dermatologic benefit of genistein is as a phytoestrogen. The skin has both α and β nuclear estrogen receptors (ER) (113), through which estrogen binding can regulate linked genes of proliferation and differentiation. Genistein has a 30-fold higher affinity for ERβ than ERα (114), but a greater ERα agonist activity than ERβ (115). Although estradiol has 700-fold more ERα and 45-fold more ERβ activity than genistein, the possible biologic effect of genistein (even through dietary soy isoflavones) may be great. Oral (116,117) and topical (118,119) estrogen increases the collagen content of skin, which diminishes with aging, and especially dramatically in women during and after menopause (120). Genistein may reduce the “crepey” appearance of aging skin by stimulating collagen synthesis. Indeed, genistein does increase collagen gene expression in fibroblasts in vitro (121).

In other studies on normal human fibroblasts exposed to chemical oxidative stress, genistein prevented disturbances in
the insulin-like growth factor-1 receptor–mediated collagen signaling pathway (122). Also, treatment of cultured human dermal fibroblasts with soy extract increased synthesis of collagen and hyaluronan (123). Topical application of a soy extract emulsion ameliorated UV-induced flattening of the dermoepidermal junction and enhanced the number of dermal papillae, thus demonstrating histologically rejuvenation of photoaged human skin (123). Armed with these auspicious in vitro and in vivo studies, a six-month study of postmenopausal women compared topical β-estradiol (0.01%) with topical genistein (4%) (124). Skin biopsies showed that topical estrogens gave more correction of photodamage than did genistein, as summarized in Table 27.1.

Thus, topical genistein shows great promise not only in protection of the skin against extrinsic acute and chronic UV photodamage, but also in enhancing collagen synthesis, which is diminished with normal intrinsic aging.

SUMMARY

There are two great advantages to applying an active formulation (5) of topical antioxidant(s) to the skin. First, the skin attains far higher levels of each antioxidant than can be achieved by only taking these supplements orally (5). For example, the level of vitamin C attained in the skin by topical application is 20 to 40 times the level achievable with oral vitamin C (5); with topical application, the concentration of vitamin E increases by a factor of 10.6 (37) and selenium by a factor of 1.7 (81). Second, topical application arms the skin with a reservoir of antioxidant(s) that cannot be washed or rubbed off, a protection that stays in the skin for several days after application (5). Because topical antioxidants work by affecting cellular mechanisms of photoprotection, they supplement sunscreens in preventing photaging and skin cancer. Indeed, scientific research confirms that topical application of antioxidant(s) offers exciting new possibilities not only in protecting the skin from UV damage (to reduce extrinsic photoaging and to retard intrinsic aging) but also in reversing previously incurred photodamage.

REFERENCES

PHOTODAMAGE: PROTECTION AND REVERSAL WITH TOPICAL ANTIOXIDANTS

73. Kabuto M, Imai H, Yonezawa C, et al. Prodiagnostic serum selenium and zinc levels and subsequent risk of lung and
216 TEXTBOOK OF COSMETIC DERMATOLOGY

PHOTODAMAGE: PROTECTION AND REVERSAL WITH TOPICAL ANTIOXIDANTS

INTRODUCTION
Modern humans possess in toto as many hair follicles as our primate cousins. However we do not possess their all encompassing pelage. We have been selected for shorter and finer body hair and abundant hair only in locations associated with display and scenting. Human scalp hair is capable of growing to greater lengths than that of any other mammal for the purpose of sexual display and signaling and may have some variable but ultimately, vestigial role in thermoregulation.

The human head bears between 100,000 to 150,000 hair follicles. In an individual adult with 30 months’ continuous, unstyled growth, some 30 to 45 km of hair is being carried (Fig. 28.1). This, in itself has consequences for overall appearance and grooming ease: the volume and phenotype have similar impact on the design of modern hair care products.

Caring for hair is an (almost) ubiquitous human habit (Figs. 28.2 and 28.3).

It is entirely consistent with mammalian grooming, enhancing appearance to consciously or subconsciously impart status, apparent health, wealth and physical attractiveness. The appearance of our hair is significantly affected by many factors including, obviously, climate and surprisingly, mood: The impact these have on the frequency of washing, conditioning, grooming and styling, is now established.

The physician of the 21st century ignores the importance of his or her patients hair, hair care practices and the products used designed to maximize physical attractiveness—at his or her peril. Patients with diffuse hair loss, the recovering alopecia areata, and postchemotherapy patients all rightly deserve cosmetic advice as part of holistic management.

STRUCTURE OF HAIR: IMPACT ON HAIR CARE AND GROOMING
Morphology of Human Hair
The varied morphology of humans and their hair may be explained by both genetics and the adaptive consequences that occurred after the first diaspora of Homo sapiens. Genetic evidence suggests that H. sapiens originated only 200,000 to 250,000 years ago somewhere in the East-African savanna. Despite their apparent phenotypic variation, today’s world population is potentially derived from as few as 10,000 to 10,000 individuals, some 90,000 years ago, who eventually went on to populate the earth.

Human hair morphology varies from the literally flat to the perfectly round (Fig. 28.4). Typically, these have been allocated to perceived “racial” groups. However, single human scalps often bear a multiplicity of hair phenotypes.

Caucasoid, Negroid, and Mongoloid Hair Types
The literature perpetuates the taxonomy of hair as caucasoid, negroid, and mongoloid. These terms not only have a pejorative ring but from a practical standpoint are scientifically inaccurate and no longer employed by publishers. Further, they are geopolitically incorrect. Other alternatives, such as Equatorial-African, Indo-European (IE) and Oriental, might better allocate the dominant phenotypes while recognizing the impact of past passive and forced migrations and the increasing homogeneity of the scalp hair of H. sapiens through gene sharing.

The cross-section of the hair shaft reveals three major components: the cuticle, the cortex, and the medulla (Fig. 28.5).

Percutaneous Hair Problems
Hair care
John Gray and Jeni Thomas

Weathering and the Record of the Hair
The normal cuticle has a smooth appearance, allowing light reflection and limiting friction between the hair shafts. It is responsible for the luster and texture of the hair. The cuticle may be damaged by frictional forces (brushing, combing, or blow-drying) as chemical removal of the f-layer, particularly by oxidation, eliminates the first hydrophobic defense and leaves the hair more porous and vulnerable (Fig. 28.6).

If the cuticle is damaged there is little change in the tensile properties of hair, however, its protective function is diminished.(see section “Weathering and the Record of the Hair”). The morphology of hair and its condition at any one time determine the outcome of any interaction with a hair care product. The desire for an “end benefit” drives the product designer to diversify from the standardized products of the past.
more severe changes; features of weathering include damaged cuticles, longitudinal fissures known as split ends, and transverse fissures resembling the nodes seen in trichorrhexis nodosa (Fig. 28.5).

Hair grows at circa 0.4 mm/day for between two and seven years, sometimes much longer.

Newly emerging hair has properties that are different from those of the hair tips. The more distal part of the hair shaft, particularly the tip, has typically undergone several hundred washes, the application of hot styling implements, and other cosmetic procedures such as bleaching, permanent coloring, and perming in addition to normal exposure to the environment. It may show the effects of weathering. The root may be less porous and have different chemical properties.

Hair care and hair care products are designed to cleanse and render the hair in a fit state for ease of grooming. The range of human hair—long and straight to short and intensely curled—challenges the product formulator. The degree of damage inflicted on hair raises that challenge to greater heights.

Surface Charge Changes with Weathering

- Hair coloring and bleaching changes the surface charge of hair which impacts the hair bulk properties. This change in surface charge is mainly driven by the removal of the f-layer during the oxidative treatment process.
- The f-layer is a monolayer of covalently bound branched fatty acid (18-MEA). This fatty lipid layer binds to the surface of the cuticle and acts as the hair’s natural conditioning system. These lipids are bound to the surface by thioester linkages.
Coloring or bleaching with alkaline peroxide attacks the thioester groups that bind 18-MEA to the ultra high sulfur protein backbone at the surface of the hair and in the upper β-layer of the cell membrane complex (CMC) (1,2). This partially removes the hydrophobic surface barrier and weakens the cuticle-cuticle CMC against deformations in the dry state. The mechanism for the 18-MEA removal is thought to be perhydrolysis of the thio ester.

Increase in friction: Bleaching hair increases hair fiber friction, and friction increases with increasing bleach damage (3). This has been observed at both high and low load. There is a larger frictional decrease from treatment of alkaline peroxide treated hair with cationic crème ingredients than with treatment of virgin hair with these same ingredients. These results suggest a stronger interaction of bleached hair with cationic crème rinse ingredients that has been described (4) and are consistent with the higher concentration of ionized cysteic acid groups in the fibers (5).

Hair texture: Alkaline peroxide treatment increases friction, making hair feel coarser (6). It produces a more irregular or varied scale pattern, which produces the perception of a more coarse texture versus chemically unaltered human hair (7). When female panelists were blindfolded and asked to rate hair for coarseness, the hairs with the greater degree of bleach damage were rated most coarse (8).

Hair freshly treated with an oxidation dye has a better wet feel immediately after treatment, but that feel gradually fades after several shampoo and conditioner treatments.

Figure 28.5 (A, B) Hair displaying signs of weathering.

Figure 28.6 Mechanism of f-layer removal from hair.
applications. With a condensation type reaction, as in oxidative dyeing, large molecules can form with three or more condensation units and larger species will tend to accumulate at or near the fiber surface. They resist rinsing off because the total binding force of van der Walls forces and polar attractions increase with molecular size. All molecules that bond on/in the surface layers can influence the surface properties of the hair such as friction, combing, and the more complex property of hair feel. These surface bound molecules will gradually be removed by shampooing.

- **Combing forces**: Permanent waving and bleaching hair with either alkaline peroxide or peroxide-persulfate make hair more difficult to comb (12,13). Permanent waving increases both hair fiber curvature and interfiber friction (9). Bleaching mainly increases interfiber friction (9). Creme rinses (10) and some conditioner sets (11) make hair easier to comb by decreasing interfiber friction. Chargeability (10) will also decrease with conditioners, thus improving flyaway hair and dry combing.

- **Style retention**: A water set in hair can be removed by either going to a higher relative humidity or a lower relative humidity (6). Changes in relative humidity or water content in hair fibers caused by either an increase or a decrease in relative humidity can cause curl loss or straightening of hair fibers wherein movement of water into or out of the hair causes changes in hydrogen bonding that allows for molecular rearrangements to occur causing hair to revert to its natural curvature or natural curl pattern and loss of a water set.

Oxidative dyes with alkaline peroxide increase interfiber friction (9,12), thus they help hair stay in place to improve style retention.

- **Hair body**: Changes in fiber curvature produce large changes in hair body hair body may be defined as thickness or apparent volume of a hair assembly, involving sight and touch for assessment (3). The quality of liveliness or springiness is also associated with hair body. Hair curvature, friction, stiffness and fiber diameter will increase hair body and ingredients applied to hair that provide an increase in cohesion of hair fibers or weight on the hair will decrease hair body. Robbins has shown that for cohesive effects a change in fiber curvature has a greater impact on hair body than the other fiber properties (stiffness, friction, and fiber diameter) (13).

- **Permanent waves, hair bleaches, and oxidation dyes increase hair body. Permanent waving does this by increasing fiber curvature and friction (9,12). Bleaching and oxidation dyeing increase interfiber friction substantially (9,12), increasing body.

OTHER COSMETIC PROBLEMS

- **Knots**: Knots can form in hair, especially curly hair. Knots in hair eventually lead to hair damage and breakage.

- **Flyaway**: Curly hair provides less flyaway than straight hair under the same conditions. Robbins (13) has demonstrated that straight hair has a greater tendency to flyaway than curly hair, even when a similar level of static charge has been built up on the fibers. Fiber entanglements of curly hair inhibit the separation of hairs as occurs in static flyaway, and this effect to inhibit flyaway becomes greater as the hair fiber curvature increases.

- **Shine**: Curl in hair decreases hair luster by producing poor alignment of hairs. Hair curl or coiling of hair fibers produces misalignment of hairs which produces dull hair. Single hairs of African-Americans are among the shiniest of hairs. It is only because of the high coiling and poor alignment that an array of hair from an African American does not appear shiny. Therefore, curly to highly coiled hair of blacks often thought of as not being shiny would be even less shiny if it contained less pigment.

- **Oil transport**: Curly-coarse hair is least affected by cohesive forces of oily soils on hair. Curly-coarse hair will tend to inhibit transport and also to minimize the influence of tress compacting by oily ingredients. Among all hair properties, increasing fiber curvature provides the greatest influence against the cohesive forces of hair lipid and the resultant compacting of tresses (limpness) by oily/greasy ingredients (5), thus curly hair will appear less oily and less limp than straighter hair with the same amount of oily/greasy ingredients on it. This is why very large amounts of oils/greasy ingredients are applied to hair in pomades, amounts too large to be deposited from a shampoo or a standard rinse-off hair conditioner used by Caucasians and Asians.

SURFACE CHARGE CHANGES AFTER COLORING AND BLEACHING

Hair coloring and bleaching changes the surface charge of hair which impacts the hair bulk properties. This change in surface charge is mainly driven by the removal of the f-layer during the oxidative treatment process.

The f-layer is a monolayer of covalently bound branched fatty acid (18-MEA). This fatty lipid layer binds to the surface of the cuticle and acts as the hair’s natural conditioning system. These lipids are bound to the surface by thioester linkages.

Coloring or bleaching with alkaline peroxide attacks the thioester groups that bind 18-MEA to the ultra high sulfur protein backbone at the surface of the hair and in the upper β-layer of the CMC (14,15). This partially removes the hydrophobic surface barrier and weakens the cuticle-cuticle CMC against deformations in the dry state (16). The mechanism for the 18-MEA removal is thought to be perhydrolysis of the thioester.

HAIR CARE REGIMENS

Hair care products initially focused on the sole purpose of removing dirt and oil from hair. Hair care products have since, evolved to not only gently cleanse hair, but to enhance its esthetics by sustaining its core elements (i.e., cortex, cuticle) and facilitating desired styles. Conditioning actives can now be delivered to hair from a shampoo, from a separate rinse-off product, or from a leave-on treatment used outside of the washing environment. Conditioners help control the flux of moisture in and out of the hair fiber, provide lubrication to minimize friction-related damage, reduce static charge, and smooth rough surfaces. They contribute to, feel, appearance, resilience and manageability.

In recent decades, hair care products have been transformed from the functional but often unpleasant, to versatile, creative and quality-of-life enhancing. A hair care regimen includes a basic cleansing and conditioning product often with a number of variants to meet consumer needs. These
products are generally used separately, and conditioning usage is still much less than shampoos despite the increasing use of chemistry on the hair.

Combination, or two-in-one, products developed by Procter and Gamble (P&G) in the late 1980s delivered for the first time cleansing and conditioning benefits from a single bottle.

Regimen ranges were classically designed for three hair types: normal, dry, or damaged hair. Subsequent generations of products were created to deliver a desired end benefit, such as “smooth and sleek,” “perfect curls,” and “color radiant.” A range of styling products to create long-lasting styles have also emerged to complement the cleansing and conditioning products.

These can enhance or alter most common aesthetic styling problems. Foremost among these is the control of “volume,” either too little or too much. Managing frizzy hair is important and products for so-called “ethnic” hair are emerging.

Current hair care regimens can vary from zero to six products a day. While previous generations may have had nothing and relied solely on grooming, in an increasingly competitive society, the prolonged wearing of unwashed, matted, and neglected hair is considered eccentric at the very least.

Daily shampooing alone is harmless to the hair shaft, and in itself can improve the ability to groom and style. Hair care products, in comparison with skin care are inexpensive and ubiquitous. Curiously in some developed societies, bar soaps for washing the scalp, particularly among men, are still sadly, common. These harsh anionic surfactant systems are not just for washing the scalp, particularly among men, are still sadly, common. These harsh anionic surfactant systems are not just.

Recent research (P&G data on file) indicates that, despite improvements over the last two decades, 70% of women still experience dissatisfaction in achieving the end result they desire. This failure of expectation may be due to product choice based either on the hair type or on the prospective “look,” without options to link the two for a more tailored solution. For example, “moisturization” is a common need, but current technologies offer a single formula designed to deliver a moisturization benefit regardless of the hair type. The technology that would be most effective for delivering a moisturization benefit to thick hair would be far too heavy and unappealing for fine hair.

In the future a more sophisticated approach encompassing targeted products based on fundamental hair characteristics will be available (see recent developments).

HAIR CARE PRODUCTS

Shampoos

Shampoos are the bedrock of hair care. Modern high-quality shampoos have evolved from agents that once merely and harshly removed grease (sebum), perspiration, environmental dirt, and dead corneocytes. In the twenty-first century they contain agents that enhance the natural beauty of hair and mitigate the damage which the owners inflict.

Shampoos consist of three major components.

- Primary surfactants (surface-active molecules) for detergency and foaming power
- Secondary surfactants to improve and condition the hair
- Additives that complete the formulation and add special esthetic effects

The surfactants or detergents act by removing the dirt from the hair with a lipophilic component and transferring it to the rinse water with hydrophilic component (Tables 28.1 and 28.2).

Moisturizing Shampoos

Moisturizing shampoos are designed for dry hair and can include essential oils such as petrolatum as well as the surfactant systems described above. They are oriented toward those with hair of African origin or hair that is excessively dry. They leave the hair feeling moisturized and easy to comb. These products are also designed to help weathered and colored hair.

Table 28.1 Classical Shampoo Formulation: with Ingredient Function

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Material function</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua</td>
<td>Purified water</td>
<td>Bulk matrix</td>
</tr>
<tr>
<td>Ammonium laureth sulfate</td>
<td>Surfactant</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Ammonium laurel sulfate</td>
<td>Surfactant</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>Viscosity control</td>
<td>Controls thickness of final product</td>
</tr>
<tr>
<td>Glycol distearate</td>
<td>Pearlescent</td>
<td>Visual esthetics</td>
</tr>
<tr>
<td>Dimethicone</td>
<td>Conditioning agent</td>
<td>Improves hair feel</td>
</tr>
<tr>
<td>Ammonium xylenesulfonate</td>
<td>Viscosity control</td>
<td>Controls thickness of final product</td>
</tr>
<tr>
<td>Sodium citrate</td>
<td>Ph balancer</td>
<td>Controls pH of final shampoo</td>
</tr>
<tr>
<td>Citric acid</td>
<td>Ph balancer</td>
<td>Controls pH of final shampoo</td>
</tr>
<tr>
<td>Cetyl alcohol</td>
<td>Conditioning agent</td>
<td>Lubricates hair</td>
</tr>
<tr>
<td>Panthenol</td>
<td>Provitamin</td>
<td>Humectant</td>
</tr>
<tr>
<td>Panthenyl ethyl ether</td>
<td>Provitamin</td>
<td>Humectant</td>
</tr>
<tr>
<td>Cocamide MEA</td>
<td>Foam booster</td>
<td>Improves lather performance</td>
</tr>
<tr>
<td>Polyaquaternium 10</td>
<td>Conditioning agent</td>
<td>Improves hair feel and provide body</td>
</tr>
<tr>
<td>Parfum</td>
<td>Perfume</td>
<td></td>
</tr>
<tr>
<td>Laureth 4</td>
<td>Surfactant</td>
<td>Solubilizes perfume</td>
</tr>
<tr>
<td>Trimethylpropane tricaprlylate/tricaprate</td>
<td>Conditioning agent, rinse modifier</td>
<td>Improves hair feel, rinses faster, clean rinse feel</td>
</tr>
<tr>
<td>Hydrogenated polydecene</td>
<td>Conditioning agent</td>
<td>Improves hair feel</td>
</tr>
<tr>
<td>Tetrasodium EDTA</td>
<td>Preservative enhancer</td>
<td>Metal ion absorber</td>
</tr>
<tr>
<td>Disodium EDTA</td>
<td>Preservative enhancer</td>
<td>Metal ion absorber</td>
</tr>
<tr>
<td>DMDM hydantoin</td>
<td>Preservative</td>
<td></td>
</tr>
<tr>
<td>Sodium benzoate</td>
<td>Preservative</td>
<td></td>
</tr>
<tr>
<td>Methylchloroisothiazolinone, methylisothiazolinone</td>
<td>Kathon</td>
<td></td>
</tr>
</tbody>
</table>
Originally there were no shampoos specifically designed for African hair. However, African hair benefits from shampoos that contain mild cleansing agents (detergents) help detangle the hair and are pH balanced in the range of 4.5 to 5.5. Shampoos formulated for other hair types may not help to detangle hair sufficiently, contributing to combing damage.

Conditioning Agents
Conditioning materials are formulated as emulsions and are traditionally applied after shampooing to increase hair "quality" before grooming. They reduce negative charge, prevent flyaway, increase miscibility and hence reduce tangling. Other ingredients (see below) are humectants.

In the past, the only available "conditioners" were equivalent to greasy pomades offering protection against the harsher effects of relaxers, permanents, straighteners, and colorants were common. Modern intensive conditioners are much pleasanter and if used regularly can obviate the effects of these processes.

Modern, high-quality conditioners increase the manageability, shine, and moisture content of each hair shaft. Modern products are designed to provide one or more of the following functions:

- Increase the ease of wet and dry combing
- Smooth, seal and realign damaged areas of the hair shaft
- Minimize porosity
- Impart sheen and a silken feel to hair
- Provide some protection against thermal and mechanical damage
- Moisturize
- Add volume and body
- Eliminate static electricity

Regular condition contributes significantly to the preservation of the external architecture and internal chemical chemistry of each hair shaft. Frequent chemical processing makes conditioning even more important.

Dry, woolly hair generally requires heavier deposits of conditioners than other hair types. The use of leave-in or "intensive" conditioners is growing. The use of moisture-retaining ingredients (humectants) such as panthenol, can be augmented by cationic ingredients (e.g., polyquarternium derivatives), which leave hair manageable. Treatment with polymeric conditioning agents that bond to the hair at points of damage also aid in improving resistance to breakage. Increasingly, light conditioning materials are added to shampoos (other than clarifying) to improve end results.

KEY CONDITIONING MATERIALS

Silicones
Embue extreme softness to hair, provide dry combing capability and increase shine.

Cationic Polymers
Positively charged molecules which are attracted preferentially to areas of damage. Makes hair easier to comb, softer, smoother and less static.

Fatty Alcohols
Give hair a smooth feel when dry and improves wet combing. They are creamy in texture and give product thick, creamy appearance. Also help to retain moisture.

Quats/Amines
Enable combing and control static.

Oil Emollients
Moisturize hair to improve softness.

Conditioning hair is critical to its sustained integrity as it inevitably weathers over time. Chemical and physical processing remove the outer lipid coating of lipids (the f-layer) and result in amino acid degradation in the cortex of up to 50%.

STYLING ISSUES IN HAIR CARE
For most ordinary people, a good cut utilizing the intrinsic nature of the hair and its patterns is the first essential for good style. Thereafter, maintaining or creating a daily style is a

Table 28.2 Ingredients and Their Functions

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Material function</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua</td>
<td>Purified water</td>
<td>Bulk matrix</td>
</tr>
<tr>
<td>Cyclomethicone</td>
<td>Conditioning agent</td>
<td>Lubricates and improves hair feel</td>
</tr>
<tr>
<td>Stearamidopropyl dimethylamine</td>
<td>Conditioning agent and emulsifier</td>
<td>Improves hair feel</td>
</tr>
<tr>
<td>Cetyl alcohol</td>
<td>Conditioning agent</td>
<td>Lubricates hair</td>
</tr>
<tr>
<td>Quaternium-18</td>
<td>Conditioning agent and emulsifier</td>
<td>Reduces static</td>
</tr>
<tr>
<td>Stearyl alcohol</td>
<td>Conditioning agent</td>
<td>Improves hair feel</td>
</tr>
<tr>
<td>PEG-2M</td>
<td>Conditioning agent</td>
<td>Improves hair feel</td>
</tr>
<tr>
<td>Cetearyl alcohol</td>
<td>Conditioning agent</td>
<td></td>
</tr>
<tr>
<td>Polyisobutylene 60</td>
<td>Solubilizer and emulsifier</td>
<td></td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>Preservative</td>
<td></td>
</tr>
<tr>
<td>Panthenyl ethyl ether</td>
<td>Provitamin</td>
<td>Humectant</td>
</tr>
<tr>
<td>Panthenol</td>
<td>Provitamin</td>
<td>Humectant</td>
</tr>
<tr>
<td>Dimethicone</td>
<td>Conditioning agent</td>
<td>Improves hair feel</td>
</tr>
<tr>
<td>Hydroxyethylcellulose</td>
<td>Thickening agent</td>
<td></td>
</tr>
<tr>
<td>Glycerin stearate</td>
<td>Emulsifier</td>
<td></td>
</tr>
<tr>
<td>Oleyl alcohol</td>
<td>Conditioning agent</td>
<td>Improves hair feel</td>
</tr>
<tr>
<td>DMDM hydantoin</td>
<td>Preservative</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>Preservative enhancer</td>
<td>Metallon absorber</td>
</tr>
</tbody>
</table>

HAIR CARE 223
combination of cleansing, conditioning, physical effects (natural or forced drying), and styling products to give long-lasting control.

Control of “volume” is the most common reason for “styling”—either too much or too little. The hairstyle can be used to help accent facial features and camouflage the worst. However for many this is not an easy option and is influenced by hair density and diameter and hair shaft characteristics. Curly hair is more difficult to groom and tends to frizz. Tightly curled hair lends itself to sculpting and can only be styled if relaxed. Strong straight hair may defy any attempt at styling (Table 28.3).

Long-lasting volume can be defined as: “hair that is lifted and held away from the scalp which defies gravity and humidity over time.” For the physician key clues to understanding how volume works is described below.

VOLUME PROBLEMS

Modern hair care products applied correctly and regularly can contribute significantly to the amelioration of these problems. To the office physician this may be an important part of management for a variety of hair loss conditions or those with hair shaft abnormalities.

Factors Influencing Hair Volume

The key physiological factors affecting volume are as follows:

- Diameter
- Density
- Stiffness
- Friction
- Cohesion

There are three main ways to build long-lasting hairstyle.

- Reshaping the hair strand through wet setting
- Creating frictional interactions to help hairs hold each other up
- Bonding the hair strands at critical points to hold the shape over time

WET SETTING

The process most people use to reshape the hair strand is wet setting to increase curvature or set a shape in the hair. The basic process is to wet the hair by either shampooing or applying a wet styler. Shampooing works best because the surfactants help the water penetrate the hair shaft really well. Once the hair is wet it is redryed into shape either by air drying on rollers or heat drying with a blowdryer on a round brush.

Water in the air as humidity can also penetrate the shaft and loosen hydrogen bonds. The best way to prevent humidity attack is to use hair spray on finished style. Hair spray polymers are the most humidity resistant polymers and not soluble in water alone.

Certain phenotypes have generic problems—Nordic hair is regularly fine and tends to lankness and lack of body. Curly dry hair has too much and suffers from grooming problems.

Blow-Drying

With the introduction of precision cutting techniques in the 1970s, blow-drying became universally popular at home. Processed hair then exposed to high levels of heat and mechanical manipulation may result in excessive damage gives conditioning great importance.

Even natural hair can be blow-dried to loosen the curl. Blow-drying products are designed to help protect the hair
from heat and dehydration, and to reduce the combing force exerted in the blow-drying process. Specifically, lotions and silicone gels formulation have been developed.

Pressing
Physically straightens excessively curly hair using heat, oils and metal implements. A **hot comb** is still the most popular implement in the United States for the temporary straightening of hair (more dramatic effect than blow-drying).

The temperatures of hair dryers sometimes exceed 200°C and may cause tremendous damage Petrolatum is a commonly used ingredient to offset damage. The treated hair subsequently remains straight until moisture causes reversion back to its curly appearance. The hair may later be set on rollers.

In those with African hair this process can be damaging to both hair and scalp and may lead to hot-comb alopecia (baldness).

Setting
Like clothing fashions, various hair setting techniques have come, gone and returned again with great vigor to the ethnic market. Some styles are achieved with rollers, and others accomplished by various “molding techniques” such as waving and wrapping.

Reducing hair or the use of hot irons does not produce permanent straightening of hair. Reductive methods or hot irons when used separately provide only temporary hair straightening in which the hair will revert to its original curvature, or close to it, either by washing or on exposure to high humidity. However, these scientists demonstrated that by combining reducing solutions such as TGA or TGA/dithiodiglycolic acid (DTDG) followed by a hot press application immediately after the reduction reaction that permanent straightening can be achieved.

Hot curling or straightening irons can produce hair damage curling hair with curling irons can cause hair damage.

TEMPORARILY INCREASING HAIR FRICTION
There are three ways of temporarily increasing friction which also helps increase volume and fullness.

Cleaning: Hair’s natural oils or sebum can build up over time, making hair more slippery and reduce friction and make hair limp. Cleaning these oils off with a volume building shampoo will restore hair’s natural for long-lasting volume.

Teasing or backcombing: Teasing or combing hair backward from tip to root will roughen the cuticle, drastically increasing friction. This temporarily creates volume but is potentially very damaging over time. Teasing causes the cuticle layers to roll and peel up.

Foundation stylers like mousse and gel: Styling gels and mousses temporarily increase friction during styling to help you achieve style.

Unfortunately, volume created via friction alone can collapse over time as hair is blown around by the wind, head shaking or other forms of disruption. Volume created by friction alone is unreliable.

Volumizing conditioners and styling products containing ingredients such as polyquaternium and stearamidapropyl dimethylamine prevent static charge buildup in fine hair. These ingredients are charged and conductive and help dissipate the static buildup in hair.

BONDING THE HAIR STRANDS AT CRITICAL POINTS TO HOLD THE SHAPE OVER TIME
Styling products help keep long-lasting volume by creating reinforcing bonds between hair shafts at critical locations to the style. These bonds come in two types.

- Seam welds: Seam welds are bonds created that hold two hair shafts together in in side by side alignment.
- Spot welds: Spot welds are found where hairs cross each other to create a support structure. The styling polymer glues the shafts together at this critical structural point.

All styling products create both kinds of welds. However, mousse, gel and waxes are preferred for creating seam welds. This is because they are applied in larger quantities and typically rubbed by hand before the finished style is created. Hair spray is preferred for creating spot welds because it is applied through the air in droplets to finished style and thus can act on critical hair cross over points.

Styling products for volume can generally be categorized into three categories by their key holding polymers.

Reshaping the hair strand stiffness of the hair mass can be enhanced by using styling products with holding polymers which can temporarily improve this feature by bonding together separate hairs – when the hairs work together they have more natural lift and stiffness.

Physical attributes of hair care can be achieved by shaping with a brush or rounded comb. Lifting the roots off the scalp and supplementing this with a foundation styler like mousse or gel can help to help set the curve. Gentle heat makes the styling polymers melt and flow to increase hair to hair contact and provide even better long-lasting hold.

Styling gels and mousses temporarily increase friction during styling to help achieve the desired style. As the film partially dries they go through a tacky or sticky phase. This helps hold hair into shape while finishing by drying the hair. Once the film is completely dry, it stops feeling sticky and the style is set.

PRODUCT TYPES

Water-Based Stylers
Water-based styling polymers are delivered to the hair as a film that dries relatively slowly. As the film dries it becomes tacky and forms bonds between hair strands, making the desired style easier to achieve and maintain. After the hair is dry, the polymer forms a hard film that bonds the hair into place. Combing or disrupting the hair can break the bond, but even the broken pieces provide some friction, which provides some hold benefits by helping to prevent hair strands from sliding across each other.

Gels are water-based products that use water-based polymers with a variety of thickeners to achieve the desired product consistency and texture. Gels are typically applied by hand and can either be air dried for a shiny, wet look finished or blow-dried for a drier, softer look. Because of their thickness they are particularly good for creating seam welds that increase apparent hair stiffness and give a texturized look and great root lift.

Spray gels are typically very similar to thick gels minus the thickeners. Application using a nonaerosol pump enables...
enzymes, and keratinocyte activation. Also, three white volunteers showed IL-10 producing neutrophils in the epidermis. In black skinned individuals, aside from DNA damage in the suprabasal epidermis, there were no other changes found; basal keratinocytes and dermal cells were not damaged. The authors concluded that these results were best explained by difference in skin pigmentation and that melanin functions as a barrier to protect basal keratinocytes and the dermis from photodamage.

Other studies have suggested that filter properties of melanin, alone, do not provide sufficient protection against DNA damage in underlying cells. Tadokoro et al. (65) investigated the relationship between melanin and DNA damage after UV exposure in 37 subjects of five ethnic origins (black, white, Asian, others not specified), and Fitzpatrick phototypes I through VI. They found measurable damage to DNA in all groups, and DNA damage was maximal immediately after irradiation, gradually returning to baseline over time. The immediate DNA damage levels were higher in whites and Asians in comparison with blacks and Hispanics. In addition, the whites and Asians showed lower constitutive levels of melanin content. However, the kinetics of DNA damage differed among subjects. Upon monitoring the percentage of removal of damage toward baseline seven days after UV exposure, no correlation was found between melanin content or ethnic group and the efficiency of DNA damage removal. There were variable rates of DNA repair within individual groups indicating that DNA repair rates were not associated with skin type. The authors noted that other properties of melanin, such as antioxidant properties and radical scavenging properties, may play roles in minimizing UV damage. Ethnic differences in expression of receptors involved in melanosome uptake and melanocyte-specific proteins, both before and after UV exposure, are also being investigated.

CONCLUSIONS

The U.S. census bureau estimates that the ethnic population will increase over the next several decades and be nearly equivalent to that of whites (66). It has been predicted that people with skin of color will constitute a majority of the United States and international populations in the 21st century (67). Though there are many identifiable differences among ethnic skin types, few studies have been performed with adequate sample size and controlling for confounding factors to be able to delineate adequate conclusions. Furthermore, though there have been attempts to delineate the differences between black and white skin, few if any studies delineate these objective data in nonblack skin incorporating Asian, Hispanic, Mediterranean, Indian, Pacific Islander, etc., skin types. Finally, there are vast variations in skin physiology, pigmentation, and reactivity within one ethnic group such as those identified as “Asian,” which encompass a range of skin types including Chinese, Japanese, Vietnamese, Filipino, and Thai all of whom have great variations in their skin physiologies.

REFERENCES

column: “peelings” and “treatment tips”; there are clear tables about how to do the phenol peel and the postpeel.

Full-face peelings is another story, since the phenol toxicity has to be avoided or even treated in exceptional cases. Even if some physicians still feel comfortable in doing it as an office procedure, as in the past, I would strongly recommend to perform this kind of peel in a secure surgical environment, with the help of a trained anesthetist (nerve blocks associated to a deep sedation or neuroleptanalgesia). Nothing, usually, happens but all the lights are red and we have to be very careful, since an accident would never be forgiven. Strict application rules have to be followed. The postpeel period after phenol peel is quite uncomfortable for the patient, it looks like after a deep ablative CO2 laser procedure. Procedure is specific, many details have to be respected if we want to do it very safely, postpeel is difficult. I cannot describe here the full process of a full-face phenol peel and how to avoid all the traps. Nevertheless, my “Textbook of Chemical Peelings” contains average 200 pages dedicated to all aspects of phenol—and phenol derivatives—peelings procedures.

Apart from that, full-face phenol peeling is one of the most satisfying treatments I ever performed: many patients look 15 to 20 years younger after phenol peel. Skin aging goes many years back and goes on from there: usually, patient never gets again such an old skin as they had before peel. Full-face phenol peel can be combined with surgery, but not at the same time. When necessary, we are used to perform a face lifting as first procedure and a phenol peeling as second treatment, six months after in order to achieve complete face rejuvenation. In the same time, we treat neck, décolleté and hands by other procedures. New light phenol peels appear on the market, some of them being efficient, others having the efficacy of a medium depth TCA (papillary dermis) peel, Unideep type. Future will tell us more about the exact efficiency and toxicity of these low phenol concentrations.

CONCLUSIONS

The world of peeling continues to be discovered, its treasures are able to make happy a big majority of our patients. Nevertheless, we cannot begin our exploration of these treatments, grooping our way along, following any light that can appear in the sky as a shooting star: while we would look in this direction, we are at risk to fall in deep dangerous traps. Exploration of the world of peeling has to be done carefully, progressively, using good material, having at our disposal the necessary experience for passing from one step to the other. For example: deep full-face phenol or chemoabrasive techniques for stretch marks or acne scars should not be the first peeling of our life. The problem will not be the realization of the procedure itself but rather what we will have to face during the postpeel period, the problems that we will have to solve. The door of peeling world should open on VHS or HS peelings only. Beginners should use depths 1 to 3 peels first, before trying deeper treatments. Deep procedures have to be reserved for experienced doctors only.

REFERENCES

BIBLIOGRAPHY

Lasers and light sources for vascular and pigmented components of photoaging

Corinne Erickson and Robert A. Weiss

INTRODUCTION

Photoaging related changes most commonly occur on the face; however, areas such as the chest and legs are also frequently involved. Two clinical manifestations of photoaging for which patients often present for treatment are vascular and pigmented lesions. Facial telangiectasias are the most common vascular lesion related to photoaging in Caucasians. In contrast, Asians with photodamage present more frequently with UV-induced pigmentation problems. The most common pigmentation concerns are lentigos, keratoses, and Hori’s macules (1). This chapter will review treatment modalities of most of these common problems.

VASCULAR LESIONS

The term telangiectasia refers to superficial cutaneous vessels visible to the human eye (2). These vessels measure 0.1 to 1.0 mm in diameter and represent a dilated venule, capillary, or arteriole (Fig. 55.1). The vessel type determines the clinical presentation of telangiectasias. Arteriolar telangiectasias are small in diameter, bright red in color, and do not protrude above the skin surface. Venule-derived telangiectasias are wider, blue in color, and often protrude above the skin surface. Telangiectasias arising at the capillary loop initially present as fine, red lesions but often enlarge and become purple or blue in color with time (3).

There are four classifications of telangiectasias based on clinical morphology: (i) simple or linear, (ii) arborizing, (iii) spider, and (iv) papular (3). Linear and arborizing telangiectasias with red coloration are very common on the face, particularly on the nose and midface regions. These lesions are also seen relatively frequently on the legs. In addition, patients experience enlargement of slightly larger venulectasias. These appear as purplish vessels on the cheeks, periorbital region, and vermilion. Papular telangiectasias are typically manifestations of genetic syndromes, such as Osler-Weber-Rendu syndrome, or occur in the setting of collagen vascular diseases. They are less frequently related to photoaging. Cherry hemangiomas are also seen that are small round red to purple dome-shaped vascular ectasias scattered anywhere on the face or body. All forms of telangiectasias are thought to occur through the release or activation of vasoactive substances under the influence of a variety of factors, such as anoxia, hormones, chemicals, infection, and physical factors such as UV radiation, with resultant capillary or venular neogenesis (4).

Spider telangiectasias of the face are most commonly seen in patients with fair skin of Fitzpatrick types I and II, indicative of this group’s increased susceptibility to UV damage. Facial telangiectasias are especially common on the nasal alae, dorsal nose, and mid cheeks and are probably due to UV-induced vessel wall weakness that leads to persistent arteriolar-induced dilation. Damage to the surrounding connective and elastic tissue from chronic sun exposure or use of topical steroids further worsens these lesions. There is also definite familial or genetic component to the development of spider telangiectasias. Rosacea may be an accompanying condition.

Whereas the cause of telangiectasias on the legs is predominantly hydrostatic pressure, facial telangiectasias appear to result from damage to the collagen of the vessel wall by sunlight. Sun exposure damages and weakens collagen with cumulative exposures, resulting in ectasia. Additionally, there is a relatively high incidence of rosacea on the face, which may have a prominent telangiectatic component (Fig. 55.2). Rosacea consists of frequent flushing associated with telangiectasias, papules, and pustules. It is the repeated flushing in rosacea, often caused by exercise, alcohol, and spicy food, which leads to the development of telangiectasias. Genetic factors also play a large role as the rosy cheek appearance passes from one generation to the next in individuals susceptible to rosacea. Aging of the skin, particularly photoaging, causes more telangiectasias as collagen breakdown ensues (5). Repeated trauma to the face will also induce localized erythema and ultimately vascular dilatation.

Fortunately, the treatment of facial telangiectasias is relatively safe and more predictable than treatment of telangiectasias on other sites, particularly the legs. This is attributable to several factors. One is the ability of facial skin to heal quickly with fewer propensities toward scarring when treated with a similar depth of injury than other locations. Treatment results are often seen much more quickly as healing is much faster on the well-oxygenated skin of the face. Facial vessels also have the advantage of a more uniform depth than the legs. The vascular walls themselves are much thinner and uniform, and hydrostatic pressure plays no major role in pathogenesis. Occasionally, arterial pressure is a factor as seen in spider angiomata with a small central arteriole. This arteriolar component must be considered when selected a treatment modality for these lesions. Treating the arteriolar-fed vessels with sclerotherapy incurs a higher risk of necrosis than when using laser or light to shut down the branches and shrink the arteriolar component.

Patients with telangiectasia of various types present for treatment primarily because of cosmetic concerns. Therefore, it is important that the procedure be relatively risk-free without unsightly scarring. Various modalities can be used to treat telangiectasia on the face or other regions. Several of these modalities will be discussed in more detail in this chapter, including electrodesiccation, sclerotherapy, and a variety of lasers including the pulse dye laser (PDL), long pulse dye
laser (LPDL), argon laser, frequency doubled neodymium:yttrium-aluminum-garnet laser (532Nd:YAG), intense pulsed light (IPL) in all its forms, and a variety of 1064 nm long-pulsed Nd:YAG lasers (1064Nd:YAG).

ELECTROSURGERY

Electrodesiccation is commonly used to treat facial telangiectasia because the device is readily available and of relatively low cost, making it an accessible and affordable treatment worldwide. Electrodesiccation is a process in which heat is generated from resistance of tissues to the passage of a highly damped current from a single electrode. Dehydration occurs in the tissue immediately adjacent to the needlepoint, and as cellular fluids are evaporated, tissue destruction results. The vessel must be cauterized or electrocoagulated every 2 to 3 mm with very low amperage current (1-2 A). Some degree of epidermal necrosis occurs due to the nonspecific nature of cauterization. Multiple treatments are typically necessary for successful treatment. Punctate white or pigmented scars may occur if excessive thermal damage occurs. Groove type scars along the nasal alae are the most common adverse effect of electrodesiccation.

Figure 55.1 (A) Telangiectasias on the cheek of a Caucasian female consistent with the early stages of photoaging. (B) The same patient following treatment with IPL has fewer visible vessels and smoother skin. IPL with double-pulse 570 nm filter, 2.4 milliseconds + 6 milliseconds pulse with 10 milliseconds delay, and a fluence of 29 J/cm² was used.

Figure 55.2 Rosacea is thought to result in part from photoaging. IPL treatments reduce intensity and duration of flushing that worsens telangiectasias in rosacea. Before (A) and after (B) three treatments with Vasculight IPL (Lumenis, Santa Clara, California, U.S.) using a 550-nm filter, double pulse of 2.4 and 7 milliseconds, delay of 10 milliseconds, and a fluence of 27 to 29 J/cm².
Using the lowest effective fluence and the finest electrodes produces optimal results. Electrodes that are coated with Teflon so that only the tip of the electrode or one side of the electrode is exposed tend to provide the safest treatment. In addition, use of a bipolar current (with the patient grounded to a plate at a distance from the treated area) allows for effective treatment with a lower fluence. With bipolar treatment, the current passes through the cannulated vessel for several millimeters with relative selectivity. When performed with care, electrodesication is effective but is best reserved for the smallest of telangiectasias. This technique has been popularized by Kobayashi who reports excellent results (6).

Serious adverse effects from electrosurgery such as disturbance of pacemakers and implantable cardiodefibrillators are extremely rare. To prevent disruption to electric currents in these devises, short bursts are recommended with minimal power settings. Rare instances of pacemaker interference with skipped beats and reprogramming have been reported in a survey of dermatologic surgeons performing electrocoagulation during cutaneous surgery. An incidence of 0.8 cases/100 years of surgical practice occurred but may not be representative of all patients undergoing electrodesication of telangiectasia (7).

LASERS

There are multiple lasers available for destroying facial telangiectasia. These lasers act by selectively heating the vessel to cause its destruction through the absorption of laser energy by oxygenated and deoxygenated hemoglobin. The advantages and disadvantages of presently available lasers are described below.

Several factors must be considered in selecting an appropriate laser for telangiectasia treatment. In general, the choice of wavelength(s) and pulse duration are related to the type and size of target vessel treated. Deeper vessels require a longer wavelength to allow penetration to their depth. Pulse duration must be matched to vessel size, as the larger the vessel diameter, the longer the pulse duration required to effectively thermally damage the vessel. The relative importance of hemoglobin absorption peaks in green (541 nm), yellow (585–595 nm), and red to infrared (800–1000 nm) shifts as the depth and size of blood vessel changes. Absorption by hemoglobin in the long visible to near-infrared range appears to become more important for vessels over 0.5 mm and at least 0.5 mm below the skin surface (8).

It is important to note that while laser treatment of facial telangiectasias has yielded excellent results, the use of lasers to treat leg telangiectasias has been far less successful than sclerotherapy. This is likely related to insufficient vessel destruction by lasers, competition for the laser absorption from overlying melanin, and the failure of lasers to treat the increased hydrostatic pressure from the “feeding” venous system.

CONTINUOUS WAVE LASERS

Carbon Dioxide Laser

Carbon dioxide (CO₂) lasers were used early on in an effort to obliterate telangiectatic vessels by means of precise vaporization without significant damage to adjacent tissue (9-11). However, because CO₂ laser light is so well absorbed by water in the epidermis and dermis overlying the blood vessel, nonspecific thermal injury is guaranteed regardless of whether pulsed or continuous wave sources are used (10). All reporte studies demonstrate unsatisfactory cosmetic results (10,9,11). Treated areas show multiple hypopigmented punctate scars with either minimal resolution of the treated vessel or neovascularization adjacent to the treatment site. Because of its nonspecific action, the CO₂ laser has no advantage over the electrodesication needle and is associated with more adverse effects.

Argon Laser

Argon (488 and 514 nm) and argon-pumped continuous wave dye lasers (515–590 nm) are well absorbed by hemoglobin and penetrate to the depth of mid-dermal vessels, over 1 mm into skin. Treatment parameters vary and laser powers of 0.8 W to 2.9 W, exposure times of 50 milliseconds, 0.2 seconds, 0.3 seconds, and continuous and spot sizes of 0.1 and 1 mm have been used. Though the success rate in treating facial telangiectasia has been reported to be good-to-excellent in 65% to 99% of patients treated (12–14), pitted and depressed scars, hypopigmentation, hyperpigmentation, and recurrence of veins have been noted (15-18).

Adverse healing consequences occur with the argon laser due to competition for absorption of its wavelength (411 and 514 nm) from epidermal melanin as well as radial diffusion and dissipation of heat from the target blood vessels secondary to long pulse durations. Both of these factors result in relatively nonspecific thermal destruction and this laser is not recommended.

KTP 532 nm Green Lasers

Potassium titanyl phosphate (KTP) crystals are highly reliable, convenient to work with, and easily available to laser manufacturers. While the mechanisms of these devices vary, each produce millisecond domain pulses at 532 nm. Pulsing in milliseconds allows vessel coagulation to occur without producing purpura. The various KTP lasers available differ in the spot size that ranges from 0.5 to 4 mm in diameter.

Results of treatment of facial vessels have been excellent (19). Recent results with the KTP laser using larger spot sizes (3–5 mm) and longer pulse durations of 10 to 50 milliseconds at fluences of 14 to 20 J/cm² have been even more promising. Utilizing fluences between 12 and 20 J/cm² delivered with a 3- to 5-mm diameter spot size, a train of pulses is delivered over the vessel until spasm or thrombosis occurs. Although typically KTP is used with a 2-mm spot, 10 to 20 milliseconds pulse duration and 15 J/cm² of fluence and isolated red telangiectasias are treated along their course. Cooling appears to be of significant benefit in protecting the epidermis thus allowing use of higher, more effective fluences (20). One study comparing four different 532 nm lasers shows comparable 75% to 100% efficacy between them (21).

Flashlamp Pumped-Pulsed Dye Laser

The traditional PDL (585 nm, 450 jseconds pulse duration) is highly effective in treating a variety of cutaneous vascular lesions, including PWS and facial telangiectasia. The original PDL was developed for the treatment of port wine stains in children, where the average vessel is superficial and has a diameter of 100 um and an average depth of 0.46 mm. Modern day PDL is delivered entirely differently, using 595 nm, 1.5 to 20 milliseconds pulse durations and synchronized skin cooling with a cooling spray or airstream.

In preliminary animal studies in the rabbit ear vein, approximately 50% of vessels treated with an effective concentration of sclerosant demonstrated extravasated RBCs, while
after PDL treatment, extravasated RBCs were apparent in only 30% of vessels treated (22). Rabbit ear vein treatment with the PDL resulted in a relative decrease in perivascular inflammation compared to vessels treated with sclerotherapy alone.

The PDL treatment technique involves delivering a series of pulses overlapping 10% to 20%, tracing the vessels to be treated with a 2-, 3-, 5-, 7-, 10-mm or elliptical delivery spot, and treating an area of interlacing telangiectasia with overlapping spots to cover the involved area. Delivery energies range from 5.0 to 14.0 J/cm² depending on the spot size used and are adjusted according to vessel response. The end point is purpura or vessel spasm.

Purpura is a common occurrence after treatment with traditional PDL with short pulse durations, but is much less common with pulse durations longer than 6 milliseconds. Initial studies using the 0.45 milliseconds pulse duration FLPD laser demonstrated high efficacy but was complicated by purpura that lasted for one to two weeks (23). In this study, 182 patients treated with the 0.45 milliseconds pulse laser at 6 to 7.75 J/cm² with a 5-mm diameter spot size were evaluated. 76% to 100% clearance was obtained in 83.5% of patients with the remainder having 51% to 75% clearance.

A technique to increase efficacy and decrease purpura is to use double and triple pulses (pulse stacking) at subpurpuric fluences. Tanghetti used pulse stacking to increase efficacy on photoaging with reduced side effects but found that multiple treatments with or without pulse stacking had excellent results on the signs and symptoms of photoaging including telangiectasias (24).

LONG-PULSE DYE LASERS
On the basis of theory of selective photothermolysis, the predicted pulse duration ideally suited for thermal destruction of vessels, the size of leg telangiectasia (0.1-several mm in diameter) is in the 1 to 50 milliseconds domain (25). Newest long pulsed dye lasers with variable pulse durations as long as 40 milliseconds (V-Beam Perfecta™, Syneron/Candela, Wayland, Massachusetts, U.S. and Cynergy™, Cynosure, Chelmsford, Massachusetts, U.S.) are now available. Each device uses a rhodamine dye to produce wavelengths of 585 to 595 nm. These longer pulse durations and longer wavelengths improve our ability to treat deeper, larger caliber vessels.

Newer FLPD lasers that extend the pulse duration to 1.5, 3, 6, 10, 20, and 40 milliseconds and use dynamic or continuous air cooling have eliminated most of the pain and have minimized purpura associated with the first generation FLPD lasers. Typical fluences of 10 J/cm² with a 10-millisecond spot size usually result in 90% resolution of facial telangiectasias in one treatment with minimal pain and purpura (Fig. 55.3). Improvement in rough texture and pigmentation of photoaging is also seen.

Treatment of leg telangiectasias with this method has not produced satisfactory results, even with the use of longer pulsing. In a single treatment of vessels less than 0.4 mm in diameter using the 595 nm, 1.5 milliseconds pulsed dye laser (Cynosure) and an experimental 595 nm, 4 milliseconds pulsed dye laser, clearing rates were not clinically significant with either device, and the rates of both hypopigmentation and hyperpigmentation were significant (26). Another study evaluated patients treated 3 times, 6 weeks apart, with the 595 nm, 1.5 milliseconds PDL (candela). While all patients experienced at least 50% clearing of the treated vessel, 50% of the treated areas became hyperpigmented and 20% hypopigmented (27). Despite advances in laser therapy, sclerotherapy remains the gold standard for treatment of leg telangiectasias.

THE COPPER VAPOR LASER
The copper vapor laser operates at two specific wavelengths, 578 (yellow) and 511 nm (green) and delivers a “quasi-continuous wave” composed of pulsed laser light energy in 20 nanoseconds pulses at a frequency of 15,000 pulses per second. This train of pulses interacts with tissue in the same manner as a continuous beam because of the accumulation of heat with the large number of pulses delivered. Because of resulting thermal diffusion, it is necessary to electronically gate the pulse to a 20- to 50-millisecond duration.

These refinements should allow this laser to work within the thermal relaxation time of telangiectasia. When the laser is used without these refinements, it is somewhat safer and more effective than the argon laser for treatment of facial telangiectasia. It also has the advantage of leaving very minor superficial crusts overlying treated vessels in contrast to the very visible...
dark purpuric impact spots of the FLPD laser. A comparison of the copper vapor laser with the FLPD laser in adults with facial telangiectasia demonstrated no difference in efficacy but did show that the copper vapor caused crusting while the FPDL caused purpura (28).

Long Pulse Nd:YAG 1064 nm

Long pulsed 1064 nm lasers have recently been developed in an effort to target deep, relatively large caliber cutaneous vessels. This wavelength achieves deep penetration and is not absorbed by melanin, thus allowing treatment of more darkly pigmented individuals. However, high energies must be utilized for adequate penetration. Only with sufficient fluence and facilitation of heat dissipation, the posterior wall of a larger diameter (1–2 mm) vessel filled with deoxygenated hemoglobin can be reached and heated.

The newer pulsed 1064 nm lasers have pulse durations between 1 and 200 milliseconds (Vasculight™ Lumenis, Santa Clara, California, U.S.; Cool Touch Varia™, CoolTouch Corp., Roseville, California, U.S.; Lyra™, Laserscope Lyra, San Jose, California U.S.; Coolglide™, Altus, Burlingame, California, U.S.). Large caliber vessels >0.5 mm in diameter respond best to these lasers; however, recent data suggests that by using smaller spots and higher fluences even small vessels will respond. In initial studies with a first-generation 1064 nm fixed 6 mm spot delivery handpiece, optimal settings were fluences of 80 to 120 J/cm² and single pulse durations of 10 to 30 milliseconds (29). Experience indicated an approximately 75% resolution of leg telangiectasias at three months using 16 milliseconds pulse durations with fluences of 130 to 140 J/cm² (29).

Larger violaceous vessels of the face may be treated with these devices (Fig. 55.4). The fluence must be lowered by 30% to 40% for facial vessels as compared to the legs. A recent study of facial telangiectasias and periorcular reticular veins showed excellent results in 17 patients using a cryogen spray cooled 1064 nm system. Greater than 75% improvement was observed in 97% of the treated sites (30).

It should be kept in mind that treatment with long pulse 1064 nm laser is relatively painful, and both cooling and topical anesthesia should be employed to minimize discomfort. Stacked pulsing CANNOT be performed with 1064 nm as there is high risk of heat buildup and skin breakdown, 1064 nm should never be used faster than 1 Hz pulse rate, and pulse positioning should never be closer than 1 mm apart. For patient comfort, epidermal cooling can be contact cooling or cryogen spray that can be programmed both before and after the laser pulse. The concept behind the applying the spray after the cooling pulse is for “thermal quenching” (US Patent # 6451007, Koop, Baumgardener, and Weiss) of the heat released from larger vessels following the laser heating.

IPL SOURCE

The high intensity pulsed light (IPL) source was developed as a device to treat ectatic blood vessels using noncoherent light emanating from a filtered flashlamp (Lumenis One™, Lumenis, Santa Clara, California, U.S.). Although Lumenis is the largest and most well known of the IPL device manufactures, other manufactures of pulsed light devices include Energis Technology, Swansea, U.K., marketing an Energis Elite IPL system for hair removal only, and Danish Dermatologic Development, Hoersholm, Denmark that markets the Ellipse system for hair and vascular indications. The Energis system is a low-output device, with 5 to 19 J/cm² output, spot size of 10 mm × 50 mm, pulse train length of 15 to 40 milliseconds, and pulses per train of 4 to 5. There is a fixed delay between pulses of 1.5 milliseconds. By comparison, the Lumenis device is a high-output device with up to 90 J/cm² output, spot size of 8 mm × 35 mm, variable pulse lengths of 2 to 40 milliseconds, and infinitely variable delay between pulses of 1 to 1000 milliseconds.

Selectivity for IPL is achieved primarily by manipulating pulse durations to match thermal relaxation times of vessels larger than 0.2 mm and by using filters to remove lower wavelengths of visible light. Fluence can be very high with the unit delivering up to 90 J/cm². Sequential pulsing of 1 to 12 milliseconds duration separated and synchronized with 1 to 100 milliseconds rest intervals delivers wavelengths of 515 to 1000 nm. It is most commonly used with the 550 and 570 nm filters to deliver the yellow and red wavelengths and some infrared. The ability of IPL to produce a noncoherent light as a
continuous spectrum longer than 550 nm was thought to have multiple advantages over a single wavelength laser system. These advantages include absorption by both oxygenated and deoxygenated hemoglobin and absorption by larger blood vessels located deeper in the dermis. In reality, the primary advantage has been larger spot size and relatively low incidence of purpura on facial telangiectasia.

For facial telangiectasia, our experience has been that the 550, 560, or 570 nm produce optimal results. When treating darker skin types and larger blood vessels, we choose a longer cutoff filter. For telangiectasia-predominant photothermolysis, the typical pulse durations are 2.4 milliseconds + 6.0 milliseconds with a 10-millisecond delay between pulses. The delay between pulses is increased to 20 to 30 milliseconds in darker skin types as they are more prone to thermal injury. Typical pulse durations are 2.4 milliseconds + 4.0 milliseconds (double pulse) with a 10-millisecond delay between the pulses for pigmentation predominant photothermolysis. Typical fluences range from 24 to 38 J/cm² again related to the sensitivity of the skin and the degree of epidermal cooling. To minimize nonspecific epidermal damage, the crystal is placed on a layer of ice-cold clear gel 2 to 3 mm in thickness for noncooled crystals (floating technique).

Studies on the treatment of leg telangiectasia and poikilodermatous of Civatte have proven the efficacy as well as limitations of IPL technology. Few studies have evaluated IPL efficacy purely on facial telangiectasia. Most studies with the IPL comment on its photorejuvenation effects that include elimination of lentigines, reduction of pore size, and minimization of fine wrinkles in addition to treatment of telangiectasia (Fig. 55.5). Results from studies evaluating the efficacy of IPL for treating telangiectasias have been consistently promising. Bitter reported that the IPL used in “FotoFacial settings” produced >75% improvement in telangiectasia in 38% of patients and >50% reduction in telangiectasia in 70% of patients (31). Negishi found a >75% improvement in telangiectasia in 33% of her Japanese settings (similar to Bitter’s except for a decrease in fluence and a longer delay time between the double pulses) (32). Her study showed 83% of patients had at least a 50% improvement in telangiectasia.

Another IPL device (Ellipse Flex, Danish Dermatologic Development, Hoersholm, Denmark) was used in 27 patients with facial telangiectasia. This IPL has a lower cutoff at 555 nm as well as an upper cutoff filter at 950 nm with a median wavelength at 705 nm delivered through a 10 mm x 48 mm crystal light guide. Fluences required to produce a slight bluing of the vessels ranged 13 to 22 J/cm². Pulse durations were 10 milliseconds for vessels <0.4 mm in diameter and pulsed durations of 15 and 30 milliseconds were used for larger vessels. Patients received from one to four treatments with an average of 2.54 treatments. 83.4% of patients had greater than 50% clearing with 66.7% having greater than 75% clearance (33).

The development of the short pulse-long pulse protocol utilizing 2.4 to 3 milliseconds and 7 milliseconds pulses separated by a 10- to 20-millisecond delay employing the 560 or 570 nm filter has yielded the best results for leg veins using the IPL device. Response rates of 74% in two treatments with an 8% incidence of temporary hypo- or hyperpigmentation has been reported (34). By combining a shorter pulse (2.4–3 milliseconds) with a longer pulse (7–10 milliseconds), it is theoretically possible to ablate smaller and larger vessels overlying one another in the dermis. The shorter pulses are absorbed more selectively by smaller more superficial vessels, while the longer pulses are absorbed by the larger diameter, deeper vessels. New contact epidermal cooling devices improve treatment results by allowing larger fluences with less risk to the epidermis.

THE ROLE OF COOLING

The concept of cooling the skin in an effort to protect the epidermis during laser treatment of dermal targets was first studied by Gilchrest (35) who incorporated the use of ice prior to argon laser treatment of port wine stains. Skin cooling during skin laser therapy offers multiple benefits, including cooling and protecting the epidermis, preventing other collateral...
dermal damage, and also reducing the discomfort associated with treatment. Cooling is especially critical in the treatment of larger telangiectasia due to the high fluencies required for efficacy. By cooling the skin, collateral injury is limited.

Several cooling modalities have been used including water-cooled chambers applied directly to the skin through which the laser beam is directed, cooling coupling gels, and refrigerated spray cooling devices. Preliminary results suggest that cooling helps to spare epidermal damage, hence allowing use of higher fluencies and yielding more damage of the targeted vessels and achieving a greater degree of clearing per treatment (36,37). However, cooling has a minor role in the treatment of pigmented lesions.

Pigmented Lesions

Pigmented lesions are another common manifestation of photodamage for which patients often present to dermatologists for treatment. Sun damage induces pigmentation changes in several manners. In the development of ephelides (freckles), the pattern of melanin deposition is altered (38). Ephelides classically occur in a photodistributed pattern, favoring the face, shoulders, and extensor arms, and darken with increased sun exposure. Lentigos are the most common photaging-associated pigmented lesions and occur because of UV-induced melanocyte proliferation. The treatment of ephelides and lentigos will be the focus of this section.

Q-Switched Lasers

Several laser systems have been shown to be effective in the treatment of lentigines. These systems include the 510 nm pulsed dye laser, the frequency doubled Q-switched Neodymium:Yttrium-Aluminum-Garnet 532 nm (QS 532 nm Nd:YAG) laser, the Q-switched Ruby laser, and the QS Alexandrite laser (39) (Fig. 55.6). As in most aesthetic procedures, the risk of adverse effects is an important consideration. Dark-skinned patients have a higher epidermal melanin content and are more likely to develop complications such as hyperpigmentation. Studies of the use of Q-switched lasers in dark-skinned patients have indicated that the risk of post-inflammatory hyperpigmentation (PIH) is approximately 20% (40).

QS ruby and QS Alexandrite wavelengths are well absorbed by melanin. However, the greater depth of penetration can be a disadvantage because there is a potential for permanent follicular melanocytic damage causing leukotrichia when a high fluence is used. When Q-switched lasers have been compared to long pulsed lasers, interesting findings regarding optimal efficacy and adverse effects have been shown. An in vivo study of 34 patients compared a QS 532 nm Nd:YAG laser to a long pulse 532 nm Nd:YAG laser (41). Results showed that the long pulse 532 nm laser (6.5 J/cm², 2-mm spot size, 2-millisecond pulse duration) resulted in a lower risk of PIH when used to treat lentigines in Asians.

Q-Switching Versus Millisecond Pulse Durations

Q-switched lasers generate high-energy radiation with very short pulse duration. This produces intense energy that leads to a rapid rise in temperature (1000°C) within the target subcellular chromophore. As the laser pulse duration is shorter than the thermal relaxation time of the target, a temperature gradient develops between the target and its surrounding tissue (42). When the temperature gradient collapses, it generates localized shockwaves causing the fragmentation of its targets. This photomechanical reaction leads to melanosomal disruption that occurs after nanosecond pulse durations of Q-switching (43).

IPL

Photothermal effects, such as those produced by the IPL, were initially considered more efficacious when treating lentigines. Some promoted the concept that the photomechanical effect of QS lasers was undesirable for lentigines, and this has been confirmed by a number of investigators (41,44). Use of IPL for photaging in Asians has been shown to increase collagen and decrease melanin without significant adverse effects in the treatment areas and relatively high patient satisfaction rates (45). There have been few reports of IPL-induced long-term hyperpigmentation (46,47), although temporary hypopigmentation is a well-recognized side effect. To minimize risks of scarring, it is important to select a pulse duration that is shorter than the thermal relaxation time of the epidermis. The epidermal relaxation time is estimated to be approximately 10 milliseconds if the epidermal thickness is 100 um (48), so that pulse
durations of less than 10 milliseconds with IPL are preferred for pigmented lesions.

SELECTING THE LASER

When treating epidermal pigmented lesions such as lentigines, patients should be informed about advantages and disadvantages of each mode of treatment. IPL typically results in little downtime and may also improve rhytids. Lasers, however, may be the preferred choice for patients in terms of fewer treatments and cost-effectiveness. Test areas with different devices may be performed. If a test spot clearance is satisfactory, without development of PIH, then it is best to use the device that performed best. Patients are advised that clearance may take one to four sessions. However, if PIH develops at any time during the treatment phase, treatment is stopped, hydroquinone or equivalent is applied daily, and the patient is followed until resolution of PIH occurs. Typically, we use IPL if multiple pigmented lesions are scattered around the face, but Q5 ruby if a few isolated lentigines are targeted.

PRETREATMENT AND POSTTREATMENT CONSIDERATIONS

One cannot overemphasize the importance of pretreatment skin preparation to patients planning to undergo laser or light treatment for pigmented components and vascular components of photoaging. The use of topical bleaching agents such as hydroquinone, vitamins C and E, and UVA/UVB sunscreens of SPF 30 or higher should be initiated two weeks prior to the laser/IPL surgery and then resumed five to seven days post treatment or when epidermal crusting resolves. Treatment should continue for at least six months after a course of treatment. Use of sunscreens should become a lifelong habit.

SUMMARY

Treatment of vascular and pigmented lesions in adults can be very successful. Practically, all laser devices available in the visible light range, except for red, produce good results on facial vascular lesions. Q-switching is an important tool for treatment of pigmentation. Knowledge of the lesion type and differences in response by size and location can assist in selecting the procedure most likely to achieve successful results. Wavelengths of lasers may be fine tuned for size or color of individual telangiectasias. Although electrocautery is used frequently, a more selective method such as laser or IPL is usually a better choice with far less risks of scarring. Larger cavernous lesions may require deeper penetration of 1064 nm (infrared) wavelengths used cautiously. The benefit of IPL in photoaging is the smoothing of skin and reduction of irregular pigmentation in addition to treatment of vascular lesions. Considering the skin type of the patient, the nature of the lesion, and performing test areas when indicated can ultimately lead to an effective and safe treatment of pigmented and vascular lesions due to photoaging.

REFERENCES

An easy method to assess the antioxidative capacity of topical formulations

Hongbo Zhai and Howard I. Maibach

INTRODUCTION
Oxidation is a chemical reaction that transfers electrons from a substance to an oxidizing agent. Oxidation reactions can produce free radicals, which start chain reactions that damage cells. Exposure to ultraviolet radiation (UVR), air pollutants, chemical oxidants, and aerobic microorganisms may damage the skin (1,2). In particular, reactive oxygen species (ROS) are considered a likely contributor to skin aging, cancer, and certain skin disorders (1,3,4). Fortunately, natural defense systems in healthy skin can protect against exogenous oxidative stress. But, excessive free radical attack (such as overexposure to UVR) can overwhelm cutaneous antioxidant capacity, leading to oxidative damage and ultimately to skin cancer, immunosuppression, and premature skin aging (1–4). Therefore, supplying exogenous antioxidants to the endogenous antioxidant system may prevent or minimize ROS-induced photoaging (4,5). This is why topical products with antioxidant properties have proliferated worldwide.

Recently, in vitro and in vivo methods have been utilized for the evaluation of antioxidant capacity (4–6). Most are based on the measurement of the relative abilities of antioxidants to scavenge radicals in comparison with the antioxidant potency of a standard antioxidant compound. However, some technologies require complicated performance and are time-consuming or expensive. We introduced a rapid, accurate, and easy method to quantify the antioxidative capacity with a sensitive photochemiluminescence device (7–9).

PHOTOCHEMILUMINESCENCE DEVICE
A photochemiluminescence device, Photochem® (Analytik Jena AG, Jena, Germany, and Analytik Jena USA, Inc., Texas, U.S.), was utilized. Its principle is briefly described: Defined free radicals (superoxide anion radicals) are generated in the sample upon exposure to a UV-light source. The free radicals are detected by their reaction with a chemiluminogenic substance and the measurement of the emitted light. The light flashes are detected in the Photochem by a photomultiplier. These generated radicals are partially scavenged by reaction with the sample antioxidants and remaining radicals are quantified by the above described detection principle. The results are presented in equivalent concentration units of Trolox® (synthetic vitamin E) for lipid-soluble substances or ascorbic acid for water-soluble substances. Several concentrations of these standard compounds are used to establish a calibration curve and the detector signal of each run is monitored for 180 seconds. For measurements of the integral antioxidative capacity of lipid-soluble (ACL) antioxidants, an ACL kit was used (Analytik Jena AG, Jena, Germany, and Analytik Jena USA, Inc. Texas, U.S.).

TESTING TOPICAL FORMULATIONS
A vitamin E–containing oil-in-water emulsion with a 22.5% oil content for facial skin care (Sebamed® cream, Sebapharma GmbH & Co., Boppard, Germany) and its vehicle control were tested. The tested emulsion contains (INCI terminology): aqua, petrolatum, myrth-3 myristate, glycerin, cetaperyl alcohol, tocopheryl acetate, cetether-20, dimethicone, sodium PCA, sodium citrate, sodium carborner, parfum, benzyl alcohol, methylparaben, propylparaben. The active ingredient was 2.3% vitamin E. The vehicle control was identical with the exception of the deletion of vitamin E.

SAMPLE PREPARATION
Sample was made at a 5% concentration as follows: 37.5 mg of sample was placed into a 2.0 mL flat top microcentrifuge tube (Fisher Scientific, Pittsburgh, Pennsylvania, U.S.), to which 750 µL of butanol (HPLC grade) (Fisher Scientific, Fair Lawn, New Jersey, U.S.) was added. The mixture was shaken with a vortex (Scientific Industries, Inc., Bohemia, New York, U.S.) vigorously for 30 seconds. After centrifugation for 5 minutes at 10,000 rpm, the supernatant was collected and transferred into a new microfuge tube through a 0.45 µm filter (Osmonics, Inc., Minnetonka, Minnesota, U.S.).

PROCEDURE FOR SAMPLE ANALYSIS
Analyses are performed according to the standard protocol with a modification (7). Six equal aliquots of each testing sample were analyzed. Ratio of the assay mixture was 50 µL: 2300 µL: 200 µL: 25 µL. (Sample: ACL-diluent: reaction buffer: photosensitizer and detection reagent work solution, respectively). A light emission curve was recorded during 180 seconds, and inhibition was the evaluation parameter of antioxidant activity. An exemplary light emission curve is shown in Figure 56.1. Amount of antioxidative substances were calculated by synthetic vitamin E used as standard to establish a calibration curve and expressed as nmol equivalents in antioxidant activity of vitamin E. Further details of measuring method and principles of photochemiluminescence analysis are found elsewhere (10–13).

The quantity of antioxidant capacity for the vitamin E–containing formulation and its vehicle control were 2.28 ± 0.05 and 0.16 ± 0.03, respectively. The vitamin E–containing formulation and its vehicle control were compared to the results shown in Table 56.1. As expected, the formulation showed significantly higher antioxidant activity compared to the vehicle control.
formulation showed a markedly significant ($p < 0.001$) effect of antioxidant over its vehicle control (Fig. 56.2).

DISCUSSION
Antioxidants are often found in skin care products claiming to decrease photoaging and reverse photodamage. These topical products may contain enzymatic and/or nonenzymatic antioxidants. However, vitamin E is a common component in these formulations. Its antioxidant effect has been documented (1,3,4,7,8,14–16). From our method, tested vitamin E formulation has demonstrated its superior antioxidant effect over its vehicle control.

Photochemiluminescence analysis provides advantages over the other methodologies: simple, quick, sensitive, economical, convenient, and reliable. It may detect the antioxidative capacities of even low concentrations of antioxidant. We suggest it may act as a screening method; keep in mind that the method and those data were generated from an in vitro experiment. Actual antioxidant effects of antioxidant-based formulation candidates should also be evaluated in vivo in man. Additionally, basic requirements for a scientific paper reporting antioxidant testing are recommended (17).

REFERENCES
The antioxidative capacity of topical emulsion on ultraviolet exposure

Hongbo Zhai and Howard I. Maibach

INTRODUCTION
Skin, as the most important protective layer, is directly and frequently exposed to oxidative stress. Ultraviolet radiation (UVR) is recognized as the most exogenous oxidative factor to cause the skin problems (1). Healthy skin possesses an antioxidant defense system against oxidative stress (2,3). However, overexposure to UVR may overwhelm cutaneous antioxidant capacity, leading to cell damage and ultimately to skin cancer, immunosuppression, and premature skin aging (1–5). Supplying the exogenous antioxidants may play a key role in preventing or minimizing UVR-induced photoaging (4–11). Antioxidants are often formulated in skin care products that supposedly to decrease photoaging and reverse photodamage. These topical products may contain enzymatic and/or non-enzymatic antioxidants. Vitamin E is the collective name for an eight related tocopherols and tocotrienols, which are fat-soluble antioxidant vitamins. Of these, α-tocopherol has been most studied as it has the highest bioavailability, with the body preferentially absorbing and metabolizing this form and hence it has been considered as a key indicator for the response of skin to oxidative stress (12).

One rapid, accurate, and facile method to quantify the antioxidative capacity of topical formulations in vitro and in vivo on human skin has been presented (13–15). This chapter highlights on the study of determination of antioxidative capacity of a topical skin care emulsion versus its vehicle in vivo on human skin that was exposed to UVR by utilizing a photochemiluminescence device and biophysical methods (14).

MATERIALS AND METHODS
Healthy Caucasians with skin types were II or III (12,16) were studied. Subjects were instructed not to apply topical products to the test sites for one week prior to and during study. An oil-in-water vitamin E containing formulation (pH = 5.5) and its vehicle control were tested in a randomized and double blinded manner.

Determination of Individual Minimal Erythema Dose
The flexor aspects of both forearms of subjects were designed for testing area. Prior to the study day 1, one forearm of each subject was exposed to an ultraviolet (UV) light (radiation source) for 30 seconds to three minutes to induce the minimal erythema dose (MED). To perform this, a template (black cloth) containing 6 square size cutout was made, each square cutout being 1 cm². The template was taped onto one forearm of the volunteers. All cutouts were shielded except for cutout 1, which was exposed to UV radiation of 1.2 mW/cm² at a distance of 20 cm for 30 seconds. All cutouts were subsequently shielded except for cutout 2, which received UV radiation for 60 seconds. The remaining cutouts received UV radiation for 90, 120, 150, and 180 seconds, respectively. The doses were 36 to 216 mJ/cm² for exposure times between 30 and 180 seconds. The MED was determined after 24 hours post UV exposure. Details of this method are described elsewhere (11,16), and one MED was used in this study.

Evaluation of Skin Response
The following measurements were used to evaluate the UV-induced skin response at baseline, day 2, and day 3 post UV exposures.
Visual scores (VS) assessment of the test sites were performed by one investigator according to the scale: (11) 0 = no redness; 1 = slight redness with a blurred boundary; 2 = 1 MED = moderate redness with a sharp boundary; 3 = intense redness; and 4 = fiery redness with edema.
Transepidermal water loss (TEWL) was assessed by a closed evaporimeter (Vapormeter SWL-3, Delfin Technologies Ltd., Kuopio, Finland). TEWL documents integrity of stratum corneum (SC) water barrier function and is a sensitive indicator of skin water barrier alteration (17). The measuring principle and standard guidelines are published (18,19). The values of TEWL were expressed as g/m²/hr.
Blood flow volume (BFV) was measured by the use Laser Blood Flow Monitor MBF3D (Moor Instruments, Axminster, Devon, U.K. and Acaderm, Inc., Menlo Park, California, U.S.) to observe the blood flux of test sites. Details and standard guidelines for use were utilized (17,20,21). The values of BFV were expressed as arbitrary units (AU).
Skin color (a* value) was quantified by using a colorimeter (Minolta CR-300, Osaka, Japan and Acaderm, Inc., Menlo Park, California, U.S.). The a* value represents the color spectrum from total green to pure red and is known to correlate closely with erythema quantification (17,22,23). The values of a* were expressed as AU.
Skin capacitance was measured by a Corneometer (CM 820, Courage+Kazhaka, Cologne, Germany and Acaderm, Inc., Menlo Park, California, U.S.). Capacitance is a parameter for SC hydration. Details of the methods are described elsewhere (24,25). The values of capacitance were expressed as AU.
The measurements were conducted in a room with daily ranges of relative humidity (RH) from 58.9 ± 2.0% and temperature from 19.9 ± 0.8°C. These values (RH and degree centigrades) were recorded during experimental period. Each subject was rested at least 30 minutes for acclimation before measurements.
Treatment and Irradiation Procedure
At study day 1, measurements of TEWL, *a*, BFV, and skin capacitance were taken at three test sites (1.5 cm²/site) on the opposite forearm of each subject. Following measurements, two coded test emulsions were applied to two predesigned test sites. Thirty minutes later, these test sites on this forearm were exposed to an UV light to induce the MED. One untreated site (without emulsions) was served as a blank control. During UV exposure, forearms were protected by a black cloth except the test sites. Visual scoring and instrumental measurements were recorded after 24 hours of MED induction and 48 hours thereafter.

At day 3, after completing instrumental measurements, each test site was stripped with a proprietary adhesive tape disk (D-squame®, Cuderm Corporation, Dallas, Texas, U.S.) for three consecutive times. The tape disk was placed on the each test site with forceps, utilizing gloved hands. The tape disk was pressed onto the skin using a customized constant weight roller to the surface of the tape uniformly over its entire area for approximately five seconds. The pressure was then removed and the tape disk was peeled from the skin with forceps in a unidirectional manner for all sites. Immediately after tape stripping, each tape disk was placed into a glass scintillation vial. These tape disks were quantified for antioxidant capacity using a photochemiluminescence device (Photochem®, Analytik Jena AG, Jena, Germany and Analytik Jena USA, Inc., Spring, Texas, U.S.). Details of measuring method and principles of photochemiluminescence analysis are found elsewhere (13–15, 26–29).

RESULTS

VS
Vitamin E emulsion and vehicle control significantly (p < 0.05) suppressed VS as compared with blank control at day 2 and day 3 post UV exposure. However, vitamin E emulsion showed significantly (p < 0.05) lower VS where compared with vehicle control at day 2 and day 3 post UV exposure (Fig. 57.1).

a Values
Vitamin E emulsion and its vehicle control significantly (p < 0.05) diminished *a* values where compared with blank control at day 2 and day 3 post UV exposure (Fig. 57.2). There was no statistical difference between those two emulsions at each time point.

BFV
At day 2 post UV exposure, only vitamin E emulsion significantly (p < 0.05) reduced BFV as compared with blank control. Vitamin E emulsion and its vehicle control showed significant (p < 0.05) reduction of BFV as compared with blank control at day 3 post UV exposure (Fig. 57.3). There was no statistical difference between those two emulsions at either time point.

TEWL
There was no statistical difference between those three tested sites at any time point.
Figure 57.2 Skin color (a^* values) at day 2 and day 3 post ultraviolet exposure. Data were expressed as the means ± SD.

Figure 57.3 Skin blood flow volume at day 2 and day 3 post ultraviolet exposure. Data were expressed as the means ± SD.
Capacitance

Vitamin E emulsion and its vehicle control significantly \((p < 0.05)\) increased skin capacitance as compared with blank control at day 2 post UV exposure (Fig. 57.4). At day 3 post UV exposure, only vehicle control showed significantly \((p < 0.05)\) increased values of capacitance in comparison with blank control. There was no statistical difference between those two emulsions at either time point.

Antioxidant Capacity Analysis

In analyses with stripping 1, vitamin E emulsion and blank control showed significantly \((p < 0.05)\) higher quantity of antioxidant capacity than vehicle control. However, there was no statistical difference between strippings 2 and 3, or in total strippings.

DISCUSSION

Exposure to UVR may induce dramatic alternations in skin barrier function (30–32). The prime mechanism of UVR-induced damage to cutaneous tissues is thought to be the peroxidation of lipids (3). A single dose of UVR depleted human SC vitamin E by almost 50% and murine SC vitamin E by 85% (33). However, application of topical antioxidants may diminish or minimize such UVR-caused deleterious effects on skin (4–11).

Vitamin E (tocopheryl acetate) is a lipophilic endogenous antioxidant that provides protection against UV-induced oxidative membrane damage. It is believed that the broad biological activities of vitamin E are due to its ability to inhibit lipid peroxidation and stabilize biological membranes (4,10,11).

Healthy human skin has a slightly acid pH and the acidity of the skin maintains antimicrobial activity (37,38). Skin diseases might result if this natural acidic mantle has been disturbed. Particular attention should be paid to this issue when developing skin care products. The current study tested an emulsion containing two important features: vitamin E and a slightly acidic formulation pH balanced at 5.5. Previously, we demonstrated that this emulsion has superior antioxidant effect over its vehicle control in vitro (13). Interestingly, current study showed that both of vitamin E emulsion and its vehicle control proved effective in preventing the induction of erythema and reduced inflammatory by the UV exposure; that is, the vehicle control showed partial benefits against UVR. Vehicles are well known to influence the hydration of the SC and may have some “therapeutic” effects (39). The authors speculate that the vehicle control might have some ability for sunscreensing. However, the effect of vitamin E emulsion exceeded the activity of the vehicle control.
Analyzing antioxidant capacity did not show statistical difference except in the first SC stripping. It might be due to the UVR being too aggressive and even in the short period of less than three minutes it depleted the endogenous and exogenous vitamin E in the superficial SC layers. Further experiment is suggested to take stripping into the deeper SC layer to explore the time point of UVR exposure affecting depth in SC. Additionally, to decrease UVR exposure—for example, below MED level—is also an interesting study.

REFERENCES
Treatment and noninvasive clinical assessment of androgenetic alopecia

R. Scott Youngquist, Jeanette A. Richards, Caroline W. Cardin, and Thomas L. Dawson, Jr.

INTRODUCTION

As hair production is one of the most metabolically demanding processes in the human body, hair loss can result from a multitude of factors, both extrinsic and intrinsic. This chapter focuses on hair loss associated with hormonal influence, androgenic and chronogenic (or senile) alopecia. There is now evidence that changes in hormonal status can affect both men (androgenic) and women (androgenic and senile alopecia). This hormone-related alopecia is the most common alopecias in men and women, with a reported prevalence of approximately 50% in Caucasians (1–5), and a much lower prevalence in Asians (2,6), Native Americans, and African-Americans (4). There is a clear genetic linkage, with evidence for polymorphism in the androgen receptor as a contributing factor, although it is also clearly impacted by multiple factors, both genetic and epigenetic.

Male androgenetic alopecia results from androgen-dependent miniaturization of the scalp hair follicles, with dihydrotestosterone (DHT) implicated as the primary agent (7–9). The loss of hair is associated with a distinct shortening of a hair cycle, that is, an increased number of growing anagen hairs entering the resting or telogen phase earlier than normal. This results in hairs falling out prematurely. In each subsequent cycle the anagen phase is shortened, which results in the hair shaft becoming shorter, thinner, and less pigmented. In addition, the lag phase (the interval between the shedding of telogen hair and the emergence of replacement anagen hairs, also referred to as exogen) becomes longer. Terminal hair is thus transformed into intermediate and finally miniaturized hair. This transformation can occur in as few as one to two cycles (10). Male pattern hair loss begins in two general progressions, either a gradual receding of the frontal hairline or a loss of hair density in the vertex (3,11). In males, androgen-mediated hair loss can advance to the complete absence of visible hair except on the sides and posterior of the scalp.

In women, FPHL has also been linked to androgens in genetically susceptible populations, but that linkage is far less clear than in males (12). However, estrogen levels clearly play a role in FPHL as the onset of menopause results in a significant reduction in frontal hair density and diameter (13). Like men, thinning begins between ages 12 and 40 years and the inheritance pattern is polygenic, although the pattern of hair loss is different in men and women with women presenting diffuse hair loss over the top of the scalp and no recession of the vertex or frontal hairline (14). Because of the diffused nature of FPHL, women’s initial complaint is most frequently a widening of the part line. In FPHL, hair density declines with age, but recent work has shown that hair diameter also decreases with age and that hair diameter may be of comparable importance to hair density for women’s overall satisfaction with their hair (see sect. “Hair Diameter”) (15,16).

EFFECTIVE THERAPIES

Minoxidil (Rogaine®) and finasteride (Propecia®) are the only two active ingredients approved by the U.S. Food and Drug Administration (FDA) for androgenetic alopecia (AGA). Minoxidil is available in over-the-counter topical products (2% and 5% for men, 2% for women) (17–40). Finasteride is an oral prescription medication (1 mg/day) (18,19,22,30,38,41–60). Both minoxidil and finasteride have been approved for the treatment of androgenetic alopecia in men, while only 2% topical minoxidil is recommended for the treatment of androgenetic alopecia in women (43,48–50). Oral finasteride was found to be ineffective in the treatment of androgenetic alopecia in postmenopausal women (46).

Minoxidil

Minoxidil (2,4-diamino-6-piperidion-pyrimidine-3-oxide) is a potent antihypertensive agent that was found to induce hypertrichosis in about 70% of patients within two months of initiation of therapy. Topically at 1% to 5% (18,21,23–29,31–37,39,40) has been demonstrated to induce hair regrowth in men with androgenetic alopecia. As a potent antihypertensive drug, minoxidil was thought to act as a direct peripheral vasodilator and potassium channel opener to enhance cutaneous blood flow to the scalp. The mode of action of minoxidil in hair regrowth has not been completely determined, but researchers have proposed that minoxidil works as a sulfonylurea receptor (SUR) activator and prolongs the anagen phase of hair follicles in the following manner: (i) inducing cell growth factors such as vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), (ii) potentiating HGF and IGF-1 actions by the activation of uncoupled SUR on the plasma membrane of dermal papilla cells, (iii) inhibiting TGF-β from inducing apoptosis of the hair matrix cells, (iv) dilating hair follicle arteries, and (v) increasing blood flow in dermal papillae (56). Despite significant research over the last four decades, the specific mechanism(s) of minoxidil action on hair regrowth remains unclear and hotly debated.

Numerous clinical studies have demonstrated the efficacy and safety of topical hair regrowth products containing either 2% or 5% minoxidil in men and women with androgenetic alopecia (18,21,23–29,31–37,39,40,61,62). Literature reports indicate that treatment with minoxidil at 1% to 5% leads to increased hair counts (18,20,23–29,31–36,39,40). Other clinical endpoints that have been studied include patient and investigator
evaluation of hair regrowth (21,24–26,28,29,31–34,36,37,39,40,61), hair weight (18,21,43), diameter of the bald area (26), and global pictures (20,21,23–27,29,31–34,36,37,39,40,48–50). These endpoints correlated with the hair count, further demonstrating the efficacy of minoxidil. The study lengths ranged from six months to five years in 18- to 50-year-old men and women with androgenetic alopecia. In addition, imaging methods with increased sensitivity for detecting hair regrowth were developed (21,23,32,40). Improvement in methods with computational automation has reduced the tedious manual hair counting process and shortened the time for detecting hair regrowth changes from years to months. An alternative form of topical 5% minoxidil has recently been developed to improve application to balding areas. It is a propylene glycol-free foam and has demonstrated efficacy and safety in the treatment of hair loss in men suffering from AGA (63).

Finasteride

Finasteride (Propecia) is the first oral pharmacologic therapy approved for the treatment of men with androgenetic alopecia. Originally developed for the treatment of men with benign prostatic hyperplasia (BPH) at a dose of 5 mg/day, it has a well-established, excellent safety profile and is now approved for AGA treatment in men at a dose of 1 mg/day. Clinical dose-ranging studies demonstrated that 1 mg is the optimal dose and has similar efficacy to 5 mg for reducing hair loss progression and restoring scalp hair growth in men aged 18 to 60 years (18–20,22,30,38,41,42,44–47,51–54,59,60). Improved observations with finasteride treatment include increases in hair counts, thickness, length, growth rate, growth duration, and pigmentation. More recent studies suggest that finasteride treatment may activate terminal hair follicles for faster regrowth and longer anagen phases (64).

Androgenetic alopecia in men is associated with an inherited sensitivity to the effects of androgens, primarily DHT, on scalp hair. DHT is produced by the steroid enzyme 5a-reductase, which converts testosterone to DHT. Oral finasteride is a type II selective 5a-reductase inhibitor and lowers serum, prostate, and scalp DHT levels. Investigations into the molecular mode of action of finasteride suggest that DHT may be signaling a greater expression of caspase, which plays an important role in signaling programmed cell death, thereby affecting the hair growth cycle. Finasteride appears to influence caspase and X chromosome-linked inhibitor of apoptosis (XIAP) expression in the hair follicles cells, thus signaling anagen and active growth in the hair cycle (58,65). In addition, finasteride mediates upregulation of IGF-I, a molecular hair growth regulator in the dermal papilla, which may contribute to clinical improvement (66).

EMERGING THERAPIES

Advances in the understanding of the hair follicle and the hair growth cycle have led to several innovative approaches that represent potential future therapies for treatment of AGA. Devices that deliver light energy such as the HairMax LaserComb have demonstrated efficacy and safety in promoting hair growth in males (67). Treatment options, particularly for women who were previously limited to minoxidil and select off-label antiandrogens such as spironolactone and cyproterone acetate, are expanding to combination therapies with follicular unit extraction and other hair restoration methods. Insights into biological mechanisms of hair growth have also been gained from experimental molecules such as prostaglandins, ketoconazole, and pyrithione zinc. Ketoconazole and pyrithione zinc have antimicrobial activity and are effective in improving androgenetic alopecia (40,68). This implicates scalp microflora such as *Malassezia* spp. in the hair loss process and also opens new avenues for the use of antimicrobials in prevention of hair loss. Emerging therapies that have demonstrated some efficacy also include caffeine (69,70) and adjunct therapies with minoxidil such as tretnoin that may circumvent twice-daily minoxidil dosage (71).

Prostaglandins

Analogs of prostaglandin F2 alpha (PGF2α) are potential future therapies for hair regrowth. Drugs such as latanoprost (Xalatan®), travoprost (Travatan®), and bimatoprost (Lumigan®), which are glaucoma treatments, have the unusual side effects of increasing hair growth, thickness, and pigmentation in the eyelashes of patients receiving an ophthalmic dose (72–75). These hair growth effects were first noted with latanoprost and have been attributed to activating and prolonging the anagen phase of the hair growth cycle (76). The exact molecular mechanism of PGF2α analogs in hair regrowth is still unknown; however, it is reasonable to expect that part of the signaling cascade occurs via the female pattern (FP) prostanoid receptors and downstream protein kinase C pathways. PGF2α analogs are reportedly efficacious in reversing instances of alopecia areata of the eyelashes (77–79). Recently, a 0.03% topical bimatoprost solution (Latisse®) was developed as the first and only FDA-approved drug for improving eyelash length, thickness, and darkness in patients with hypotrichosis. Significant differences in hair growth properties exist between eyelashes and scalp hair, particularly because scalp hair has a much higher percentage of hairs in anagen (90–95% in scalp, versus less than 30% in eyelash) (77). It therefore remains to be determined whether topical application of prostaglandins will be a viable treatment option for scalp hair regrowth in men or women.

Hair Restoration

The field of hair restoration therapy has evolved over the past several years to include methods that are less invasive and allow less visible scarring and enhanced reconstitution of challenging areas like sideburns and eyebrows (80). Of note is the follicular unit extraction method that removes just the critical follicular structures required to obtain quality grafts, a significant improvement for obtaining aesthetic hair replacements (81–83). Another emerging method is hair follicle reconstitution that requires the harvest of dermal cells from patients. These cells are cultured and expanded in vitro and then injected into the scalp to form new hairs (84–87). The possibility of using hair follicle cells for engineering new hairs may become a realistic alternative for hair loss treatment once larger controlled studies that demonstrate efficacy and tolerability are completed.

Efficacy Measures of Hair Regrowth in Humans

Density

Overview

A key weakness in hair biology research remains the inability to reliably and predictively measure the effect of aging, hormone changes, or treatment on hair quantity and quality. Most methods require sampling from a small site, from 1 to 5 cm², then extrapolating this measure to the entire scalp. This
extrapolation can lead to significant error, as hairs across the scalp are known to be under differential control (13). A further complication is the nonrandom and highly irregular pattern of scalp hairs. This patterning makes repositioning at sample sites crucially important, and requires the placement of a tattoo on the site for any consistent analyses (40). There are methods utilizing global photography. However they suffer from the variability resulting from hair styling, color, and humidity, among other factors. Here we have reviewed some of the most common methods to measure changes in hair density and diameter, focused on detecting responses to treatment of hair loss from any cause.

Direct Manual Hair Count
Early hair growth studies began in the 1980s and used the direct hair count method (18,24,27–29,31,33,34,36,43,88). Efficacy was determined by counting vellus, intermediate, and terminal (nonvellus) hairs in an area of 1-in. diameter (5.1 cm2) in the midvertex. Briefly, a target area was clipped to a uniform length of 2 to 3 mm. A magnifying lens with side lighting was used and visible hairs were manually counted. Significant bias was present based on the individual counting, so it was necessary to have the same person count all subjects. A reference site at the center of the 1-in. diameter circle was marked by either tattoo or punch biopsy. This methodology was labor intensive and prone to systematic bias by missing small or minimally pigmented hairs. The primary benefit was that the hairs that would be the most noticeable by the subjects were the ones most reliably quantified.

Macrophotographic Manual Hair Count
In the 1990s, the manual hair counting method was updated by counting dot maps representing hairs present in enlarged color macro photographs (19,21,22,30,32,35,38,41,42,44,45, 51–54,60,89). This technique involved identification of a 1-in. diameter circular area (5.1 cm2) at the anterior leading edge of the vertex thinning area and clipping all hairs within the area to 1 mm. The area to be photographed was targeted with a dot tattoo to maximize reproducibility and prevent “drift” of the target area over time. Photographs had to be taken with a dedicated, preset camera system to maintain reproducibility. The photographs were then enlarged to 8 × 10 in. color transparencies and converted to dot maps of visible hairs by trained technologists. This method revealed more of the small or nonpigmented hairs, and was a step forward in precision. However, it was reliant on labor intensive human counting and subject to bias from the individual counter. Also, exact repositioning remained very difficult, increasing the signal-to-noise ratio and adding variability to data analysis.

Fiberoptic Microscopic Hair Count Method—Phototrichograms
Phototrichograms. While macro photographs improved hair count methodology it was still cumbersome, requiring photography, film processing, and dot map creation with manual or computer-assisted hair counting. Hence, with the continual improvement of digital image acquisition and computational analysis systems, more sensitive, precise, and time-saving methods have been developed using fully or semi-automated systems (40,90–92).

At the initial visit, imaging sites are tattooed for subsequent repositioning and hair is clipped to 0.8 mm. Prior to imaging, a drop of water is placed on each imaging site to minimize light scattering due to scalp flakes or texture. This is essential to enable automated or computer-assisted counting of sharp edges of flakes and scalp topography by the software. The drop of water does, however, minimize the appearance of nonpigmented hairs. This has the disadvantage of underestimating the number of miniaturized, vellus, or gray hairs, with the advantage that it biases the result to the pigmented, terminal hair that are most likely to be noticeable by the subject. A HI-Scope® fiberoptic microscope and imaging unit (Moritex USA, Inc, California, U.S.) with a 25 × contact lens and a dome cap are used to achieve proper magnification and uniform lighting. Images are captured and digitized via a computer system with TGi Ultra II frame grabber and analyzed via the Optimas 6.2 image analysis software (40).

At each posttreatment visit, the probe is repositioned to achieve alignment with a partially transparent baseline image. Using the tattoo as a guide, the fiberoptic head is moved to align the hair follicle openings and hairs in a process called real-time blending. This method results in a near-perfect repositioning of the pretreatment images with the subsequent posttreatment images (Fig. 58.1). As with the macro photographic method, anagen hair counts can be determined by counting hairs that lengthened in scalp images taken 24 hours later. Image analysis algorithms can also be employed to measure hair diameter. Increased sensitivity from this fiberoptic microscopic method shortened the time for detecting statistically significant differences between treatments.

TrichoScan®. TrichoScan® is a computerized phototrichogram tool to automatically analyze macro or fiberoptic scalp images (93–95). It is purported to have the ability to analyze multiple biologic parameters of hair growth including density, diameter (pixels converted to microns via calibration images), growth rate (millimeters per day), and anagen/telogen ratio. This method combines epiluminescence microscopy (ELM) with automatic digital image analysis. Briefly, the site is identified and clipped as for other macro photography. The center of the area is marked with a tattoo to assist repositioning. The shaved short hair is dyed black to increase the hair-scalp contrast prior to imaging. For the hair number and thickness determinations, the hairs are colored immediately after clipping. For hair growth rate and anagen/telogen determinations the hairs are colored three days after clipping.

Software developed to analyze the digital images determines hair density, diameter, growth rate, and anagen/telogen ratio. Algorithms are utilized to select color components, reject artifacts (bubbles and reflections), determine the threshold, define the hair regions, eliminate the tattoo spot, and analyze the hair from each region. This method is routinely used in clinical studies for assessing hair growth–promoting substances, as well as to study the different forms of diffuse hair loss in various hair-related disorders (93,95,96).

TrichoScan has been used extensively to more fully understand hair biology parameters. Its development has improved the speed of analysis to the point where multiple images can be analyzed much more quickly than was previously possible, enabling the use of more subjects and assisting in better, more powerful clinical designs. However, as with any new method, the precision and accuracy of the TrichoScan system remains controversial. Van Neste and Tru¨ eb conducted a study where TrichoScan was compared to the more labor intensive manual counting, and found that there were significant differences between the “gold standard” of manual counting and the computer-assisted analyses (97). Further work will be necessary to fully understand the positive and negative
aspects of automated analysis methods. Also, as technology improves, so will automated methods.

Unit Area Trichogram
Another highly accurate but labor intensive measurement of hair density and growth parameters is the “unit area trichogram.” In this method, a 1 cm² area is identified and clipped to 2 mm. Every hair in the site is plucked, and the hair cycle stage was identified by microscopic evaluation of the hair bulb (98). The unit area trichogram is highly accurate but again very labor intensive and hence unsuitable for large-scale clinical trials. Hair variables were evaluated in 12 Caucasian subjects employing both unit area and phototrichograms methods. The mean value for total hair density was significantly underestimated by the phototrichogram (181 vs. 237 hairs/cm²); however, no significant difference was found between this phototrichogram value and the number of nonvellus hairs/cm². Estimates for the percentage of anagen hairs were similar with both methods. Hair diameters from this early phototrichogram were too unreliable to be of any practical use. It will remain to be investigated how unit area trichograms analysis compares to more modern and more accurate phototrichograms.

Hair Diameter
The perception of hair mass or volume is a function of both density and diameter (99), but careful consideration reveals that changes in hair diameter could be as or more influential than changes in hair density. For example, an 80-μm hair has almost twice as much hair mass or volume as the one with 60-μm shafts. To put this in context, a 10% drop in density will result in a 10% change in hair mass or volume, while a 10% change in diameter will result in a 20% change in hair mass or twice the density effect.

Hair diameter can be obtained from multiple methods, including linear density (100), phototrichogram (90,92), laser fiber analysis (Diastron®), and optical fiber diameter analysis (OFDA) (101). As human hair is variable in diameter even across a single fiber, methods have been developed that assess either single points along the fiber or averages for the entire fiber. Further, the shape, or cross-sectional area, can be highly variable and account for multiple hair “feel” parameters. All of these factors must be considered when choosing an optimal method.

Linear Density
The linear density diameter is a calculation based on the number of fibers in a sample, the length of the sampled fibers, and an average density of human hair (100). This method provides an accurate average diameter for a sample, but does not take into account the variations in diameter along fibers or variations in shape of the fiber.

Phototrichogram
Current high-resolution phototrichogram techniques can be used to measure hair diameter (40). This method requires software that can enumerate the fibers and count the total area covered by hair. These numbers are then used to calculate the average diameter of each hair in a sample. This method is
limited to average diameters as the resolution of current camera technology limits the size of a pixel in an image to approximately 10 μm. This means that many hairs need to be averaged to report accurate and meaningful results. This method also measures the hair approximately 1 mm from the scalp and so can be useful for measuring the effect of treatments, as newly grown hair is all that is contained in that short fragment. As the hair is attached to the scalp and held in place by the follicle, no shape diversity can be captured.

Diastron®

The most common method in use today to calculate hair diameter is the laser method developed and employed by the Diastron device. Description of the full utility of this method is beyond the scope of this review, but ample information can be found on the Diastron company website. Briefly, single hair fibers are mounted in a holder device and rotated while in the beam of a laser. The diameter of the hair shaft is then calculated by the bounce from the fiber. This method is highly accurate and precise, and can provide detailed information on single fibers. In addition to average diameter, this method provides a measure of the fiber shape termed ellipticity and can be applied to multiple sites along the fiber. The potential issue is the relatively low throughput compared with the diversity of human scalp hair. It also requires 4 in. of hair sample and about eight months of growth. This requires an extended clinical trial to apply the method to hairs produced during the study.

OFDA

Optical fiber diameter assessment allows for the measurement of many hundreds to thousands of fibers per sample (13,101,102). Briefly, 2-mm snippets are cut from the end of a clinical sample, washed, equilibrated, and cast onto glass slides. The slides are read by a computerized optical laser that finds the 2-mm axis and measures the perpendicular. As this technique allows for the measurement of so many fibers per sample, it is valuable for understanding the effects of treatment across larger scalp sites and the effect on the distribution of hair diameters. As it also measures only short segments of the fiber, it can be used to evaluate the effect of treatment periods of less than one month. Recently OFDA was used to measure differences in hair diameter in pre- and postmenopausal women, demonstrating the utility in human clinical studies. The limit of this method is that variability is not limited to average diameters as the resolution of current camera technology limits the size of a pixel in an image to approximately 10 μm. This means that many hairs need to be averaged to report accurate and meaningful results. This method also measures the hair approximately 1 mm from the scalp and so can be useful for measuring the effect of treatments, as newly grown hair is all that is contained in that short fragment. As the hair is attached to the scalp and held in place by the follicle, no shape diversity can be captured.

As hair quantity is determined by the hair’s density (n/cm²) and diameter (μm), hair loss and hair growth result from changes in either or both. Therefore an ideal hair-measuring technology would measure the influence of both density and diameter (99).

Cross-Section Trichometer

A new device has recently entered the field of hair loss measurement, the cross-sectional trichometer. This measure utilizes an instrument that captures hairs from a predetermined area and compresses them into a steady and precisely determined area caliper. Care must be taken for accurate sample selection, as small changes in the number of fibers captured have a strong influence on the measurement. Careful control of the selected site is accomplished with a 2 × 2 cm² dye marker. All of the hairs inside the demarked 4 cm² area are captured into the device, providing highly reproducible results. Future work with this device could provide a noninvasive, fast, and accurate measure of hair “mass” or “volume,” which would be predicted to be highly relevant to the perceived efficacy in hair loss treatment (99).

Global Assessment

Global Macro Photos

While precise technical measures of hair growth are important for evaluation of pharmacologic intervention, it is also important to understand whether technically measurable improvements lead to changes that can be perceived by the patient and investigator. These evaluations are based on global or whole-head macro photography and rating of performance using perceptual scales by the patients and investigators. Although extremely important, these types of assessments are also extremely difficult due to the numerous and aforementioned complicating factors. The investigator must be conscious of and tightly control humidity, hair style, hair color, background and clothing colors, lighting, camera type, and magnification, among others. It is also very important to observe these features in presentations of hair benefit claims and data as manipulation of any of these facets can lead to inaccurate interpretation.
satisfaction with the hair appearance and the frontline (22). Patients may also evaluate their condition after reviewing randomized color pre- and posttreatment photographs of the vertex (40). It is not uncommon for self-perception to lag far behind technical assessment. This is due to multiple factors, including the amount of time required for new hairs to grow to a length appreciated by the subject and the location of the balding site on the vertex, which is not easily visible to the subject. For instance, technical effects of minoxidil can be measured as early as 8 to 12 weeks, but self-perception of effects can require 9 to 12 months.

Expert Assessment

Investigators assessed the scalp of patients after treatment using a standardized seven-point change rating scale of hair growth (-3 to +3) after referring to a baseline global photograph of the vertex scalp of the patient as a reference for the pretreatment condition (22). Generally, investigator assessment time to noticeability falls between technical assessment and subject assessment. Product efficacy can also be evaluated by an expert panel. In this method, standardized color global photographs of the vertex scalp have also been taken with the head in a stereotactic positioning device and then visually graded by trained, calibrated experts. Paired baseline to post-treatment slides are then independently and blindly reviewed by an expert panel of dermatologists using a seven-point change rating scale of hair growth (-3 to +3) of the vertex and frontal views (22,40). Expert graders will have much higher sensitivity than subject assessments and usually are able to identify effects sooner. However, the perception of the individual under treatment must remain the ideal, and be the focus of development of new therapies.

DISCUSSION

Although the methods described are all appropriate techniques for assessing the efficacy of hair growth compounds in humans, no single method addresses all questions relating to the study of the efficacy and mode of action of hair loss treatment agents. Therefore, one must consider the primary objective of the investigation and utilize the appropriate array of techniques to address the clinical question posed and to collect the relevant measures to assess the outcome.

Improvements in optics, computer hardware and software for capturing, repositioning, storing and recalling images have improved the evaluation of new treatments, increasing sensitivity and speed. Hair count measurement techniques have progressed from manual counts of hairs on the scalp to macrophotography to fiber optic microphotography. Recent developments using automated methods have increased the capability and sensitivity to monitor hair loss and treatment responses, including hair density, hair diameter, hair growth rate, and anagen/telogen ratio (57).

Because of the increased sensitivity for detecting different hair regrowth parameters, along with the ease of capturing images in a clinical setting, noninvasive image analysis techniques have improved our ability to track pre- and post-treatment hair density changes and cumulative hair thickness in as little as four weeks (30,40,93). In addition, the increased sensitivity derived with these techniques has enabled a reduction in the number of subjects required to detect the same magnitude differences between active and placebo treatments with as few as 30 subjects (13). Other endpoints, such as hairs in anagen (hairs that grew in length over time), hair diameter, hair growth rate, and anagen/telogen ratios, can be determined from this imaging data. Computer software and algorithms have increased the accuracy and speed of measurements, giving these methods the capacity necessary for analysis of data from large clinical trials.

While screening studies can be shortened to 4 to 12 weeks with new improved analysis methods, these techniques do not negate the need to establish the long-term and consistent performance of hair loss treatment substances with studies of one to three years in duration, particularly for self-perception measures. The above new measurement techniques facilitate field execution and decrease the time, effort, and costs required in the conduct of large pivotal phase III trials to establish the efficacy and safety of hair regrowth active substances for FDA submission. On the contrary, these techniques do not replace exploratory methods targeted at understanding the mechanism of new hair regrowth products. Methods such as biopsies combined with imaging or molecular DNA/RNA or biochemical marker techniques are still needed to derive an understanding of how and why these compounds work.

For clinical design, the use of both active and placebo controls and having adequate subject numbers and diversity are critical for properly evaluating any alopecia therapy. For example, considerations in subject enrollment include ensuring that the population covers a range of hair loss progression (Norwood/Hamilton scale scores for men, Ludwig scale scores for women), but accounts for other critical variables such as age and ethnicity and controls for medical conditions and medications that can affect hair biology. The selection of the monitoring site is also critical for study outcome. For example, in women, the effect of FPHL is more pronounced on the frontal than on the occipital scalp, so studies with measurements from the frontal region will likely be more sensitive (13).

Since the above objective measurements do not necessarily translate immediately into patient-perceived benefits, subjective perception measures of hair growth by both patients and investigators are necessary in treatment evaluation, especially in pivotal long-term trials, to ensure that clinically meaningful benefits have been produced. This is key to the successful marketing of hair regrowth products.

This chapter has focused on describing the fundamental causes, appearance, treatments, and measurement of hair loss. We have addressed methods for tracking hair density and diameter as they are the variables most likely to be noticed by the subjects seeking treatment. Historically, treatment regimens have focused on scalp hair number density as the primary variable, as this was the perceived parameter most influenced by hair loss. However, recent research is indicating that characteristics beyond hair density play a crucial role in subjects’ satisfaction with their hair. For example, hair diameter has been found to play a critical and highly influential role in both the perception of hair loss and in the efficacy of treatment (13,15,16,99). In another study, gray hair was found to be a more significant contributor to apparent age than hair thinning, and therefore addressing graying may be an important intervention for improving patient satisfaction (103). Given the importance of these hair characteristics, in the next few years new methods must be developed to measure these endpoints. A final consideration for addressing patient hair concerns is the strong linkage between scalp health and hair quality as demonstrated in studies with dandruff sufferers, and it is likely that measures of scalp health will begin to be used to link skin and hair biology (104).
REFERENCES

59. Truêrb RM and Itin P. [Photographic documentation of the effectiveness of 1 mg oral finasteride in treatment of androgenetic alopecia in the man in routine general practice in Switzerland] [Clinical Trial, Clinical Trial, Phase IV, Journal Article, Multicenter Study]. Schweiz Rundsch Med Prax 2001; 90(48): 2087-2093.
62. Trieub RB and Ilin P. [Photographic documentation of the effectiveness of 1 mg oral finasteride in treatment of androgenetic alopecia in the man in routine general practice in Switzerland] [Clinical Trial, Clinical Trial, Phase IV, Journal Article, Multicenter Study], Schweiz Rundsch Med Prax 2001; 90(48): 2087-2093.

Assessing the efficacy of moisturizers

Whitney Hannon

INTRODUCTION
This chapter gives an introductory background to practitioners in cosmetic dermatology who wish to better understand the science behind efficacy claims for moisturizers. In an age of evidence-based medicine and savvy consumers, it is increasingly important to be able to understand, critically evaluate and summarize the experiments used to evaluate the efficacy of moisturizers.

One of the first challenges to the clinician is actually obtaining information about moisturizer efficacy. Most of the studies are not published because they are proprietary information. Information can be requested from companies but can be time consuming to obtain. The information that is readily available is often incomplete (e.g., only available in abstract form) or in difficult or expensive to access journals or books. Once an article is obtained, the clinician is faced with the second challenge of understanding a study that is often filled with technical jargon and unfamiliar instruments. Once the study is deciphered, the third challenge is for the clinician to critically appraise the validity of the information. For example, the clinician needs to ask, “Was the experimental design of this study good enough to warrant trusting the conclusions?” One example of a recommended moisturizer study design is available for reference in Table 59.1. Fourthly, complex machines are often used to make skin measurements. The clinician needs to ask, “Was the machine used properly in this experiment?” and on a more advanced level, “Did this machine really accurately measuring the variable claimed during the experiment?” A checklist of other important questions to ask when assessing the performance and validity of a machine has been developed by Serup (1).

Besides the difficulties already mentioned, there are other significant but subtler issues that need to be taken into account. For example, moisturizers are that moisturizers are often complex mixtures of ingredients that may have interactive properties. In other words, the composition of a moisturizer is more complex than the sum of its independent ingredients. Interactions may occur between water-binding substances (2) and theoretically also between any of the other ingredients including the vehicle. In addition, it has been observed that the individual component has different properties when measured individually than when measured as part of a combination (3).

In summary, the quest to obtain reliable, useful information on the efficacy of moisturizers encounters three main categories of difficulties: problems with the availability/accessibility of information, problems with the experimental design, and problems with the measurement technologies. Table 59.2 lists specific issues in each of these categories, and the implications that these problems could have on the interpretation and validity of the information. This chapter attempts to assist the busy clinician to overcome these challenges by reviewing the literature, translating some of the jargon and identifying some of the most useful and comprehensive evidence-based references.

SUMMARY OF BIOENGINEERING TECHNIQUES
A variety of bioengineering techniques have been used to assess the efficacy of moisturizers on the human stratum corneum. These techniques can be divided into measurements of the following:

1. Skin surface contour
2. Desquamation
3. Elasticity (parallel to skin plane)
4. Elasticity (perpendicular to skin plane)
5. Other mechanical techniques
6. Indirect electrical properties
7. Spectroscopy or thermal transfer
8. Transepidermal water loss (TEWL)
9. Stratum corneum imaging
10. Optical characterization of skin properties

The Appendix gives details of the techniques, some of the researchers involved in the development of the technology, names of different machines, variables measured, principles behind the technologies, and their respective advantages and disadvantages.

Many authors have reviewed and compared these technologies (4–6). Marks (7) took a unique approach by using an arbitrary scale to compare the reproducibility, sensitivity, directness of measurement, capability for quantization, standardization, cost-effectiveness, ease of use, and convenience.

SUMMARY OF EFFICACY DATA BASED ON STUDY TYPE AND BIOENGINEERING TECHNIQUE
Gabard (8) proposed a useful classification for studies on the efficacy of moisturizers. He divides the studies into five main types.

1. Single application to normal skin
2. Multiple application of moisturizers over time to normal skin
3. Moisturizer applied to experimentally irritated skin (one large irritant insult)
4. Moisturizer applied to experimentally irritated skin (mild irritant applied repeatedly over time)
5. Clinical studies in which moisturizer was applied to groups of patients with various conditions

To allow evidence-based comparisons, these study types should be further divided by the bioengineering technique used. There are very few reviews available summarizing moisturizing efficacy studies. Some of the more comprehensive reviews and their conclusions are summarized in the paragraphs that follow.
Hannon reviewed data on the indirect electrical techniques (capacitance, conductance, impedance) and identified 20 studies of Gabard study design type 1 (single application of moisturizer to normal skin) (9). The conclusions are summarized as follows. Glycerol, urea and petrolatum were the best studied substances. One application of urea, glycerol, petrolatum, hyaluronic acid or hydrogenated phosphotidylcholine was capable of increasing stratum corneum hydration for at least several hours: urea for at least six hours even if washed off, glycerol for at least six hours even if wiped off, and petrolatum for at least two hours (but not if it is wiped off). Water itself has a hydrating effect in the short term but eventually results in dehydration. The studies had many limitations especially in the area of controls. For example, many studies did not control for vehicle type (a very important variable) or ingredient interactions. Others failed to control for the following complexities associated with indirect electric measurements: for example, that (i) the capacitance ratio (moisturizer-treated skin capacitance/untreated skin capacitance) varies over time depending on type of moisturizer or (ii) electrical readings are not always proportional to the water present depending on the substance or (iii) each component of a moisturizer has its own electrical properties that can be a source of false positive results (10).

Sivamani (11) reviewed the data on various mechanical (tribological) techniques and found that there were limited studies for Gabard type 1 and type 2 experimental designs.
Sivamani concluded that the water and moisturizers had similar effects on the friction coefficient except the effects of the creams/emollient lasted for hours and the water effects only lasted 5 to 20 minutes. Important variables in studies included the temperature of creams, anatomic location, age of patient and design of the test apparatus.

Agache (12) reviewed data on torsional measurements of skin elasticity (twistometry) for both Gabard type 1 and type 2 study designs. The conclusions were based on a limited number of studies. Some of the results were somewhat contradictory. In most studies, glycerol and lactic acid had longer lasting effects than petrolatum. In one study, glycerol demonstrated increased elasticity up to one week. Other important variables noted were an increase in skin temperature with increased elasticity.

Crowther (13) reviewed data on confocal Raman microspectroscopy for Gabard study design types 1, 2, 3, and 4. Conclusions were that little difference is observed in moisturization on day 1. Over a two-week period, use of moisturizers containing niacinamide was associated with increased total skin hydration. Important variables to control included osmotic changes in skin thickness based on different types of moisturizers.

In summary, there have been few detailed reviews of moisturizer studies using bioengineering techniques. More work needs to be done to summarize and analyze the extent of available information.

CONCLUSIONS
There are multiple challenges facing the clinician who wishes to understand the scientific basis behind moisturizer efficacy claims, including access to information, understanding the information and making sure the study design and technologies used are valid. There is an urgent need to perform meta-analyses (quantitative and/or qualitative) of the studies categorized by study type and bioengineering technique to have more clinically relevant information on the efficacy of moisturizers. For those interested in exploring the topic of moisturizers or noninvasive bioengineering techniques more profoundly, some textbook references have been listed under section “Additional Reading.”

ADDITIONAL READING

REFERENCES